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Abstract

We prove that, for k € (0,4) and p > (k — 4)/2, the chordal SLE(k; p) trace started from
(0;07) or (0;07) satisfies the reversibility property. And we obtain the equation for the reversal
of the chordal SLE(k; p) trace started from (0; bo), where by > 0.

1 Introduction

In the proof of the reversibility of the SLE(k) trace ([I2]), where € (0,4], a new technique was
developed to construct a coupling of two SLE(k) traces, such that in that coupling, the images of
the two traces coincide, and the directions of the two traces are opposite. That technique was then
used to prove the Duplantier’s duality conjecture ([I3][14]). Comparing Theorem 5.4 in [I3] with
Julien Dubédat’s Conjecture 2 in [2], the author proposed the following conjecture in [13].

Conjecture 1 Let 3y(t), 0 < t < oo, be a chordal SLE(k;py,p_) trace started from (0;07,07),
where k € (0,4) and py,p— > (k—4)/2. Let Wy(2z) = 1/Z. Then after a time-change, (Wo(5o(1/1))),
0 <t < 00, has the same distribution as (Bo(t)), 0 < t < 00.

It’s already known that this conjecture holds in some special cases. If p; = p_ = 0, then [y is
a standard SLE(k) trace, and the result follows from [12]. If £ = 0, then [ is a half line from 0 to
00, which is a trivial case. If kK = 4, then it follows from the convergence of the discrete Gaussian
free field contour line ([7]); and it is also a special case of Theorem 5.5 in [I3]. The motivation of
the current paper is to prove the above conjecture. We will only prove part of it, that is, the case
when p, or p_ equals to 0. If, for example, p_ = 0, then Sy reduces to a chordal SLE(k; py) trace
started from (0;0%). The main theorem of this paper is the following.

Theorem 1.1 Let x € (0,4) and p > (k —4)/2. Suppose Bo(t), 0 <t < 00, is a chordal SLE(k; p)
trace started from (0;07), where o € {+,—}. Let Wy(z) = 1/Z. Then after a time-change,
Wo(6o(1/t)), 0 <t < o0, has the same distribution as By(t), 0 < t < oo.

We will see that Theorem here and Theorem 5.4 in [I3] imply Dubédat’s conjecture. Besides
the special cases that p = 0, K = 0 or 4, the above theorem is also known to be true in the case
that « = 8/3. This follows from [5] because the image of Gy satisfies the left-sided or right-sided
restriction property with exponent depending on p, and the one-sided restriction measure is invariant
under the map Wy(z) = 1/z.

The proof of Theorem will be completed in the last section. We will use the technique used
in [12] and [13]. The new difficulty here is that when applying the above technique, we need some
information about the “middle” part of the curve y. This means that given a stopping time 77 > 0
and a “backward” stopping time T < oo with T} < T5, we need to know the conditional distribution
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of Bo(t), Ty < t < Tz, given the curves Fy((0;T1]) and Fo([T2;00)). This is known in some special
cases. If By is a standard chordal SLE(k) trace, which corresponds to the case that p = 0, then
Bo(t), Ty <t < Ty, is a time-change of a chordal SLE(k) trace in H\ (8o((0; 71]) U Bo([T2; 00))) from
Bo(Ty) to Bo(Ts). If k = 4, from the proof of Theorem 5.5 in [I3], we see that 5y (t), Th < t < Ty,
is a time-change of a generic SLE(k; p) trace in H \ (6o ((0;71]) U Bo([T2; 00))). In the general case,
as we will see, the conditional distribution of £y(t), Th < t < T», is complicated. To describe this
middle part of 3y, we will use hypergeometric functions to define a new kind of SLE-type processes,
which are called intermediate SLE(k; p) processes. These new SLE-type processes will also be used
to describe the reversal of an SLE(k; p) trace whose force point is not degenerate. This is Theorem
below, whose proof will also be completed in the last section.

Theorem 1.2 Suppose Gy(t), 0 < t < oo, is a chordal SLE(k;p) trace started from (0;bg) with
bo > 0. Let Wy(z) = 1/z. Then after a time-change, Wy (5o(1/t)), 0 < t < oo, has the same
distribution as a degenerate intermediate SLE(k; p) trace with force points 07 and 1/by.

The current paper will frequently use results from [12] and [I3]. The reader is suggested to have
copies of those two papers by hand for convenience.

After finishing the first version of this paper, the author noticed that Corollary 9 in [3] is equiv-
alent to Theorem here. It seems to the author that some important details are omitted in [3].
The proofs in this paper will be completed, and contain all details. And the approach of this paper
is somewhat different from that in [3].

2 Preliminary

If H is a bounded and relatively closed subset of HH = {z € C : Imz > 0}, and H \ H is simply
connected, then we call H a hull in H w.r.t. oo. For such H, there is g that maps H\ H conformally
onto H, and satisfies pp(z) = 24+ £ + O(%) as z — oo, where ¢ = hcap(H) > 0 is called the half-
plane capacity of H. A hull H with hcap(H) = ¢ has diameter at least y/c. If H; C Hj are hulls in H
w.r.t. 0o, then Ho/Hy := @p, (H2\ Hy) is also a hull in H w.r.t. oo, and we have pu, = ¢, 1, 00H, -

For a real interval I, we use C(I) to denote the space of real continuous functions on I. For
T >0and ¢ € C([0,T)), the chordal Loewner equation driven by £ is
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For 0 <t < T, let K(t) be the set of z € H such that the solution ¢(s, z) blows up before or at time
t. Then each K(t) is a hull in H w.r.t. oo, hcap(K(t)) = 2t, and ¢(t,-) = @x ). We call K(t) and
o(t,), 0 <t < T, the chordal Loewner hulls and maps, respectively, driven by &.

Let B(t), 0 < t < 00, be a (standard) Brownian motion. Let £ > 0. Then K(¢) and ¢(t, ),
0 <t < oo, driven by £(t) = v/kB(t), 0 <t < oo, are called the standard chordal SLE(k) hulls and
maps, respectively. It is known ([I0][6]) that almost surely for any ¢ € [0, o),

Bt) = p(t, )7 (=) (2.2)

8t90(t7z) = (21)

lim
H>z—£(t)

exists, and 3(t), 0 < t < oo, is a continuous curve in H. Moreover, if x € (0,4] then 3 is a simple
curve, which intersects R only at the initial point, and for any ¢ > 0, K (¢t) = 8((0,t]); if & > 4 then
3 is not simple, and intersects R at infinitely many points; and in general, H\ K (¢) is the unbounded
component of H \ 5((0,t]) for any ¢ > 0. Such § is called a standard chordal SLE(k) trace.

If (&£(t)) is a semi-martingale with d(£); = kdt for some k > 0, then from the Girsanov’s theorem
([9]) and the existence of standard chordal SLE(x) trace, we see that almost surely for any ¢ € [0, 7)),
B(t) defined by exists, and has the same property as a standard chordal SLE(k) trace (depending
on the value of k) as described in the last paragraph.



Let k >0, NeN, g= (p1,...,pn) ERN, 20 €R, and p' = (p1,...,pN) € (@\{xo})N, where
R = RU{oo} is a circle. Let B(t) be a Brownian motion, which generates a filtration (F3). Let £(¢)
and p,(t), 1 <m < N, 0 <t <T, be the maximal solutions to the SDE:

dé(t) = VEAB()+ Yoy s
(2.3)

dpm (t) = Wdfg(t)a 1<m< N,

with initial values
£0) =20, pm(0) =pm, 1<m<N.

The meaning of the maximal solutions is that [0,7") is the maximal interval of the solution. Here
if some p,, = oo then p,,(t) = oo and m = 0 for all £ > 0, so p,, has no effect on the
equation. Let K(t), 0 < ¢t < T, be the chordal Loewner hulls driven by £&. Then we call K(t),
0 <t < T, achordal SLE(k; p1,...,pn) or SLE(k; p) process started from (zo;p1,...,pn) or (zo; D).
It is known that (£(¢)) is an (F;)-semi-martingale with d(¢), = kdt. So the chordal Loewner trace
B(t), 0 <t < T, driven by & exists, and is called a chordal SLE(k; g) trace started from (zg;p).
These p,,’s and p,,’s are called the force points and forces, respectively.

