Q1[6 points] Sketch the region R bounded by $y=\sqrt{1-x^{2}}, x=0, y=x$. Set up the volume of the solid rotating R about the axis $y=1$. Do not evaluate.

Q2[6 points] A vertical right-circular cylindrical tank measures 12 ft high and 10 ft in diameter. It is half full of kerosene weighing $20 \mathrm{lb} / \mathrm{ft}^{3}$. Find the work it would take to pump the kerosene to the top of the tank.

Q3 Evaluate the following integrals.
(a)[4 points]

$$
\int_{0}^{1} x e^{2 x} \mathrm{~d} x
$$

(b) $[6$ points

$$
\int_{0}^{1} \frac{1}{(x)^{4 / 3}} d x
$$

Q4 Determine whether each of the series is convergent or divergent.
(a)[5 points
$\sum_{n=1}^{\infty} \frac{(2 n+1)(2 n-1)}{n^{3}}$
(b) $[5$ points
$\sum_{n=1}^{\infty} \frac{5^{n}}{n!}$

Q5[10 points] Evaluate the following integral

$$
\int \frac{d x}{\sqrt{9+x^{2}}}
$$

Q6[6 points] Find the partial fraction decomposition for $\frac{2 x^{2}-x+2}{x\left(x^{2}+2\right)}$ in order to evaluate

$$
\int \frac{2 x^{2}-x+2}{x\left(x^{2}+2\right)} d x
$$

(Do not need to evaluate the integral.)

Q7[6 points]Find the equation of the line tangent to the parametric curve

$$
x(t)=\arctan (2 t), \quad y(t)=3^{t} \quad \text { at } \quad(x, y)=(0,1)
$$

Q8[6 points] Solve $y(x)$ if

$$
y^{\prime}(x)=e^{-2 y} x, y(0)=0
$$

Q9
(a)[6 points] Find the Cartesian equation of the polar curve given by $r=\sin \theta$. What curve is it? Sketch the curve.
(b) [6 points] Give the graph of Cardioid $r=1-\sin \theta$ as below. Find the (r, θ) coordinates of the intersection of $r=\sin \theta$ and $r=1-\sin \theta$ in the first quadrant. Set up the integral for the area shared by these two polar curves in the first quadrant. Do not evaluate.

Multiple Choice. Circle the best answer. No work needed.
Q10[3 points] Evaluate the integral

$$
\int \sin \theta \cdot \sin (\cos \theta) d \theta
$$

A $\cos (\cos \theta)+C$
B $\cos (\sin \theta)+C$
$\mathbf{C} \sin (\cos \theta)+C$
D $-\cos (\cos \theta)+C$
$\mathbf{E}-\sin (\sin \theta)+C$

Q11[3 points] Find the open interval of convergence of the following power series.

$$
\sum_{n=1}^{\infty} n(2 x+1)^{n}
$$

A $(0,1)$
B $\left(0, \frac{1}{2}\right)$
C $\left(-\frac{1}{2}, \frac{1}{2}\right)$
D $(-1,0)$
E ($-1,1$)

Q12[3 points] Evaluate the following limit

$$
\lim _{x \rightarrow 0^{+}}(\cos x)^{\frac{1}{x}}
$$

A e
B 1
C e^{2}
D $-\infty$
E 0

Q13[3 points] Find the second degree Maclaurin polynomial of the function

$$
f(x)=\frac{\ln (1+x)}{1-x}
$$

A $x-\frac{1}{2} x^{2}$
B $x+\frac{1}{2} x^{2}$
C $1+x+\frac{3}{2} x^{2}$
D $x+\frac{3}{2} x^{2}$
E $1+x+x^{2}$

Q14[3 points] Which point given by the polar coordinates (r, θ) is in the second quadrant on the XY plane?
A $(r, \theta)=(1, \pi / 4)$
B $(r, \theta)=(1,-\pi / 4)$
$\mathbf{C}(r, \theta)=(-1,3 \pi / 4)$
$\mathbf{D}(r, \theta)=(1,3 \pi / 4)$
$\mathbf{E}(r, \theta)=(1,5 \pi / 4)$

Q15[3 points] Consider the sequence $a_{k}=\sec \left(\frac{2}{k}\right)$ and the series $\sum \sec \left(\frac{2}{k}\right)$
A Both the sequence and the series diverge.
B The sequence a_{k} converges to 1 and nth term test is inconclusive for the series.
C The sequence a_{k} converges to 0 and nth term test tells the series is divergent.
D The sequence a_{k} converges to 1 and nth term test tells the series is divergent.
E Both the sequence and the series converge.

Q16[3 points] A variable force of $\frac{6}{x^{2}}$ pounds moves an object along a straight line when it is x feet from the origin. Calculate the work W done in moving the object from $x=2 \mathrm{ft}$ to $x=3 \mathrm{ft}$.

A $1 \mathrm{ft}-\mathrm{lb}$
B -1 ft-lb
C $6 \mathrm{ft}-\mathrm{lb}$
D $\frac{6}{3^{2}}-\frac{6}{2^{2}} \mathrm{ft}-\mathrm{lb}$
E $\frac{6}{2^{2}}-\frac{6}{3^{2}} \mathrm{ft}-\mathrm{lb}$

Q17[3 points] Which integral represents the arc-length of the parametric curve given by $x=2 \sin t, y=$ $3 \cos t$ from $t=0$ to $t=\pi$

A

$$
\int_{0}^{\pi} \sqrt{2 \sin t+3 \cos t} d t
$$

B

$$
\int_{0}^{\pi} \sqrt{2 \cos t-3 \sin t} d t
$$

C

$$
\int_{0}^{\pi} \sqrt{2(\cos t)^{2}+3(\sin t)^{2}} d t
$$

D

$$
\int_{0}^{\pi} \sqrt{(2 \sin t)^{2}+(3 \cos t)^{2}} d t
$$

E

$$
\int_{0}^{\pi} \sqrt{4(\cos t)^{2}+9(\sin t)^{2}} d t
$$

Q18[3 points] Which trig-substitution can be used to evaluate

$$
\int \frac{d x}{x^{2} \sqrt{4 x^{2}-9}}
$$

A $x=\tan \theta$
B $x=4 \sec ^{2} \theta-9$
C $x=\frac{3}{2} \sin \theta$
D $x=\frac{3}{2} \sec \theta$
E $x=\frac{2}{3} \sec \theta$

Q19[3 points] Let

$$
\tan x=\sum_{n=0}^{\infty} c_{n}\left(x-\frac{\pi}{4}\right)^{n}
$$

be the Taylor expansion for $\tan x$ centered at $x=\frac{\pi}{4}$. Then c_{1} is
A 0
B 1
C $\sqrt{2}$
D 2
E $1 / \sqrt{2}$

Q20[3 points] Evaluate

$$
\int_{0}^{\pi / 4} \tan t \sec ^{2} t d t
$$

A $\frac{1}{2}$
B 1
C $\pi / 4$
D $\tan ^{2}(\pi / 4)$
E $\sec (\pi / 4)$

Q21[3 points] Find the derivative of

$$
\sin ^{-1}\left(5^{x}\right)
$$

A $\cos 5^{x}$
B $\frac{1}{\sqrt{1-5^{2 x}}}$
C $\frac{5^{x} \ln 5}{\sqrt{1-5^{2 x}}}$
D $\frac{5^{x} \ln 5}{\sqrt{1-5^{x}}}$
E $\frac{5^{x}}{\sqrt{1-5^{2 x}}}$

