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Abstract For « € (0, 4], a family of annulus SLE(x; A) processes were introduced in (Zhan
in arXiv:1004.1865v1) to prove the reversibility of whole-plane SLE(«). In this paper we
prove that those annulus SLE(k; A) processes satisfy a restriction property, which is simi-
lar to that for chordal SLE(«k). Using this property, we construct n > 2 curves crossing an
annulus such that, when any n — 1 curves are given, the last curve is a chordal SLE(«) trace.
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1 Introduction

Oded Schramm’s SLE process generates a family of random curves that grow in plane do-
mains. The evolution is described by the classical Loewner differential equation with the
driving function being /k B(t), where B(t) is a standard Brownian motion and « is a posi-
tive parameter. SLE behaves differently for different value of . We use SLE(k) to empha-
size the parameter. See [5] and [9] for the fundamental properties of SLE.

There are several versions of SLE, among which chordal SLE and radial SLE are most
well known. They describe random curves that grow in simply connected domains. A num-
ber of statistical physics models in simply connected domains have been proved to converge
in their scaling limits to chordal or radial SLE with different parameters.

People have been working on extending SLE to general plane domains. A version of SLE
in doubly connected domains, called annulus SLE, was introduced in [12]. The definition
uses the annulus Loewner equation, in which the Poisson kernel function is used for the
vector field, and the driving function is still \/k B(¢). Annulus SLE(2) turns out to be the
scaling limit of loop-erased random walk in doubly connected domains. In fact, loop-erased
random walk in any finitely connected plane domain converges to some SLE(2)-type curve
(cf. [14]).
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Annulus SLE defined in [12] generates a trace in a doubly connected domain that starts
from a marked boundary point and ends at a random point on the other boundary component
(cf. [13]). This is different from the behavior of chordal SLE or radial SLE, whose trace
ends at a fixed boundary point or interior point. The reason for this phenomena is that the
definition of annulus SLE does not specify any point other than the initial point.

The annulus SLE(k; A) process was defined in [15] to describe SLE in doubly connected
domains with one marked boundary point other than the initial point. Here the A is a func-
tion, and the marked boundary point may or may not lie on the same boundary component as
the initial point. The definition uses the annulus Loewner equation with the driving function
equal to /k B(t) plus some drift function, and the drift function is determined by A. The
precise relation will be given in Definition 4.3.

There is very little restriction on the function A in the above definition. For any « € (0, 4],
there is a family of particular functions A, s € R, such that the annulus SLE(k; Ay )
process satisfies the remarkable reversibility properties as follows. Suppose D is a doubly
connected domain, and zy, wy are two boundary points that lie on different boundary com-
ponents. Let 8 be an annulus SLE(k; A,.()) trace in D that grows from zo with wy as the
marked point. Then almost surely 8 ends at wy, and the time-reversal of § is a time-change
of an annulus SLE(«k; A.(_y)) trace in D that grows from wy with zo as the marked point.
This property was used [15] to prove the reversibility of whole-plane SLE(«x) process for
k € (0, 4]. We will state the definitions of A,. ) in Sect. 4.2, especially in (4.10).

In this paper we study the restriction property of the annulus SLE(k; A,.(,) process. We
use [igop to denote the Brownian loop measure defined in [7], which is a o -finite infinite
measure on the space of loops, and define

6 —x)(3Bk —8)
2K ’

It is well known that c is the central change for SLE(x). Set A, ={e™” < |z| <1}, T =
{lzl =1} and T, = {|z| = e~7}. We will prove the following two theorems.

(1.1)

c=ck)=

Theorem 1.1 Let p > 0,k € (0,4], s € R, zo € T and wo € T,. Let v be the distribution of
an annulus SLE(k; Ay () trace in A, started from zo with marked point wy. Let L C A,
be such that A, \ L is a doubly connected domain and dist(L, {z9, Tp,}) > 0. Define a prob-
ability measure vy by

dv 1 _
= % exp(c ) tioop £1.p1), (12)

where B is the SLE trace, L, , is the set of all loops in A, that intersect both L and B, and
Z € (0, 00) is a normalization constant. Then vy is the distribution of a time-change of an
annulus SLE(k; Ay, s) trace in A, \ L started from zo with marked point wy.

Theorem 1.2 Let p, k, s, 20, Wo, v be as in Theorem 1.1. Let L C A}, be such that A, \ L
is a simply connected domain, and dist(L, {zo, wo}) > 0. Define vy by (1.2). Then vy, is the
distribution of a time-change of a chordal SLE (k) trace in A, \ L from zy to wy.