The chordal SLE(k; p) processes defined above are of generic cases. We now introduce degenerate
SLE(k; ) processes, where one of the force points takes value z§ or xy, or two of the force points
take values xar and z , respectively. The force point a:ar or x, is called a degenerate force point.
The definitions are as follows. Suppose p; = a:g is the only degenerate force point. Let £(¢) and
pm(t), 1 <k < N,0<t<T,be the maximal solution to with initial values

£(0) =p1(0) =xo, pr(0)=pr, 2<k<N.

Moreover, we require that
pi(t) > &), 0<t<T. (2.4)

It is known that the solution exists, and (£(¢)) is also an (F;)-semi-martingale with d{£); = xdt.
The chordal Loewner trace driven by £(t), 0 < t < T, is called a chordal SLE(k; p1,...,pn) trace
started from (gco;xg,pg, ...,pN). If the “>7 in is replaced by “<”, then we get a chordal
SLE(k; p1,...,pn) trace started from (zo;zy,p2,...,pn). If the only degenerate force points are
p1 = z§ and pe = 27, let £(¢) and pi(t), 1 <k < N, 0 <t < T, be the maximal solution to
with initial values
€(0) =p1(0) = p2(0) = 2o, pi(0) =pr, 3<k<N
such that
pi(t) > &(t) > pa(t), 0<t<T.

The chordal Loewner trace driven by £(t), 0 < ¢t < T, is called a chordal SLE(k; p1,...,pnN) trace
started from (zo;zg, 2y ,P3, - - -, DN)-

For 1 < m < N, the function p,,(t), 0 < t < T, is called the force point function started from
Pm- Each force point function is determined by its initial point p,, and the driving function £(t) as
follows. Let ¢(t,-), 0 <t < T, be the chordal Loewner maps driven by &. If p,, is not degenerate,
then from , we have pp,(t) = o(t,pm), 0 <t < T. If p,, = 2§, 0 € {+,—}, is degenerate, then
it is not difficult to see that py,(t) = lim,.g ¢(t, ).

The following lemma is a special case of Lemma 2.1 in [I3].

Lemma 2.1 Suppose k € (0,4] and p' = (p1,...,pN) with ZTanl pm = Kk —6. Forj = 1,2, let
K;(t), 0 <t <Tj, be a generic or degenerate chordal SLE(k; p) process started from (x;;p};), where
Pj = (pj1,---,piN), §=1,2. Suppose W is a conformal or conjugate conformal map from H onto
H such that W(z1) = 22 and W (p1,m) = p2.m, 1 <m < N. Then (W(K;(t)),0 <t <Ti) has the
same law as (K2(t),0 <t < Ty) up to a time-change. A similar result holds for the traces.



The following lemma is a special case of Theorem 3.2 in [I3].

Lemma 2.2 Suppose k € (0,4], p > (k —4)/2, and B(t), 0 < t < 00, is a chordal SLE(k; p) trace
started from (0;07), where o € {+,—}. Then a.s. limy_, o B(t) = oco.

From Lemma 2.1 and Lemma [2.2] we obtain the following lemma.

Lemma 2.3 Let x € (0,4], p > (k —4)/2, and x1 # x2 € R. Suppose 5(t), 0 <t < T, is a chordal
SLE(k; p, k — 6 — p) trace started from (x1;x9,x2), where o € {+,—}. Then a.s. lim;_,7— B(t) = x2.

Proof. Let 5y(t), 0 < ¢ < oo, be a chordal SLE(k; p) trace started from (0;07). From Lemma
a.s. im0 Bo(t) = co. We may find W that maps H conformally or conjugate conformally onto
H such that W(0) = z1, W(oo) = 3, and W(0") = 2. From Lemma after a time-change,
W (Bo(t)), 0 < t < oo, has the same distribution as §(¢), 0 < t < T. Thus, a.s. lim;_p- 5(t) =
W(oo) = zo. O

3 Intermediate SLE(k;p) Process

Lemma 3.1 For k € (0,4) and p > (k —4)/2, leta:@,bzlf% <0, andc:% > 1. For

€ (—1,1), let Up(x) = 2 F1(a, b; c; ), where o Fy is the thergeometric function [8]. Then there are
Cy > Cy > 0 such that C; < Up(z) < Cy on [0,1). Let fo(z) = gggg on [0,1). Then fo is also

bounded on [0,1), fo(x) > ﬁ Jor 0 <z <1, and lim,_,,- fo(z) = —5.

Proof. It is known [§] that Uy is analytic and satisfies the Gaussian hypergeometric equation:
x(zx — 1)U (z) + [(a + b+ 1)z — Uj(x) + abUy(x) = 0. (3.1)

Moreover, we have Up(0) =1 > 0 and fo(0) = Uj(0) = %. Let 29 = sup{z € (0,1) : Up(z) # 0}.
Then zo € (0,1] and fo is analytic on [0, 29). Let ho(z) = fo(z) — ;& = Zﬁgzg — 2 on [0, 29).

Then ho(0) = %b —b= 2;% > 0. From lb and that b+ ¢ — a = 1, we find that for = € [0, 2¢),
ho(x) satisfies

b(1 —1b)
(1—=)?
Assume that there is 21 € [0, zg) such that hg(xz1) < 0. Since ho(0) > 0, so x; > 0 and there
is g € (0, z0) such that ho(xzg) = 0 and ho(z) > 0 for = € [0,29). Then we have h{(z) < 0.
However, since b < 0, from we have h{(xg) > 0, which is a contradiction. Thus hg(x) > 0 for
all z € [0,29). So we have fo(z) > % for 0 < z < zg. Assume that zy < 1. Then 2z is a zero
of Uy, so zg is a simple pole of fy, and the residue is positive. Thus, limIHzo_ fo(z) = —o0, which

contradicts that fo(z) > ﬁ for 0 < z < zp. Thus, zop = 1. So Up(x) # 0 and fo(z) > % for
0 <z < 1. Since Up(0) =1 > 0, so Up(xz) >0 on [0,1).

Now Uy and fj are continuous on [0, 1), and Up(x) > 0 on [0,1). To complete the proof, we suffice
to show that lim,_,;- Up(x) and lim,_,;- fo(z) both exist and are finite, and lim,_,;- Up(x) > 0.
One may check that ¢, ¢ —a, ¢ — b and ¢ — a — b are all positive. So from [§],

. _ T(e)T(c—a—1D)
0 = R o=y

xh{(x) + xho(z)? 4 cho(x) + =0. (3.2)

€ (0, 00). (3.3)

We have Uj(z) = 25 F (a+1,b+1;c+ 1;2). One may check that c+1 and (c+1) — (a+1) — (b+1)
are both positive. So from [§] again,
ab I(e+Dl(c—a—-b-1)

ng{l_ Uole) = c I(c—a)l(c—b) (34)




From (3.3) and (3.4), we have lim,_;- fo(z) = —%4— = —%, which is finite. O
From now on, fix x € (0,4) and p > (k —4)/2. Let fo be given by Lemma [3.1] Let
go(z) := p + K fo(). (3.5)

From Lemma go is bounded on [0,1), lim,_,;- go(x) =0, and for 0 < z < 1,

x
gole) = p+ (n— 4) = (3.6)
—x
For 0 < p1 < po, let
1 1
J(p1,p2) == —(* - *)90 (&) (3.7)
p1 P2 P2
From (3.6) and that p > k/2 — 2, we have
4—k 2—kK/2 2—K/2
T(prpo) < & — L+ < / + / : (3.8)
P2 D1 P2 p1 p2

Let 0 < p1 < pa. Let B(t) be a Brownian motion. Let J(-,-) be defined by (3.7). Let £(¢), p1(?)
and p2(t), 0 <t < T, be the maximal solution to

dé(t) = /kdB(t) + J(p1(t) — (1), p2(t) — &(t))dt,
(3.9)
dpi(t) = %7 dpa(t) = Wdfg(tp

with initial values
£(0) =0, Pj(o):pj, j=12.

