Sec5.3. Volume. LecNote1.
Q1 Find the volume of the following rotating solids.
(a)(Vertical Axe) The region R is bounded by $y=\sqrt{x-1}, y=2, x=0, y=0$. The solid is generated by revolving the region R about the y axis. Sketch the region R and the rotating solid S. Find the volume of the rotating solid.
(b)(Horizontal Axe) The region R is bounded by $y=\sqrt{x-1}, y=0, x=5$. The solid is generated by revolving the region R about the axis $y=-1$. Sketch the region R and the rotating solid S. Find the volume of the rotating solid.

Sec5.4. Work. LecNote2.
Q2(Definition of Work.) Below is the graph of a force function $F(x)$ (in lbs).

(a) How much work is done by the force in moving an object from $x=0$ to $x=3$?
(b) How much work is done by the force in moving an object from $x=0$ to $x=5$?

Q3(Water-Pumping) A tank is in the shape of a downward-pointing cone (vertex at the bottom) has height 2 ft and radius 1 ft . It is filled of soda half the height of the full tank (1 ft above the bottom.) The soda weighs $63 \mathrm{lbs} / \mathrm{ft}^{3}$. How much work does it take to pump all of the soda from a tank to an outlet which is at the level of the top of the tank.

Sec6.1. LecNote2. Sec6.2-6.4. LecNote3. Sec6.6-6.7. LecNote4.
Q4 Derivatives of the inverse functions/inverse trig/log/exp/hyperbolic functions.
(a) $(\operatorname{Sec} 6.1,6.4) f(x)=x^{2}+\log _{2}(x+1)+1$, find $\left(f^{-1}\right)^{\prime}(1)$ given $f(0)=1$.
(b)(Sec6.4,6.6) $f(x)=3^{\sin ^{-1}(x)}$, find $f^{\prime}(x)$ and $f^{\prime}\left(\frac{1}{2}\right)$.
(c)(Sec6.3,6.6) $y=\left[\tan ^{-1} x\right]^{\ln (\sqrt{x})}$, find y^{\prime} and $y^{\prime}(1)$.
(d) $(\operatorname{Sec} 6.2,6.7) y=\sinh (2 x)$, find $y^{\prime}(0)$ and $y^{\prime \prime}(0)$.

Sec6.5/9.3. Initial Value Problems. LecNote3.
Q5 A population $P(t)$ of insects increases according to the following law $P^{\prime}(t)=k(P-100)$. Suppose there are 500 insects at time $t=0$, and 700 insects 5 days later. Find an expression for the number $P(t)$ of insects at time $t>0$ (in days). How many insects will there be in 5 more days?

Q6 Find the solution to the initial value problem

$$
\frac{d y}{d x}=\frac{x e^{x^{2}}}{y}, \quad y(0)=-3
$$

Sec6.8. l'Hopital Rule. LecNote4.
Q7 Determine whether the following limits exist or not. Find the limit if it exists.
(a)

$$
\lim _{x \rightarrow 0} \frac{\sec x-1}{e^{x}-1}
$$

(b)

$$
\lim _{x \rightarrow 0} x \ln \left(x^{2}\right)
$$

(c)

$$
\lim _{x \rightarrow+\infty}(2 x)^{\frac{1}{x}}
$$

Sec7.1-7.4. Methods of Integration. LecNote5. LecNote6.
Q8 Evaluate the following integrals
(a)(Sec7.1.IBP)

$$
\int(\ln x)^{2} \mathrm{~d} x
$$

(b) (Sec7.2.TrigInt)
$\int \sin ^{3} x \cdot \cos ^{61} x \mathrm{~d} x$
(c) (Sec7.3.TrigSub)

$$
\int \frac{x^{3}}{\sqrt{x^{2}+1}} \mathrm{~d} x
$$

(d)(Sec7.4.PartialFraction.)

$$
\int_{0}^{2} \frac{10}{x^{2}-4 x-21} \mathrm{~d} x
$$

Sec7.8. Improper Integral. LecNote6.
Q9 Determine whether the improper integral is convergent or divergent. Evaluate the integral if it is convergent.
(a)

$$
\int_{0}^{2} \frac{1}{(x-1)^{2}} \mathrm{~d} x
$$

(b)

$$
\int_{4}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} \mathrm{~d} x
$$