The proofs of the two theorems are similar. For the proof of Theorem 1.1, we consider
two random curves B(¢) and y(t), 0 <t < p, where B is an annulus SLE(k; A,.()) trace
in A, started from zo with marked point wy, and y is an SLE(k; A,.(y) trace in A, \ L
started from zo with marked point wy, reparameterized by the capacity in A ,. Decomposing
B and y according to their winding numbers, we get a family of random curves 8,, and y,,,

@ Springer



Restriction Properties of Annulus SLE

m € Z. For each m, we find a positive local martingale M,,(¢), 0 <t < p, which serves as
the “local” Radon-Nikodym derivative between B,, and y,,, which means that, if a stopping
time T satisfies that M,, is uniformly bounded on [0, T'], then M,,(T) is the Radon-Nikodym
derivative between the distributions of §,, and y,, both stopped at 7. The construction of M,
uses It6’s calculus and Girsanov Theorem. It turns out that M,, (p) :=lim,_, ,- M,, (¢) serves
as the global Radon-Nikodym derivative between the distributions of g, and y,,, and is
equal to the right-hand side of (1.2) with Z depending on m. This result then can be easily
passed to the Radon-Nikodym derivative between 8 and y. The rest of the proof focuses
on studying the properties of M,,. We will derive the uniform boundedness of M,, in a
countable family of events whose union supports the distribution of §,,, and calculate the
limit of M,,(t) as t — p~. The argument relies heavily on the analysis of the drift function
A5y and several special functions related to A,. (. For this purpose, we cite estimations
from [15] and develop some new estimations.

If k = %, then ¢ = 0. The above two theorems imply that, if we condition an annulus
SLE(%, A %;m) trace in A, to avoid some set L, then the resulting curve is a time-change

of an annulus SLE(%, A%;(s)) or chordal SLE(%) trace in A, \ L. This is similar to the

restriction property of chordal or radial SLE(%) [6]. If k € (O, %), then ¢ < 0, and the strong
restriction property does not hold. But we may use the argument in [6] to construct a random
shape with the restriction property as below.

Let B8 be an annulus SLE, trace in A, from zo to wy. Let £_. denote a Brownian
loop soup in A, with density —c (a Poisson point process with intensity —cpijqop restricted
in A,) independent of . Let S, (A,; z0, wo) denote the union of the image of f and
the loops in £_. that intersect 8. Let S..;(A,; 2o, wo) be obtained by filling the holes in
S,’(;S(AP; 20, Wo). In other words, Sc.;(A,; zo, wo) = A, \ (DyU D)), where Dy (resp. D)) is
the connected component of A, \ S,/(;x (Ap; 2o, wo) whose boundary contains T \ {zo} (resp.
T, \ {wo}). Then S, (A,; 2o, wo) satisfies restriction property, which means that, if we con-
dition S,.;(Ap; 29, wo) to avoid a hull A in A, with dist(H, {z9, wo}) > 0, then we get
SK;S(A]) \ H: zo, wo).

The paper is organized as follows. We introduce notation, symbols and definitions in
Sects. 2, 3 and 4. The proof of Theorem 1.1 is started at Sect. 5, and finished at the end of
Sect. 7. The argument introduced in [6] is used. In Sect. 8 we give a sketch of the proof of
Theorem 1.2, and use Theorem 1.2 to prove Theorem 8.1, which generates n > 2 mutually
disjoint random curves crossing an annulus such that conditioned on all but one trace, the
remaining trace is a chordal SLE(k) trace. We believe that, in the case n = 2, if the inner
circle of the annulus shrinks to a single point, then the two curves tend to the two arms of a
two-sided radial SLE(«) (cf. [5]) in the disc. This may be used to understand the microscopic
behavior of an SLE(k) trace near a typical point on this trace.

After finishing the first draft, the author noticed Lawler’s work in [4], which studies the
same object from a different perspective. Lawler defines SLE, (k < 4) process in a doubly
connected domain connecting two opposite boundary points, which satisfies Theorems 1.1
and 1.2 here without the normalization constants, and if normalized agrees with our annulus
SLE(k, Ay,(s)) process. The distribution of SLE in [4] may not be a probability measure,
but a positive measure in general. Lawler defines his annulus SLE, process in the covering
space by comparing it with the chordal SLE, in that space. He derives a PDE for the partition
function and proves the existence of the solution. A nontrivial result proved in [4] is that the
total mass of such annulus SLE is in fact finite, and so can be normalized to get a probability
measure.