We call the chordal Loewner trace §(t), 0 < ¢t < T, driven by &, a (generic) intermediate SLE(k; p)
trace with force points p; and py. Note that £(t) < p1(t) < p2(t) for 0 <t < T. If T < oo, we must
have lim; - p1(t) — &(t) = 0. Thus, if limsup,_,p- p1(t) — &(¢) > 0, then T' = co.

Theorem 3.1 Let 5(t), 0 <t < T, be an intermediate SLE(k; p) trace. Then a.s. T = oo, which
means that oo is a subsequential limit of B(t) ast — T~ .

Proof. Let £(t), 0 < t < T, be the driving function for 3. Then there are p1(t), p2(¢) and some
Brownian motion B(¢) such that (3.9) holds, and [0,7') is the maximal interval of the solution. Let
X;(t)=pit) —&(@), j=1,2. Then 0 < X;(t) < Xa(t), 0 <t < T;and for j = 1,2, X; satisfies the
SDE

4X;(t) = —/rdB(t) + ( — J(X (1), Xa (1)) dt.

2
X;(t)

From It&’s formula ([9]), for j = 1,2, we have

dIn(X;(t)) = _X{(Et) dB(t) + (2)(_](’;)/22 B J(X1)((t;£§2(t))> dt. (3.10)
Thus, we have
o)/ %00 = (5475~ x5g) 20 - (s ~ e )
+<%(t) - ﬁ)J(Xl(t),Xg(t))dt.



Since 1/X1(t) > 1/X5(t) and 2 — k/2 > 0, so from (3.8), the drift term for In(X2(¢)/X;(t)) is not
positive. Note that In(X2(t)/X1(t)) is always positive. So (In(X2(¢)/X1(t))) is a supermartingale.
Thus, a.s. lim; ,7- In(X2(¢)/X1(t)) exists and is finite. So a.s.

T, Vk VE \2
— dt = lim (In(X5/X < 00. 3.11
./0 (R0~ Xaiy) = Jigp 0o/ X0 < o0 (310
Let &; denote the event that lim;_,p- In(X2(¢)/X1(¢)) > 0. Assume that & occurs. From (3.11]),

we have a.s. fOT X1(t)~2dt < co. From 1D and (3.10), we have

dIn(X, (1)) = —X*f;) dB(t) + ﬁ 2-2+(1- 28) go(?ﬁ;)} dt.  (3.12)

Since a.s. fOT X1 (t)72dt < o0, and g is bounded on [0, 1), so a.s.

1 K X, (t) X, (t)
/0 Xl(t)2‘2 s * (1 Xg(t)> gO(Xg(t))‘dt < oo
From we have a.s. lim;_,p— In(X7(t)) exists and is finite. Thus, on & a.s. lim,_,p- X7 (¢) exists
and is positive, which implies that T = co.

Let & denote the event that lim;, .- In(X2(¢)/X:1(t)) = 0. Assume that & occurs. Then
lim; ,p- X;(¢)/X2(t) = 1, so limy_,p- go(X1(¢)/X2(t)) = lim,_.1- go(x) = 0. Since 2 — x/2 > 0, so
the drift term in is positive when ¢t is close to 7. From (3.12), a.s. limsup,_,— In(X;(t)) >
—o0, which implies that limsup, _,,— X;(t) > 0. So we have a.s. T = 0o on the event &s.

Since & U &; is a.s. the whole probability space, so a.s. T'= co. Suppose T = oo. Since for any
0 < t < 0o, the half-plane capacity of 3((0,1]) is 2t, so the diameter of 3((0,1]) is at least v/2t. Thus,
the diameter of 3((0,00)) is infinite, so co is a subsequential limit of 5(t) ast — T~. O

The above theorem still holds if the force points p; and ps are random points, and the joint
distribution of p; and ps is independent of the Brownian motion B(t). The argument in the above
proof still works.

We may let the force point p; be 07, and define the degenerate intermediate SLE(x;p) trace.
The definition is as follows. Fix ps > 0. Let £(¢), pi(t) and pa(t) solve for 0 < t < T, with
initial values

£(0) =p1(0) =0,  p2(0) = po. (3.13)

Moreover, we require that
£(t) < pi(t), 0<t<T. (3.14)

The chordal Loewner trace 5(t), 0 <t < T, driven by ¢, is called a degenerate intermediate SLE(k; p)
trace with force points 07 and ps.

We claim that the solution to together with and a.s. exists. For the proof, we
suffice to prove that the solution exists on (0, 7)) for some stopping time Ty > 0 because after Ty we
are dealing with some generic case with random force points. Let B(t) be a Brownian motion under
some probability measure P . Let £(¢), p1(t) and pa(t), 0 < ¢t < T3, be the maximal solution to

such that (3.13) and (3.14) hold. The solution a.s. exists because ¢ is the driving function for an
SLE(k; p) process started from (0,07).



From 1; and 4; it is clear that lim,, g+ (J(pl, p)+ L) =L £ fo( ). Define Z(1),
0 < ¢ < T, such that for ¢t > 0, Z(t) = J(p1(t) — &£(t), p2(t) — &(t)) — and Z(0) =

§(t)fp1(t)’
L — 2= fo(0). Then Z(t) is continuous on [0, 7). From the Girsanov’s Theorem, there is a stopping
time Ty € (0,7) such that under some other probability measure Q, B(t) := B fo

0 <t < Ty, is a partial Brownian motion, which means that B(t) could be extended to a full
Brownian motion. Then we have

d§(t) = VrdB(t) + J(p1(t) — (1), p2(t) = £(1))dt, 0 <t <Ty.

Thus, the solution to (3.9) with (3.13]) and (3.14) a.s. exists on (0,7,). Then the solution can be
extended to the maximal interval, say (0,7, and so we have the existence of the maximal solution.
From Theorem [3:1] we get the following corollary.

Corollary 3.1 Let 5(t), 0 <t < T, be a degenerate intermediate SLE(k; p) trace. Then a.s. T = oo,
which means that co is a subsequential limit of B(t) ast — T—.

4 Martingales

Fix k € (0,4) and p > k/2 — 2. Let 1 < x93 € R, 07 = 4+ and 09 = —. Throughout this section,
the subscripts j and k will be any of the two numbers: 1 or 2, such that j and k are different. Let
&;(t), 0 <t < Tj, be the driving function for a chordal SLE(k; p, k — 6 — p) trace 3;(t), 0 <t < Ty,
started from (x;; 277, ). From Lemma we have a.s. lim, _ - B;(t) = xi. Let ¢;(t,-) and K;(t),
0 <t < Tj, be the chordal Loewner maps and hulls driven by ;. Let p;(¢) and g;(t) be the force

point functions started from x;j and xz, respectively. So we have p;(t) = limm_)m;j @;(t,x) and

q;(t) = @;(t,zx). For 0 <t < T, let

Bt =z (60 /5] mpwE d”/e ot T

Then B;(t), 0 <t < T, is a partial Brownian motion. Let (F7) be the filtration generated by B, (t).
Then (§;(¢)), (p;(¢t)), and (g;(t)) are all (F;)-adapted. And (§;(¢)) is an (F;)-semi-martingale with
d(&): = kdt. Moreover, ;(t), p;(t) and ¢;(¢), 0 < t < T}, are the maximal solution to the following
equations

K—6—p

d¢;(t) = +/rdB; L d 41
2
dn - = d 4.2
L [T 42
2
da. - - d 4.
with initial values
§i(0) =p;(0) =5, q;(0) = zy; (4.4)
and they satisfy the inequalities
S)<pi(t) <aq(t), 0<t<Ty; &(t) > pa(t) > q2(t), 0<t<Tn. (4.5)

Now suppose that (£1(t)) and (£2(t)) are independent. Then (Bj(t)) and (Ba(t)) are also inde-
pendent. So for any fixed (FF)-stopping time tj, with 0 < ¢, < T}, B;(t), 0 <t < T}, is a partial
(.7’:,5 x FF ' )¢>0-Brownian motion.