@ Springer



D. Zhan

2 Preliminary
2.1 Symbols and Notation

We will frequently use functions cot(z/2), tan(z/2), coth(z/2), tanh(z/2), sin(z/2),
cos(z/2), sinh(z/2), and cosh(z/2). For simplicity, we write 2 as a subscript. For exam-
ple, cot,(z) means cot(z/2), and cot)(z) = — sm2 (z)

Let T={z e C: |z|=1}. For p >0, letAp_{ze(C 1>zl >e?},S,={zeC: 0<
Imz<p}, T,={z€C: |z =e?},and R, = {z € C: Imz = p}. Then A, =TUT, and
3S, =RUR,. Let ¢’ denote the map z +> ¢'*. Then €' is a covering map from S, onto A,
maps R onto T and maps R, onto T,.

A subset K of a simply connected domain D is called a hull in D if D \ K is a simply
connected domain. A subset K of a doubly connected domain D is called ahullin D if D\ K
is a doubly connected domain, and K is bounded away from a boundary component of D. In
this case, we define cap, (K) := mod(D) —mod(D \ K) to be the capacity of K in D, where
mod(-) is the modulus of a doubly connected domain. We have 0 < cap,,(K) < mod(D),
where the equality holds iff K = {J. For example, the L in Theorem 1.11is ahullin A .

We say a set K C C has period p € C if p + K = K. We say that a function f has
progressive period (p;; p2) if f(- & p1) = f £ p,. In this case, the definition domain of f
has period p;, and the range of f has period p,.

An increasing function in this paper will always be strictly increasing. For a real interval
J, we use C(J) to denote the space of real continuous functions on J. The maximal solution
to an ODE or SDE with initial value is the solution with the biggest definition domain.

A conformal map in this paper is an injective analytic function. We say that f maps

Conf
D, conformally onto D,, and write f : D =% D,, if f is a conformal map defined on the
domain D; and f(D;) = D». If, in addition, for j = 1,2, ¢; is a point or a set in D or on

dD, and f or its continuation maps c; onto ¢;, then we write f : (Dy; c;) Cgf (Dy; ¢y).

Throughout this paper, a Brownian motion means a standard one-dimensional Brownian
motion, and B(t), 0 <t < 0o, will always be used to denote a Brownian motion. This means
that B(t) is continuous, B(0) =0, and B(¢) has independent increment with B(t) — B(s) ~
N@O,t—s) fort>s>0.

Many functions in this paper depend on two variables. The first variable represents time
or modulus, and the second variable does not. We use 9, and 9;" to denote the partial deriva-
tives w.r.t. the first variable, and use ’, ”, and the superscripts (%), & € N, to denote the partial
derivatives w.r.t. the second variable.

2.2 Special Functions

The vector fields used in the definition of the annulus Loewner equation are the following
special functions S(, z) and H(z, z). For ¢ > 0, define

2kt nt
S(t.2)= lim Z +Z—PV Ze te

ent —
2|n <

nt l”
H(t,2) = —1S(t e (z) =—iP.V. Z Z”’ +€ _P.V.Zcotz(z — int).

2|n 2|n

Then H(z, -) is a meromorphic function in C, whose poles are {2mm + i2kt: m,k € Z},
which are all simple poles with residue 2. Moreover, H(z, -) is an odd function and takes
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real values on R \ {poles}; ImH(z,-) = —1 on R,; H(¢, -) has period 27 and progressive
period (i2¢; —2i). Let r(z) € R be such that the power series expansion of H(z, -) near 0 is

2 3
H(r,7) = . +r()z+ 0(2). 2.1

LetS;(¢t,z) =S(t,e7'z) — 1 and H; (¢, z) = —iS; (¢, ¢'*) = H(¢t, z +it) +i. It is easy to
check:

S/(t,z) =P.V. Z - H, H;(1,2) =P.V. ) coty(z — ini).
2)(71 2tn

So H, (¢, -) is a meromorphic function in C with poles {2mmx +i(2k + 1)t: m, k € Z}, which
are all simple poles with residue 2; H, (¢, -) is an odd function and takes real values on R;
H, (¢, -) has period 27 and progressive period (i2t; —2i).

It is possible to express H and H; using classical functions. Let (v, ) and 6, (v, 7), k =
1, 2, 3, be the Jacobi theta functions defined in [1]. Define ®(z, z) = 0(271 n) and ©;(t,z) =
0 (5, n) Then ©O(¢, -) has antiperiod 2, ®; (¢, -) has period 27, and

e e,
H=20. H =2l 2.2)

It is useful to rescale the special functions. Let

~ 2(a\? (7 . 2 (7\? o
O, z)=e (=) O —,=z), ©;t,0=e7|=) O;,(—,=z). (23
(t,z)=e <t> (t tz) t,2)=e (z) 1<t ZZ> 23)

From the Jacobi identities, we have @(t 7)) = 0<% O(t,iz) and ® (t,2) =

191(1

2 rr)_

s n) From the product representations of 6;, we get

0;(1,2) =2¢ 7 coshy (@) [ [ (1 — &™) (1 + &572") (1 + =572"). 2.4)

m=1

Let H= 2% and ﬁI = 2% From (2.2) and (2.3) we have
~ r_ (7t xw z —~ 7 a4 z
H(t,Z)=7H —, —Z +;, H[(I,Z)=?H1 —, —Z +; (25)

Since O(t,z) = O(t,iz) and H; (¢, z) = H(t, z + it) + i, we have

H(t,7) = iH(t,iz) = P.V. > cothy(z — nt); (2.6)
2|n
H,(t,2) = H(t, z +7i) =P.V.) tanhy(z — nt). 2.7)
2|n

From (2.6), the power series expansion of ﬁ(t, -) near 0 is

. 2 X
H(t,2) = ot F()z+ 0(2°), (2.8)
where T(1) := — Y ;- sinh =2 (kt) + é =0(e"+ % as t — 00. Hence we may define
~ (o]
R(@) = —/ (r(s) — —> ds, 0<t<oo. 2.9
t
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Then R is positive and decreasing as T — é < 0. From (2.1), (2.5), and (2.8), we have
T=(Z2 FEam (2.10)
r¢)=— ) r{ — -. .
t t t

3 Loewner Equations
3.1 Annulus Loewner Equation

The annulus Loewner equations are defined in [12]. Fix p € (0,00) and T € (0, p]. Let
& e C([0,T)). The annulus Loewner equation of modulus p driven by & is

dg(t,2)=g(t,2)8(p—1,8(t,2)/e*?”), g(0,2)=z.

For 0 <t < T, let K(t) denote the set of z € A, such that the solution g(s, z) blows up
before or at time ¢. Then each K (¢) is a hull in A, capAp(K(t)) =t, and g(¢,-) maps
A, \ K(t) conformally onto A,_;, and maps T, onto T,_,. We call K(¢) and g(z,-), 0 <
t < T, the annulus Loewner hulls and maps of modulus p driven by &.

The equivalence between annulus SLE and radial SLE (Theorem 1.1 in [12]) and the exis-
tence of radial SLE trace imply the existence of annulus SLE trace. If £ is a semi-martingale
whose stochastic part is ./« B(t), and whose drift part is continuously differentiable, then &
generates an annulus Loewner trace 8 of modulus p, which means that

Bi= lim g7 (3.

p—t1372—>€

exists forall 0 <7 < T, and B is a continuous simple curve in A, UT with 8(0) = ¢/*® € T.
If « € (0,4], then B is simple and B((0,7)) C A,. In this case, K(t) = B((0,¢]) for
0 <t <T, and we say that 8 is parameterized by its capacity in A, wrt. T,, ie.,
capy, BUO,tD)=tfor0<t<T.

On the other hand, if B(¢), 0 <t < T, is a simple curve with 8(0) € T, ((0,T)) C A,,
and if B is parameterized by its capacity in A, w.r.t. T, then § is a simple annulus Loewner
trace of modulus p driven by some & € C([0, T')). If 8 is not parameterized by its capacity,
then B(v='(¢)), 0 <t < v(T), is an annulus Loewner trace of modulus p, where v(t) :=
cap,, (B((0, £])) is an increasing function with v(0) = 0. See Proposition 2.1 in [12].

3.2 Covering Annulus Loewner Equation

The covering annulus Loewner equation of modulus p driven by & € C([0, T)) is
38, 2)=H(p—1,80t,2) —£1)), 50,2)=z. (3.2

For0<t<T,let K (t) denote the set of z € S, such that the solution g(s, z) blows up
before or at time . Thenfor 0 <t < T,

~ ~ Conf

g, ) (S,\NK@);R,) = (Sp—is Rpy). (3.3)
We call K (t) and g(z,-), 0 <t < T, the covering annulus Loewner hulls and maps of mod-
ulus p driven by £&.

The relation between the covering annulus Loewner equation and the annulus Loewner
equation is as follows. Let K(¢) and g(¢,-) be the annulus Loewner hulls and maps of
modulus p driven by &. Then we have K (1) = (¢/)"'(K (1)) and ¢ 0 (t,-) = g(t,") o €',
0<t <T.Thus, K (1) has period 27, and g(z, -) has progressive period (27; 27).
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If & generates an annulus Loewner trace B defined by (3.1), then there is a continuous

simple curve B(t), 0 <t < T, which is defined by
B®y=_lim @t )7'(), 0<t<T. (3.4)
Sp—13z2—&(1)

Such B is called the covering annulus Loewner trace of modulus p driven by &, and satisfies
that B=¢éo ,3 and ,3(0) 5(0) If B is simple with 8((0, T)) C A, then ﬂ is also simple,
B((0,T)) C S,, and K@) =B(0,1])+272,0<t<T.