Differentiating (2.1) w.r.t. 9, and plugging £ = ¢; and z = xy, we find that for 0 <t < Tj,
daz@j(taxk) _ —2dt

ity xr) — (gi(ty) —&(t))? (4.6)
From — we have that, for 0 < ¢ < T},
d&;(t) —pi(t) dé;(t) 2dt _
SO  — GO-p® GO - pO o
d(§;(t) —qt) d&;(t) 2di .
E0-00 5O -0 GO -G 9
d(g;(t) —p; (1) _ —2dt (4.9)
qj(t) — p;(t) (&(t) = q; ()& (1) —pi (1) '
In the above equations, and are ODEs, and are (F/)-adapted SDEs.
For t € (0,Tj), define
r(8) = 1€5(8) = Py F &) — gy ()]s () — s (O] 5 o (t,ax) “TE L (4.10)
From , — and Ito’s formula, we have that, for ¢ > 0,
dr;(t) _ p dBj(t)  k—6—p dB;(t) p(k—4—p)/(2k) &t (411)
r;(t) &) —pit) Ve &) —qi(t)  VE &) —pi®)* ’

Let D = {(fl,tg) S [O,Tl) X [O,Tg) : ﬂ1([0,t1]) ﬂ,@g([o,tg]) = @} Then for any (tl,tz) S D,
Ki(t1) U Ky(t2) is a hull in H w.r.t. co. For (t1,t2) € D, let

Ko, (t) = (K(t5) U Ki(tr)) /K (t;) = @5(t5, Ki(tr)), (4.12)

and @g,¢; (tr, ") = P, (th): Then Ky, (tx) is the image of a curve in H started from o;(t;, %) =
¢;(t;). And for any z € H\ (K (t1) U K2(t2)),

PR (4)UKs(t2) (2) = 01,6, (E1, 02(t2, 2)) = Qa1 (t2, 1(t1, 2))- (4.13)

Define A;j,, h € Z>g, on D such that A;j(t1,t2) = 0y, (tk, &;(t;)). Note that the definition
of A;p here agrees with the definition of A, j in Section 4.2 of [I3]. From now on, we fix t; to be
some (FF)-stopping time that lies on [0, T},), and consider the filtration (.7’:,5]J x FF )¢, >0- Since B;(t)
and By(t) are independent Brownian motions, so B;(t;) is an (]—"t]] X Ff )¢, >0-Brownian motion. We
use 0; to denote the partial derivative w.r.t. t;. The following equations are (4.10) and (4.12) in
3], where (4.14) is an (F7, x Ff ), >0-adapted SDE.

K

0jAj0 = 4j108;(t;) + (5 — 3)A4;,20t;; (4.14)

0;Aro = QA?’l ajAk’l = 72A§’1 (4 15)
! ’ Ak,O - flj,O7 Ak@ (Ak70 — Aj70)2 ' ’

We now use 0; and 0, to denote the partial derivatives of ¢; 4, (-, ) w.r.t. the first (real) and second
(complex) variables, respectively, inside the bracket; and use 9y to denote the partial derivative of
©jto(-,-) w.r.t. the subscript tg. Let (t1,t2) € D. The following equations are (3.9) and (3.15) in
[12.

d (t;,z) 245 H\ K, (t;) (4.16)
j js % : 9 S )y i)s .
1¥P5,t U D th (t]7 Z) — Aj,O Jiti\Uj
2A2 28Zgok ) tk, z
Qopr,t, (th,2) = 21 - 1y (B2 2) z € H\ Ky, (tr). (4.17)

Or,t, (th, 2) — Ajo z=&(ty)



Since Kj, (t;) "R = {qr(tx)} and Ky ¢, (tx) "R = {q;(t;)}, so after continuation, |) also holds

for any z € R\ {qr(tx)}, and (4.17) also holds for any z € R\ {&;(¢;), ¢;(t;)}. Differentiating (4.17)
w.r.t. 9;, we find that for (t1,t2) € D, and z € R\ {£;(¢;),q;(t;)},

2421020k, (1, 2) 2020k, (th,2) | 202080, (th, 2)
(@rt; (trs 2) — Ajo)? z—&(t)) (2 = &(t)?

Define Bjo on D such that Bjo(t1,t2) = ok, (tk, p;(t;)). Since £1(0) = p1(0) and & (1) < p1(?)
for t > 07 SO Al,g(o,tg) = Bl,o(o,tg) and Al,o(tl,tg) < Bl7o(t1,t2) if t;1 > 0. Similarly, we have
A2,0(t1a O) = BQ,O(tl, O) and Agyo(tl,tg) > Bgvo(tl,tg) if to > 0. Choose any y1 < yYs € (111'1,332). Then
pi(t1) < @it y1) < 2(ts,y2) for any ¢; € [0,71). From (4.13) we have

9005 pk,1; (tk, 2) = — (4.18)

Bio(t1,t2) < 0k, (4)UKs (t2) (V1) < Pk, (4)UKs (1) (Y2)-

for any (t1,t2) € D. Similarly, Bao(t1,%2) > Qi (t)UKs(t) (Y2) > Pk, (#1)UKs (t2) (Y1) for any (t1,22) €
D. ThU.S, Bl,O < 3270 on D. So in general, Al,O S Bl,O < 3270 S AQ’O’ where Al,O = BI,O iff tl = O7
and 3270 = A270 iff tg =0.

Let (t1,t2) € D. Since pg(tx) # qr(tx), so we may apply with z = pi(tx), and obtain

243,
Bro—Ajo

Now suppose t; > 0. Then p;(t;) € R\ {&;(t;),q;(t;)}. So we may apply (4.17) with z = p;(¢;), and
use (4.2)) and chain rule to obtain

0;Bro = (4.19)

9B 245 (4.20)
73,0 = Bj,O_Aj,O. :
Note that (4.19) and (4.20) have the same forms as the formula for 9;B,, ¢ in (4.13) in [13]. But
here we require that ¢; > 0 in (4.20).
Let Ej,O = Aj70 — Ak70 = _Ek,O 7& 0, Ej;rn = Aj70 — Bm,07 m = 1,2, and Cj,k = Bj,O — Bk70 =
—C,; # 0. From (4.14)-(4.15)) and (4.19)-(4.20), we obtain the following formulas, which have the
same forms as (4.14) and (4.15) in [13].

95 Ejm Aja K Ajs A%y
mo L0 gt ((f—3)-¢ 9. i )81&, —0,1,2; 421
E]‘7m EJ,m 5]( ]) + 2 E],m + E]2,m J m ( )
3jEk m _2A? 1
: = — Jt;, m=1,2; 4.22
Ekm EjoEjm "’ (4.22)
2
0iCin _ 2 g, (4.23)
Cik Ej1Ejs

Here we require that ¢; > 0 in the SDEs for 0, E; ;, 0; Ex, ;, and 0;C} i, because (4.20]) does not hold
for t; = 0.

Define §j71 on D such that §j71(t1,t2) = 0.0kt (tx, p;(t;)). Differentiating w.r.t. 0, and
plugging z = p(tx), we get

B —9242
5Bk _ 2L ot (4.24)
By 1 E3,

Applying (4.18)) with z = p;(¢;), and using (4.2) and chain rule, we find that, for ¢; > 0,

ajéjl _21432'1 2
A AR P ot;. (4.25)
Bja EZ 77 (pi(ty) —&(t))2



Let D = 31’12B2'1 = 31’1232’1. From (4.23)-(4.25), we find that, for ¢; > 0,
Cis (S5 J

2
(p;(t;) — & (t5))?

Let D' = {(t1,t2) € D : ty # 15 # 0}. Define R on D such that R = £4722 — ZHZEE From
Al,O < Bl,O < BQ,O < A270 we have ‘Ej,j| < ‘Ej,kl and EjJ/Eng >0,s0 R € [O, 1) Since Aj70 7& B',O
when t; > 0,80 E11%E2 # 0onD’. Thus, R € (0,1) on D’. Since Eyy, = Ej, —Ejo form =1,2,

so we have

9D _ f2<@ _ A ot;. (4.26)

2
it BV
D Ej.; Ej,k) !

R+1_  2/Bjg 1B +1/E 27
R—-1 1/E;; —1/E;, 1/Ej; —1/Ejx '
From (4.21) and (4.22), we have that, for t; > 0,
A A K Ajo Asay  k (Aj1 AjN2

o = (- o)« af(5-5) (2 - ) 5 (2 )

! E;;  Ejk i(ts) 2 Ej;  Ejk 2\E;; Ejx
A? A? 242 2A2

DB - 2 i

Let Up(z) and fo(x) be given by Lemma Let go be defined by (3.5). For x € (0,1), let
Vo(x) := T Uo(x). From (3.1) and (3.5), we find that Vo(z) satisfies

Vo(x)  golw)

) T e (4.29)
£ Vi (@) 5 sNz+1 K] go(z) plk—4-—p)
2 V(z)(x) v [(2 - §)ﬁ B 5} O/@ B 2K ' (4.30)

Since R € (0,1) on D', so Vy(R) is well defined on D’. From (4.27)-(4.30), we have that

S = S (2 2 g () + 2 (5 5[ (2 - 32)

2 2
( 245, 245, )} 1. _ p(k—4—p) (Aj71 B Aj,l)zat‘. (4.31)
Ej,OEj,j Ej,OEj,k J 2K Ej,k Ej,j J

Define N and F on D such that N = —AL1421 454 F(t1,t2) = exp( OtQ Otl 2N (s1, $2)ds1ds2).

(A1,0—A20)?
Let a = 2% and A = %. The following equations are (4.13) in [12] and (4.25) in [I3].
8J-NO‘ 1 K Aj 2 2A] 1 1 A% 2 1 A1 3
a8y (2 Py (L Al L Ay, g
N« KJ(S 2) (Aj71 E]'70 )agj( ]) + 4 Ail 6 A171 g J ( 3 )
8jF*>‘ 1 A22 1 A'3
— _A(,. 72 2 298 )375_ 4.33
- 4 Ail 6 Aj’l J ( )

Let 7 = w and § = —W. Define M on D’ such that

M = |z — 22| 71 (t1)ra(t2) D Vo (R)NF =2, (4.34)

From (4.1), (4.11)), (4.26) and (4.31)-(4.33), we get

D) ) e 2)
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B p __k=6-—p 71dB,(t)
§ity) —pi(ty)  &(t5) —q;(t;) ) Ve
Define 7; on [0, 7)) such that

(4.35)

r— _ p(k—=6—p) (p+2)(k—=6—p)

Fi(t5) = 1&5(t;) — a3 ()1 gy (8) — pi ()|~ Bty way) (4.36)

Define M on D such that

M: |.T1 — .’L'Q|T771(tl)?z(tQ)DélEl,QEQ,l‘_gUO(R)NaF_A. (437)
Then M is continuous on D. Define L; on D such that if t; = 0 then L; = 0,px(ty, z;); if t; >0

then
Bt te)l ok (8, &(E5)) — b (b, pi(E5))
Lj(tl, tg) = = .
1€ (t5) — ()] &(t5) —p;i(t))
Here the second “=" holds because E; ; has the same sign as §;(t;) — p;(¢;). Since lim;, o+ &x(tx) =
limy, o+ pr(tx) = o and limy o+ @rt; (th,-) = @ro(tk, ") = @r(ty,-), so L; is continuous on D.

From d4.10|), d4.34|), d4.36b—d4.38|), and that V(z) = 2% Uy(x), we find that M = MLFLQﬁ on D'.
Thus M has continuous extension to D. Now we check the value of M when ¢; = 0.

We have £;(0) = p;(0) = zj, ¢j(0) = zx, and K;(0) = 0. So K;(0) U Ki(tx) = Ki(tx). From
(4.12) we have Ky o(tr) = Ky(ty) and K4, (0) = (0, which implies that ¢k o(tk, ) = @r(t,-) and
©;.,(0,-) = id. Thus, if t; = 0, then Ti(t;) = |z; —ax|™7; and Ajo = or(te, ;) = qu(te) = Bjo,
Aj1 = 0.pk(tk,z;) = Bj1, Aj2 = 020k (tk, x;), Ako = &(tk), Bro = pr(te), and Ay =1 = By 1,
which imply that F;; = 0, Ejx = qx(tx) — pe(te), Exo = Erj = §e(te) — ar(te) = —Ejo, Exx =

0 ) Lj _ o . 9. K2
Er(te) =k (th), 1Cs k] = Ipr(tn) —qu(th)], D = o2 R =0, Up(R) =1, N = parliotil.

and F = 1. From , and the above argument, we find that M = 0.k (ty, 2;)~% when
t; = 0. From the definition, L; = 0,9k (tk,z;) when t; = 0. Since ¢;4,(0,-) =id, so Ly = 1 when
t; = 0. Thus, after continuous extension, M = 1 when ¢; or t3 equals 0.

Let @; be the formula inside the square bracket in (4.35)), that is,

KR A'2 2A1 A'1 A'l P I{—6—p
= (3 ) (82 2 R Lo 0 ) — . (4.39
@ ( 2) (A“ Ejo ) * 90 )<Ej,j Ej,k) §i(t5) —pity)  &(t5) —a;(t;) (439)

Then @Q; is defined on D’. Using the observation in the previous paragraph and the fact that
90(0) = p and gy is differentiable at 0, we may check that @; has continuous extension to D. Thus,

after continuous extensions, the formula 4~ = Q; dB\j/(Etj ) holds in D. For each tr € 0,T%), let

T;(tx) be the maximal number such that K;(t) N K (tx) = 0 for 0 < ¢t < Tj(ty). From we
conclude that for any fixed stopping time ¢, € [0,T}), M is a continuous local martingale in t;,
where t; ranges in [0,Tj).

Let HP denote the set of (Hi, Hy) such that for j = 1,2, H; is a hull in H w.r.t. co that contains
some neighborhood of z; in H, and H; N Hy = 0. For (H;, H2) € HP, let T;(H;) be the first ¢ such

that (;(t;) € H\ H,. Then T;(H;) is an (¥} )-stopping time.

(4.38)

Theorem 4.1 For any (Hy, Hs) € HP, there are Cy > Cq1 > 0 depending on Hy and Hy such that
Cy < M(ty,t2) < Co for (ty,t2) € [0, T1(Hy)] x [0, T2(Hz)].

Proof. Since M = ML?L;, so we suffice to show that the theorem holds for M and L;,j=1,2.

To check the boundedness of M, we suffice to show that the theorem holds for every factor on
the right-hand side of (4.37). From Lemma we find that the theorem holds for Uy(R). The
boundedness of other factors in (4.37)) can be proved using the method in Section 5 of [I2]. For the
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boundedness of L;, we suffice to note that from Lemma 5.2 in [I2], the value of L; lies between A; ¢
and Bj 1, which are both uniformly bounded from co and 0. O

Fix (Hy,H2) € HP. From the local martingale property of M and the above theorem, we see
that E[M(T1(H1),T2(Hz2))] = 1. Let p denote the joint distribution of (&1(¢),0 < ¢ < T7) and
(&2(t),0 < t < Ty). Define v such that dv/du = M(T1(Hy),T2(Hz)). Then v is also a probability
measure. Suppose temporarily that the joint distribution of & and & is v instead of u. For
(tl,tg) € D, define

By 4, (t1) = Bi(t1) /QlStz s, Bay, (t2) = Ba(t2) /Qz t1,s) (4.40)

>o-Brownian motion
Tj(Hj), is a partial

Fix an (FF)- stopping time t_k with #,, < Ty(Hy). Since Bj(t) is an (FJ x .7-“’“ )t
under p, so from , and the Girsanov’s Theorem B (1), 0 < t
(FI FE *)i>0- Browman motion under v.

The following theorem is Theorem 6.1 in [I2] and Theorem 4.5 in [I3]. It can be proved using
the above theorem and the argument in [I2] or [I3].