Since g(z, -) maps R, onto R,,_, and H, (r, z) = H(z, z +it) + i, we have

8 Reg(t,2) =H,(p —1.ReZ(t.2) —£(1)), z€R,. (3.5)
Differentiating (3.5) w.r.t. z, we see that
38 (1,2) =% (t,2)H;(p—1,Reg(t,2) —£(1)), z€R,. (3.6)

Since S(p — ¢, ) and H(p — ¢, -) have period 27, for any n € Z, & and & 4 2nm generate
the same family of annulus Loewner maps and the same family of covering annulus Loewner
maps.

3.3 Strip Loewner Evolution

Strip Loewner equations will be used in Sect. 8. The strip Loewner equation [11] driven by
§€C(0, 1)) is

98(1,2) = cothy(g(t,2) —&()), 0<t<T, §0,2) =z

ForO0<t <T,let ﬁ(t) denote the set of z € S, such that the solution g(s, z) blows up
before or at time ¢. Then K (¢) and g(z 2 0<t < T, are called the strip Loewner hulls and
maps driven by £. Foreach t € [0, T), K (¢) is abounded hull in R,, with dist(K (¢), R;) > 0,

g, ) Sy \ K@®);R,) o (Sz;Ry), and g(t,2) — z — &t as z — Foo in Sy \ K@) If

K is a bounded hull in R, with dist(K (¢), R;) > 0, then there exist a number cg > 0 and a

Conf
map gg determined by K such that g 8k 1 Sy \K R:) > (Sz;R,) and g — 2 — *ci as

7 — £o00. We call cg the Capacny of K in'S; w.rt. R,. Thus, the capacity of K1) in S,
wrt. Ry is¢, and (7, ) = Zx (-
Since g(z, -) maps R onto R, and coth,(z + 7i) = tanh, (¢, z), we have

% ReZ(r,z) =tanhy(Reg(r,2) —£(1)), z€R,. 3.7
Differentiating (3.7) w.r.t. z, we see that
8% (t,2) = (t,2) tanhy(Re §(1,2) — £(1)), z € R,. (3.8)

If & is a semi-martingale whose stochastic part is /k B(t), and whose drift part is con-
tinuously differentiable, then & generates a strip Loewner trace 8, which is defined by

By = lim ¥0.)7'@), 0st<T. 3.9)

Such E is a continuous curve in S; U R which satisfies that E 0)=£&(0) eR. If « € (0,4],
then f is simple, B((0, T)) C Sy, and K (t) = B((0,¢]) for0<t < T.

On the other hand, suppose E (7) is a simple curve in S, \ R, which intersects R only at
t =0. Let v(¢) be the capacity of E((O, t]) in S, w.r.t. R,. Then v is a continuous increasing
function, which maps [0, T) onto [0, S) for some S € (0, oc], and there is £ € C([0, S))
which generates the strip Loewner trace E ov!,
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The chordal SLE(«x; p) process defined in [6] naturally extends to strip SLE(«; p) pro-
cess. Let k > 0 and p € R. Let xq, yo € R. Let £(¢) and ¢(¢), 0 <t < o0, be the solution
of

d5(1) = VK dB(1) + S tanhy (£1) — g(0) dr. £(0) =

dq(t) =tanhy(q(t) — £(1)), q(0) = yo.
Then the strip Loewner trace B driven by £ is called a strip SLE(x; p) trace in S, started
from x(, with marked point yy + i. From [10] we know that, when p =k — 6, E is a time-
change of a chordal SLE(k) trace in S, from x, to yo + i, stopped when it hits R,. If, in
addition, ¥ < 4, since the chordal SLE(k) trace does not hit R, before it ends, we see that
E is a time-change of a complete chordal SLE(«x) trace.

4 One SLE Curve Crossing an Annulus
4.1 Annulus SLE with One Marked Point
We now cite some definitions in Sect. 4.1 of [15].

Definition 4.1 A covering crossing annulus drift function is a real valued C*! differentiable
function defined on (0, oo) x R. A covering crossing annulus drift function with period 2w
in its second variable is called a crossing annulus drift function.