Theorem 4.2 For any (H", H*) € HP, 1 < m < n, there is a continuous function M,(t1,ts)
defined on [0,00]? that satisfies the following properties: (i) M, = M on [0, Ty (H™)] x [0, To(H3Y)]
form = 1,...,n; (ii) M.(t,0) = M.(0,t) = 1 for any t > 0; (iii) M.(t1,t2) € [C1,Co] for any
t1,t2 > 0, where Cy > C1 > 0 are constants depending only on Hj", j =1,2, 1 <m < n; (iv) for
any (F7)-stopping time tz, (M. (t1,t2),t1 > 0) is a bounded continuous (F}, x F} )i, >0-martingale;
and (v) for any (F})-stopping time t1, (M. (t1,t2),t2 > 0) is a bounded continuous (.7-}11 X FE 220"
martingale.

5 Coupling Measures

Let C := Upe(0,00)C([0,T)). The map T': C — (0, 00] is such that [0,7'(£)) is the definition domain
of & For t € [0,00), let F; be the o-algebra on C generated by {T" > s,£(s) € A}, where s € [0, ]
and A is a Borel set on R. Then (F;) is a filtration on C, and T is an (F;)-stopping time. Let
Foo = ViFy.

For £ € C, let K¢(t), 0 <t < T(£), denote the chordal Loewner hulls driven by . Let H be a
hull in H w.r.t. co. Let Ty (&) € [0,T(€)] be the maximal number such that K¢(¢t) NH\ H = 0 for
0 <t < Tg. Then Ty is an (F;)-stopping time. Let Cy = {Ty > 0}. Then & € Cy iff H contains
some neighborhood of £(0) in H. Define Py : Cy — C such that Py (€) is the restriction of £ to
[0,T5(§)). Then Py(Cy) = {Ty =T}, and Py o Py = Py. If A is a Borel set on R and s € [0, o),
then

Prl({€ € C:T(§) > 5,6(s) € A}) = {§ €Cr : Tu(€) > 5,6(s) € A} € F.

Thus, Py is (}—Tg , Foo )-measurable on Cg. On the other hand, the restriction of ]-"T; to Cq is the
o-algebra generated by {€ € Cy : T (§) > s,£(s) € A}, where s € [0,00) and A is a Borel set on R.
Thus, Pj;'(Fa) agrees with the restriction of }—Tg to Cp.

Let C = CU {oo} be the Riemann sphere with spherical metric. Let I'z denote the space of

nonempty compact subsets of C endowed with Hausdorff metric. Then I'z is a compact metric space.
Define G : C — I'z such that G(&) is the spherical closure of {t +i{(t) : 0 <t < T(§)}. Then G
is a one-to-one map. Let I = G(C). Let F, {é denote the o-algebra on I¢ generated by Hausdorff
metric. Let

R={{z€eC:a<Rez<bec<Imz<d}:a,b,cdecR}
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Then Fj! agrees with the o-algebra on I generated by {{F € I : FNR # (0} : R € R}. Using
this result, one may check that G and G~! (defined on I5) are both measurable with respect to Fi,
and F fé

Now we adopt the notation in the previous section. Let p; denote the distribution of (§;(t),0 <
t < T;), which is a probability measure on C. Let u = 1 X p2 be a probability measure on C2. Since
& and & are independent, so p is the joint distribution of £; and &s.

Let HP, be the set of (H1, H2) € HP such that for j = 1,2, H; is a polygon whose vertices have
rational coordinates. Then HP, is countable. Let (H{", H}"), m € N, be an enumeration of HP,.
For each n € N, let M (t1,t2) be the M, (t1,ts) given by Theorem [4.2] for (H{", H5"), 1 <m < n, in
the above enumeration. For each n € N define v" = (v}, v} such that dv"/du = M7 (00, 00). From
Theorem M (c0,00) > 0 and [ M (oc0,00)dp = E ,[M]*(c0,00)] = 1, so v™ is a probability
measure on C2. Since dv}/du; = E ,[M(c0,00)|FL] = MM(c0,0) = 1, so v} = pp. Similarly,
vy = po. So each v™ is a coupling of py and pue.

Let 7™ = (G x G)«(v™) be a probability measure on 1’%. Since F% is compact, so (7™) has a
subsequence (#"*) that converges weakly to some probability measure v = (,72) on I'z x I'g.
Then for j = 1,2, 17;7’“ — v; weakly. For n € N and j = 1,2, since ' = pu;, so v}' = G.(u;). Thus
v; = Gi(p;), 7 =1,2. So v is supported by IZ. Let v = (v1,15) = (G=! x G71),(¥) be a probability
measure on C2. Here we use the fact that G~! is (F{(I;,fgo)—measurable. For j = 1,2, we have
v; = (G71)(7;) = p;. So v is also a coupling measure of p1 and uo.

The following lemma is Lemma 4.1 in [13]. The proof is similar.

Lemma 5.1 For any n € N, the restriction of v to f:}Hn X f%Hn is absolutely continuous w.r.t. p,
1 2
and the Radon-Nikodym derivative is M (Tgp (1), Ty (&2))-

Now suppose that the joint distribution of & (t), 0 < t < T3, and &3(t), 0 < ¢t < T, is the v in
the above lemma instead of y = p1 X po. Since the distribution of &; is v; = p;, so 3;(t), 0 <t < Ty,
is still a chordal SLE(k; p, k — 6 — p) trace started from (z;; x;” ,x). Thus, a.s. limt_>Tj7 B;(t) = xy.
For (t1,t2) € D, let B;4, (t;) be defined by . Fix an (FF)-stopping time #;, € [0,7)). Choose
any n € N. Let #f = #; ATx(HJ). Then 2 is also an (FF)-stopping time, and satisfies £ < T}, (H}).
From the above lemma and the discussion after Theorem (4.1 we see that B i (t), 0 <t < T;(H}'),

is a partial (F} x FE,);>o-Brownian motion.
n)t>

Lemma 5.2 B;g, (t), 0 <t < Tj(ty), is a partial (F] x fi)tzo—Brownian motion.

Proof. Write 77" for T (Hj”)7 j=1,2,n € N. From the above argument, we know that for any n € N,
Bjm(t ANT}'), 0 < t < 0o, is a continuous (F} x ffz)tzo-martingale. Define S7 = T on {t,, < T}'},
and 57 = 0 on {T{ <t} Then for any ¢ >0, {S} <t} = {T} <&} U{T} <t} € F/ x Ff . So
S7is an (F] x fi)tzo—stopping time. Now we claim that Bjy, (t A ST), 0 <t < oo, is a continuous
(F x Fgc)tzo—martingale. Fix s9 > sy > 0 and € € .7-"51 X fi. Let & = EN{T} < tx} and
E =EN{ty <T]'}. Since S}l = 0on &, s0 Bj, (52 /\SJ’.’) =0=DBjz(s1 /\SJ’?) on &1, which implies
that

/ Bj i (s2 A SJ") dv=0= / Bjr (s1 A SJ") dv. (5.1)
81 81

Since ¢, =t} on {tx < T}, so fﬁ agrees with FF, on {, < T"}. Thus, & € FI x FF,. Since
_ _ v k k
iy, =1y and ST =T on &, so from the martingale property of Bj in (t AT}'), we have

/ B, (s2 A S’]") dv = / B (s1 A SJ") duv. (5.2)
&

Ea
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Since £ is the disjoint union of & and &, so from (|5.1)) and , so A SM|FI x FE] =
Bj g (s1 A\ S}). S(i the claim is justified. Bl N 2
Since the above claim holds for any n € N, so By (t), 0 < t < V52,57, is a continuous
(F] x 7k ’ )Jt>o-local martingale. We now claim that V32,57 = T)(fx). Fix any n € N. If T} <,
then S? = 0 < Tj(ty). If tx < T} then S} = T} From e < T" we have Kj(ty) C H}'. From
Sr = T" we have K;(S}') C H}'. Since HijnﬂHig = (Z), so K;(S7) N Ky(tx) = 0, and so again we have
S < T (tx). Since the above holds for any n € N, so V32,57 < Tj(t). Now suppose to < T)(tx).
Ther} K;(to) N Ki(ty) = 0. We may always find (Hy', H;°) € HP, such that K;(tg) C H;* and
Ki(ty) C Hy°. Then we have t, < T;". So Vi2,S} > S/ = T > ty. Since this holds for any
to < Tj(tx), so Vo, S} = Tj(ty). Thus, B;z, (1), 0 <t < T (), is a continuous (F x Fk ' )t>o-local
martingale. Using a similar argument, we conclude that B,z (t)? —t, 0 < t < Tj (tk) is also a

continuous (F/ x fi )i>o0-local martingale. Using the characterization of Brownian motion in [9],
we complete the proof. O

Theorem 5.1 Let a > 0. Let ty € (0,T2) be an (F7)-stopping time. Let C1 = a - % >0,

w(z) =C1- 2;(232)(522), and W = wops(ta,-). Then after a time-change, W (31(t)), 0 <t < T (t2), has
the distribution of a degenerate intermediate SLE(k; p) trace with force points 04 and a. Moreover,

a.S. Tl({g) < T and ﬁl(Tl(fg)) = ﬁg(fg)

Proof. Let Cy = C4 - (&2(2) — q2(t2)) > 0. For 0 <t < Ty(t2), define

ds; (5.3)

G(LZ) _ 02A2,1(t7£2) (2)) o /Ot 20214271(8,{2)14171(8,{2)2

Ago(t,t2) — 1.7, (t, w1 B (s, t2)3

~ CQAQ 1(t t_Q) /t 202A2 1(8 t_Q)Al 1(8,1?2)2

t)=—"——""—-C1 + ds; 5.4
£(t) = Fao(s.52) 1 Fro(sa)? s (5.4)
~ C2A2 1 t t2 / 202A2 1 S tQ)Al 1(8 t2)

t) = —Ci + ds; 5.5
plt) = E, 1(t t2) E1 (s, t2)? i (5:5)
~ CoAs 4 (t,t2) / 205 A5,1(s,12)A1,1(s,t2)?

t)=—"—""2—-C1 + . = ds. 5.6
a®) Es5(t,t2) Y Eyo(s,t2)3 (5:6)

Since A0(0,%2) = &(t2), A2,1(0,t2) =1, and ¢4 7,(0,-) = id, so $(0,z) = z. Using (4.15) and
(4.16) with j =1 and k = 2, it is straightforward to check that

202N (t,t5)?

6t~ ,R) = = .
A= —e

(5.7)

Let v(t fo C3N(s,t2)?ds. Then v(0) = 0 and v is continuous and strictly increasing. So v
maps [O,Tl(tg)) onto [0,T) for some T € (0,00]. Let o(t,-) = F(v(t),-) and £(t) = E(v=1(t)) for
0 <t<T. From , we have Oyp(t, z) = m Thus ¢(t,-), 0 < t < T, are the chordal
Loewner maps driven by &.

Note that w maps H conformally onto H, and w(&2(t2)) = oo. Since pa(te, ) maps H\ 52((0, t2])
conformally onto H, and @a(t2,82(t2)) = &2(f2), so W maps H \ (82((0,%2]) conformally on H,
and W(fa(f2)) = oo. For any t € [0,T1(f2)), w™' maps H \ W(31((0,t])) conformally onto
H\ @2(t2, 51((0,t])) = H\ Ky ¢,(t). Since ¢y z,(t,-) maps H\ K z,(t) conformally onto H, so from
, @(t,-) maps H\ W(B1((0,])) conformally onto H. For 0 <t < T, let B(t) = W(B1(v™1(2))),
then o(t,-) maps H\ 3((0,¢]) conformally onto H. So 5(t), 0 <t < T, is the chordal Loewner trace
driven by £.

14



Let p(t) = p(v=1(t)) and q(t) = g(v=1(¢)), 0 <t < T. Applying (4.15) and (4.19) with j = 1 and
k =2, and using v/(t) = C3N(t,%2)?, it is straightforward to check that

: e
s —fay '<i<Tn 4= 0<t<T. (5.8)

Moreover, since Al’()(t,t_g) < Bl’o(t,fz) < Bg,o(tﬂ?z) < Ag’o(t,fg) for 0 <t < T1<£2), so from
(5.4)-(5.6) and the definition of Es ,,,, m = 0,1, 2, we have

p(t) =

Et) <p(t) <q(t) <oo, 0<t<T. (5.9)
Singe A170(Q,{2) = q2({2) = 3179(0752), and A270(07£2) = 52({2), SO E270(O,EQ) = EQJ(O,EQ) =
EQ(tQ) — QQ(tg). Note that Ag’l(o,tg) = 1, SO

Cy _
Gt —a " (>10)

Since BQ’O(O,t_Q) = pg(fg), SO E2’2(07t_2) = fg(t_g) — pQ(LTQ). ThUS7

 &(t2) — pa(t2)

Note that Es g = —E,0. Applying (4.15) and (4.21) with j =1, k = 2 and m = 0, we get

. Aia(t,t2)?
E1o(t,t2)?

£(0) = p(0)

q(0) —Cy=a>0. (5.11)

dE(t) = CoN(t, E2)dé: (t) + Co

M[(H 3)M+(6

E10(t, t2) 2 E10(t, t2)

dt. 5.12

: o m
From (4.1)), (4.39) and (4.40), we see that &(t), 0 <t < T1(f2), satisfies the (F} x F7 )i>o-adapted
SDE:

_ _ K\ (A2 2410 Ain A
46 () = VrdBy 5, (1) + [ ( 75)(&’1 T ) +go(R)(E1’l Em)} o 613)
From (5.12) and (5.13) we conclude that
Pt - o (Aitt) At )
dE(t) = CoN (¢, £) [V/RdBy g, (t) + go(R(t, T 2 T2) 212N 5.14
§0) = N (1. B) [VRdBra () + o (R (G2 Gy~ Tagy) 4 619

Let

S(t) (5.15)

_ 9o(R(t,12)) (Al,l(t@) B Al,l(tafz))
CyoN(t,t2) \Ey1(t,t2)  FEia(t,ta)/

Since £(t) = £(v(t)) and v/(t) = CZN(t, )2, so from (5.14) and Lemma there is a Brownian
motion B(t) such that for 0 <t < T,

dé(t) = kdB(t) + S(v1(t))dt. (5.16)
From —7 we have
o At B)Era(t )
p(t) €(t) B 02 El,O(tv 72)E2,1(t7 72)7
v T e A2a(t ) B (t )
at) — &) = G E10(t,t2)Ea2(t, t2)

Thus,




From (3.7), (5.15) and the above formulas, we get

From we find that, for 0 <t < T,
dé(t) = VkdB(t) + J(p(t) — &(t), q(t) — &(1))dt. (5.17)

So £(t), p(t) and ¢(t), 0 < t < T, solve (5.8) and (5.17), and satisfy (5.945.11)). Assume that
this solution can be extended beyond T. Since k € (0,4), so 8(T) = lim;_,p- B(t) € H. Thus,

limy_, (7))~ W(B1(t)) € H. From the definition, W maps H \ 3((0,#2]) conformally onto H. So
we have lim,_, (1, 7,))- 61(t) € H\ 3((0,%2]). This implies that the distance between £ ((0, 71 (t2)])
and (2((0,2]) is positive. This is impossible because of the definition of Tj(¢2) and the fact that
lim, - B1(t) = 2 = B2(0). Thus (0,T) is the maximal interval of the solution. From -
and (5.17), we see that 8(t), 0 < t < T, is a degenerate intermediate SLE(k; p) trace with force points
0% and a. Since 3 is a time-change of W (31), so after a time-change, W (31(t)), 0 < t < T (f2), has
the distribution of a degenerate intermediate SLE(k; p) trace with force points 04 and a.

From Corollary [3.1]and the fact that W~!(co) = (2(f2), we see that a.s. 82(f2) is a subsequential
limit of /61 (t) as t — (Tl (52))7 If Ty ({2) = T} then hmt*)(Tl({z))— ﬂl (t) = hthTf ﬂl(t) = T2 #
B2(t2) because s > 0, which a.s. does not happen. Thus, a.s. T1(f2) < T;. Since (31 is continuous
on [0,T1), so a.s. B1(T1(t2)) = limy_, (7, (z,))- B1(t). Since a.s. Ba(t2) is a subsequential limit of f (t)
as t — (T1(t2))~, so B1(T1(t2)) = Ba(t2). O

Theorem 5.2 Almost surely 51((0,T1)) = 52((0,T3)).