Definition 4.2 Suppose A is a covering crossing annulus drift function. Let « > 0, p > 0,
and xg, yo € R. Let £(¢), 0 <t < p, be the maximal solution to the SDE

dE(t) = Kk dB@W) + A(p —1,6() —ReZ(t, yo + pi))dit, £O0)=xo,  (4.1)

where g(z,-), 0 <t < p, are the covering annulus Loewner maps of modulus p driven by .
Then the covering annulus Loewner trace of modulus p driven by £ is called the covering
annulus SLE(x; A) trace in S, started from x, with marked point y, + pi.

Definition 4.3 Suppose A is a crossing annulus drift function. Let « >0, p >0,a €T
and b € T,,. Choose xo, yo € R such that a = €™ and b = e 70, Let £(1), 0 <1 < p,
be the maximal solution to (4.1). The annulus Loewner trace of modulus p driven by &(7),
0 <t < p, is called the annulus SLE(x; A) trace in A, started from a with marked point b.

Remark The above definition does not depend on the choices of xo and y, because
A(p —t,-) has period 27, g(z, -) has progressive period (27; 27), and for any n € Z, the an-
nulus Loewner objects driven by &£ () + 2nm agree with those driven by £ (¢). Via conformal
maps, we can define the annulus SLE(x; A) trace in any doubly connected domain.

4.2 Annulus SLE with Reversibility

A family of functions are defined in Sect. 7 of [15], which are @oo, ﬁq, @0, Yy, V,,, m e Z,
W5, Ao, and A, s € R. They are all smooth functions on (0, co) x R, and depend on three
parameters: « € (0, 4], o € [0, %), andt =7 —,/ % 4 ko < 0. Now we suppose « € (0, 4]
is fixed, and

4 K
oc=——1>0, T==—-2<0. 4.2)
K 2
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Then these function depend only on k € (0, 4], m € Z and s € R. For simplicity, we omit the
symbol . The A, here is the A, in Theorems 1.1 and 1.2.
The W, is defined in (7.31) of [15]:

~ 2 2
Woo(t, x) = e = coshy " (x). (4.3)
The W, is defined by (7.33) of [15]:

@q(t,x) :E[exp(a ./(;OOITI/I'q(t—i—s,XX(s)) ds)], (4.4)
where H, , is defined by (7.8) of [15]: H, (7, z) = H,(t, z) — tanhy(z), and X, (t), 0 <t <
00, is a diffusion process which satisfies SDE (7.2) of [15]:

dX.(t) =k dB(t) + T tanhy (X (1)) dt,  X.(0) =x. (4.5)

The Wy, is defined in Theorem 7.2 of [15]:
Ty =V, 0, (4.6)

The W is defined in Theorem 7.3 of [15]:

2 (ANt (7w
\Ilo(t,x):efﬁ<—> \IJO<—, —x). 4.7
t t ot
For m € Z and s € R, the W¥,, and W, are defined in Theorem 7.4 of [15]:
W, (t,x) =Yy(t,x —2mm), Wi = ez%mS\Ilm. 4.8)
mez

The functions @oo, @q, @0, Wy, W, Wy, are all positive. The functions Ag and A, are

defined in Proposition 7.4 and Theorem 7.4, respectively, of [15]: Ay = Kz—g —H;, Ay =

’

K % — H;. For the sake of completeness, we now define A,, = I{% —H; =Ao(- —2mm)
and
_2 _2
ry,=v,0,, F=Vy®, “. 4.9

r I
Ap=kg™, Ay ==L, (4.10)

From Lemma 5.2 of [15], we see that I';, and I,y solve the PDE (5.6) in [15]. Since we here
set the value of o by (4.2), this PDE becomes (5.2) in [15], i.e.,

a,rngr;;+r;nH,+aH/,rm, @.11)

where

6—«

o (4.12)

o =

Define Fo on (0, 00) x R such that

o 2
To(t,x) = (?) Fo<”7, %) (4.13)
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From (2.3), (4.7), and (4.9), we have
o= B0, *. (4.14)
Define @,_,oo, @,,q, FOO, and Fq on (0, o0) x R such that
0ot x) =2¢ T coshy(x); 0, =0,/0): (4.15)
Pt ) =2 Fe 5 coshy (2D, T, = Fo/Foe (4.16)

One may check that FOO solves

—3, T = gfgo + ﬁ/’o tanh, +o tanh), Tw. 4.17)

=

From (4.3) we have T, = W,,©, % . From (4.6) and (4.9) we have

(o]
~ ~ a2
F,=9,0,5. (4.18)

Let p > 0 and xo, yo € R. Let y,, = yo + 2mm, m € Z. Consider the following two SDEs.

d§(t) = ik dB(@) + Ao(p —1,6(1) —Reg(t, yn + pi)) dt,

0<t<p, £0)=xo, (4.19)
dE(t) =k dB(t) + Ay (p — 1. £(t) —Re gz, yo + pi)) dt,
0<t<p, £0)=xo, (4.20)

where g(z, -) are the covering annulus Loewner maps driven by &. Let u,, or i) denote the
distribution of (£(¢),0 <t < p) if it solves (4.19) or (4.20), respectively. Then

2,0 Wi (Ps X0 — Yo) 22, To (P, X0 — Ym)
=) ey =) ex"———————pu,,  (421)
© Z Wiy (P, X0 — Yo) Z L5 (p, X0 — o)

mez mez

where the first equality follows from Proposition 7.4 in [15], and the second equality follows
from (4.8), (4.9), and the fact that ®,(p, -) has period 27 .