Proof. For n € N, let S,, be the first time that |82(¢t) — 1| = |z2 — 21|/(n + 1). Then for each
n € N, S, is an (F?)-stopping time, S, € (0,T3), and Tp = V22,S,. For each ¢ € Q, let
Snq = Sn A g, which is also an (F7?)-stopping time. Then {S,, : n € N,g € Qs¢} is a dense
subset of (0,T). Applying Theorem [5.1] with ¢, = S, 4, we sce that a.s. 32(Snq) € B1((0,T1))
for any n € N and ¢ € Q9. From the denseness of {S, ;} and the continuity of 51, we have
a.s. 02((0,T%)) C £1((0,71)). Since both 31 and B2 are simple curves, 31(0) = z1 = (2(T2), and
B2(0) = 29 = B1(T1), so a.s. £1((0,T1)) = B2((0,T»)). O

Corollary 5.1 Suppose B(t), 0 < ¢ < 00, is a degenerate intermediate SLE(k; p) trace. Then a.s.
lim; o0 B(t) = o0.

Proof. Suppose that the force points for 3 is 0" and ag > 0. Applying Theorem with a = qg
and any (F7)-stopping time £ € (0,T%). Then W (31(t)), 0 < t < T1(f2), has the same distribution
as ((t), 0 < t < oo, up to a time-change, and a.s. lim,_, (1, (7,))- B1(t) = B1(T1(t2)) = B2(t2). Since
W (Ba(t2)) = 00, so a.s. limy_, (7, (z,))- W(B1(t)) = oo. Thus, a.s. lim;_.o 3(t) = co. O

Proof of Theorem We may find W; that maps H conformally or conjugate conformally
onto H such that Wi (z1) = 0, Wl(xf) = 07, and Wi (22) = co. Let Wy = VVO_1 o Wy. Then Ws
maps H conjugate conformally or conformally onto H such that Wa(z3) = 0, Wa(zy ) = 07, and
Wa(x1) = oco. Recall that for j = 1,2, 5;(t), 0 < t < T}, is a chordal SLE(x;p,k — 6 — p) trace
started from (x;; x;j,xg,j), where 01 = + and o9 = —. From Proposition after a time-change,
W1 (Bo(t), 0 < t < oo, has the same distribution as Bi(t), 0 <t <Tj, j =1,2. From Theorem
5.1} after a time-change, the reversal of 32(t), 0 < t < Th, agrees with £1(t), 0 < t < Ty. Thus,
W5 H(Bo(1/t)), 0 < t < 00, has the same distribution as W, *(8y(t)), 0 < t < oo, after a time-change.
Since Wy = Wj o W{l, so the proof is finished. O
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Proof of Theorem (1 -. Applying Theorem [5.1] with any (F7?)-stopping time t; € (0,7%) and
a = 1/by, we get w(z) = a- ffz((iz% Zigizg 22(2)“22) and W = w o ¢3(ta,-), such that after a time-
change, W(31(t)), 0 <t < Ti(t2), has the same distribution as a degenerate intermediate SLE(k; p)

trace with force points 0% and a = 1/by.
Let T =T, — EQ For 0<t<T, let {(t) = &(t2 +1), P(t) = pa(fz + ) and G(t) = qa(f2 +1). Let
B(t) = By(fs + 1) (t2 , t> O Then B( ) is a Brownian motion that is independent of & (¢2),
pa(ta) and qa(t2). From p(t) and §(t), 0 < t < T, satisfy the following SDE:

d - dB(t Py lzb=ry,

) = VRIBWO + s e
2 2

&) = ————dt,  djlt) = ———adt,

A T T

with initial values

E(O) = 52(52% 17(0) = pz(fz)v ZIV(O) = Q2(52)-

For 0 <t < Ta let &(tv ')~: ()02(7?2 +t, ) © 902(527 )_ and 5( ) = 502(52552(52 + t)) Th~en ()5(072) =z,
and @(t,2), 0 < t < T, satisfy 9;@(t,z) = W’ and for each 0 < t < T, @(t,-) maps

H\ B((0,1]) conformally onto H. Thus, B( t), 0 <t < T, is the chordal Loewner trace driven | by 3
The solution £(t), p(t) and §(t), 0 < t < T, could not be extended beyond T because lim, 7 B(t) =
<P2(t2ahthT27 Ba2(t)) = @a(t2,z1) € R. Thus, 5( ) = @a(ta, Btz +1), 0 <t < Ty —t, is a
chordal SLE(k; p, & — 6 — p) trace started from (£o(f2); pa(f2), g2(f2)). Let Wi = Wy ' ow. Then
Wyt oW =Wy o pa(ts,-), W, maps H conformally onto H, Wi(&(t2)) = 0, Wi(ga(t2)) = oo and
Wi(pa(t2)) = 1/a = bg. From Proposmlonu 2.1, Wit o W (Ba(ta+1)) = Wi (B(t)), 0 < t < Ty —ty, has
the same distribution as Sy(¢), 0 < ¢t < oo, after a time-change. From Theorem and Theorem
after a time-change, the reversal of ﬁg(t), ts < t < Ty, has the same distribution as (;(t),
0 < ¢ < T1(f2). Thus, after a time-change, Wy(8o(1/t)), 0 < t < 0o, has the same distribution as the
reversal of W(51(t)), 0 < t < T1(f2), which has the same distribution as a degenerate intermediate
SLE(k; p) trace with force points 01 and 1/by. O

Now we will see some applications of Theorem The following proposition is Theorem 5.4 in
[13], where 05 S is the right boundary of S in H (c.f. [13]).

Proposition 5.1 Let x >4, C > 1/2, and K(t), 0 <t < 00, be a chordal SLE(k; C(k —4)) process
started from (0;07). Let K(00) = Ui<oo K (t). Let Wo(2) = 1/Z. Then Wy(05 K(c0)) has the same
distribution as the image of a chordal SLE(k'; C' (k' — 4), 5(k" — 4)) trace started from (0;07,07),
where k' = 16/k and C' =1 — C.

Applying the above proposition with C' = 1, and applying Theorem with kK = ¥’ and p =
1(k’ — 4), we conclude the following theorem, which is Conjecture 2 in [2].

Theorem 5.3 Let k > 4, and K(t), 0 < t < oo, be a chordal SLE(k;k — 4) process started from
(0;0%). Let K(00) = Upcoo K (t). Then 0 K(c0) has the same distribution as the image of a chordal
SLE(k'; 3(k' — 4)) trace started from (0;07), where ' = 16/k.

The following proposition is a part of Theorem 5.2 in [I4].

Proposition 5.2 Let k > 4 and C,C_ > 1/2. Let K(t), 0 <t < 00, be a chordal SLE(k; Cy(k —
4),C_(k — 4)) process started from (0;0%,07). Let K(00) = UK (t). Let k' = 16/k and Wy(z) =
1/Z. Then W (05 K (00)) has the same distribution as the image of a chordal SLE(k'; (1 — C.) (k' —
4),(1/2 — C_) (K" — 4)) trace started from (0;07,07).
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Applying Proposition with C+ =1 or C— = 1/2, and using Theorem [1.1} we conclude the
following two theorems.

Theorem 5.4 Let k > 4, C > 1/2, and K(t), 0 < t < 00, be a chordal SLE(k;k — 4,C(k — 4))
process started from (0;0%,07). Let K(00) = Ui<coo K (t). Then 0i K(cc) has the same distribution
as the image of a chordal SLE(x';(1/2 — C)(k' — 4)) trace started from (0;07), where k' = 16/k.

Theorem 5.5 Let k>4, C >1/2, and K(t), 0 <t < 0o, be a chordal SLE(k;C(k — 4), 5(k — 4))

process started from (0;07,07). Let K(00) = Up<oo K (t). Then O K (c0) has the same distribution
as the image of a chordal SLE(k; (1 — C) (k' — 4)) trace started from (0;07), where k' = 16/k.
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