Let B and E be the annulus Loewner trace and covering annulus Loewner trace, respec-
tively, of modulus p, driven by &. If (§) has distribution w,,, then E is a covering annulus
SLE(«k; Ag) trace in S, started from xo with marked point y,, 4+ pi. If (§) has distribu-
tion f(), then B is an annulus SLE(k; A ) trace in A, started from %0 with marked point
e¥~P Let £, denote the event that the covering trace ends at y,, + pi. Proposition 7.4, The-
orem 8.3, and Theorem 9.3 in [15] together imply that 1, (€,) = 1 and w5y (U,,cz Em) = 1.
Since &,,, m € Z, are mutually disjoint, the wu,,’s are singular to each other. From (4.21) we
have
d:um 27 s FO(p’ X0 — ym)
=e« 715 .
dps Ci(p,xo—y0) "

(4.22)

4.3 Some Estimations

Lemma 4.1 Foranyt > 0and 0 <x <3¢,

4e!
1 —e 2"

~ 1
H, (1,x) < min{ X 26"_2’} +
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Proof Since ﬁl,q (t,z) = ﬁ; (t, z) — tanh,(z), from (2.7), we have

-1
1.4(t, X) = tanh) (x —2¢) + Ztanh’ (x —2nt) + Z tanh) (x — 2nr).

n=2 n=—00

Note that tanh) (x) = z_ s < min{3, 2¢*, 2¢*} for x € R. If 0 < x < 31, then

(@21 e=x2)2
ex—4r et
t h —nt <2 x— 2nt < ,
s~ <23 = 2 < 2
e—x—2t Ze—Zt
tanh) (x — 2nt) <2 SRS <
Y s -2y <2 3 =2 20
n=-—00 n=-—00
The conclusion follows from the above displayed formulas. ]

Proposition 4.1 If F is one of the following functions: ®) La» @q, or Fq, then

(i) Tima— oo so0 INCF (2, )) = 0;
>ii) for every R > 0, In(F) is bounded on {t > R, |x| <2t 4+ R}.

Proof From (2.4) and (4.15), the conclusmn is clearly true for F = e} 1,¢- From (4.18), we
suffice to prove this proposition for F = \IJ Throughout this proof, we use O, (1) to denote
a positive quantity which depends on «, o, ¢, and is uniformly bounded when 7 is bigger than
any positive constant.

Fix t > 0 and x € R. Let X, (s) be as in (4.5), and (F;) be the filtration generated by
(X« (s)). Define a uniformly integrable martingale M, ,(s), 0 <s < 00, by

M, . (s):= E[exp(a /oo H, (1 +7. X:(r) dr) ’}"]
0

From (4.4) we have M, ,(s) = @q (t+ s, X:(s)) exp(o f(; ﬁ}q (t +r, X;(r))dr). Suppose
S is an a.s. finite (F;)-stopping time. From the Optional Stopping Theorem, E[M, (S)] =
M, (0). Since M, ,(0) = Y, (¢, x), we have

U, (1,x)=E [ 1+ 5. X.:(9) exp( /H (t+s5.X:(8))d )} (4.23)

Let A(s,x) = min{%,Ze"‘zs}. If 0<X,(s) <3 +s) for 0 <s < S, then from
Lemma 4.1, we have

00 Yo (t+s)

N N
/OH,'q(t—{—s,XX(s))dssv/O k(t+s,Xx(s))ds+/0 T s
N 1 —t
:/ A+, X, (s))ds+21n( +e_t),
0 e

which together with (4.23) implies that

N
@q(t,x)§exp(0,(1)e*’)E|:@q(t+S,XX(S))exp<a/. k(t+s,Xx(s))ds>]. (4.24)
0

Recall that o € [0, %). Leto’ = %a. From Proposition 7.1 in [15], forany ¢o € (1407, 2),
there is C > 0 depending only on «, o, and ¢, such that for any 7 € (0, c0) and x € R,

1<, (1, x) <exp(C(17" +1)e02) (1 4 Cex HI=5e0r), (4.25)
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This immediately implies that ln(@q) is bounded on {|x| < cot, t > 1y} for any 7, > 0.

Choose any ¢y € (1 + ¢’,2) such that cg > ﬁ and ¢ #3 — 5. Leta=3—¢cp €
(1,2—0"). Thena # 5. Sincecy—1 >0’ and2 > a > 1,wehavea(2—a) =a(cy—1) > o'.
Thus,

2 2a+o 2
a2 a1 — o) <0 (4.26)
K K Co KCo
o 2 ,
a+ =— (a(2—a)—0) <0. 4.27)

2(2—a) k(2—a)
For m € NU {0}, let G,, denote the event that /k B(s) < as + m for any s > 0. Then ¢ =
Go CG1 C+++ CGu CGpy1 C -+ Itis well known that P[{J~_,G,] =1 and
P[gi] <e #™, meN. (4.28)

Suppose r > 0 and 2r < x < 3¢. Let S be the first time that X, (s) < 0or X,(s) > 3(t +5).
Then S is a stopping time, and 0 < X, (s) <3(t +s) for 0 <s < S. Since X, (s) is recurrent,
S is a.s. finite. Since T < 0 and tanh,(x) > 0 for x > 0, from (4.5) we have

X,(s)<x4+as+m, 0=<s<S, onG,. (4.29)

Let & and &, denote the event that X, (S) =0 and X(S) = 3(t + S), respectively. From
(4.25) and the facts that 0 > ¢) — 2 > —%co and 3 — ¢y > 0 we see that

W, (145, X.(8)) < exp(0,(1)e ™) < 0,(1) on&, (4.30)
U, (£ + 5, X,(5)) < 0,(1)ex =0 on g, (4.31)
From (4.24) we have

W, (1, x) < exp(O,(De™) ZE[l(Qm\gm ne, Wy (£ + 8, X (8))

m=1

s
xexp(a/ )L(t—l—s,Xx(s))ds)]
0

oo

+exp(0; (e Z[hgm\gm e (1 + S, X(9))

s
X exp(a/ A(t+s,Xx(s).) ds)]. (4.32)
0

Suppose G,, N &, occurs. From (4.29) we have 3(r + S) = X, (S) < x 4+ aS + m. Since
3 —a=cy>0, we have
—3t
s< XM g e, 4.33)
Co
Since § > 0, we see that G,, N &, =¥ when m < 3t — x. Let mg = [3t — x7. Then from

(4.28), (4.31), and the fact that A < %, we find that for any m € N and m > my,

s
E[l(gm\gnmﬂsr U, (1 + 5, X.(5)) exP(O/ At +5, X () ds>j|
0
2 o
<E|:e zon— 1)"O(l)exp< (3—C0)([+S)+§S>:|.
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Since %(3 —co)+5 = %(a +0’) > 0, from (4.33) we find that the RHS of the above formula
is

2 2 _3
< Ot(l)exp(——a(m — 1=+ Z(a+0) ﬂ)
K K

Co

So we have

S N
ZE[l(Qm\gm)m&@q(ws, XX(S))exp<a/ A(z+s,xx(s))ds>]
0

m=1

. 2 2 x—3t+m
<o) ) eXp<——a(m -+ =(a+0')- —>
K K co
m=m

2 2 ! e 2 2 AN
= OI(I)CXP(—W + —M(x — 3t)> Z exp(——a + 4 to )

K K Co i K K ¢

2 2a+o' 2 2a+o’
< O;(1)exp| —at + — (x =3t — Zamo+ = o

K K €o K K Co
< 0,(1)ex =2 (4.34)

where the second last inequality follows from (4.26), and the last inequality follows from
the fact that |my — (3t — x)| < 1.

Suppose G,, N & occurs. From (4.29) we have X, (s) —2(t +s) <x —2t+m+ (a —2)s,
0 <s < S. Suppose that 2t < x <3¢. Thenx —2t+m >0 forany m e N. Let p = "’%:m >
0. Then we have

s
/ A(t + s, Xx(s))ds
0

P 0
S/ ldS +/ 2eX72t+m+((172)s ds
0 2 P

p o @2 s—p) p 2 x—2t+m+4
_r 2 Pgs =1L = 435
2+/,, ¢ =5t 22—a) (4.35)
From (4.27), (4.28) and (4.30), we have
o0 S
ZE[l(gm\g,ngl U, (t+ 5, X.(9)) exp(a/ At 45, X (5)) ds>:|
m=1 0
> 2 x—2t+m+4
= Ot(l)mg;exp<—;(m - l)a +o- W)
(=20 2 o " 2
% _ = ;a(x—Zt)
< 0,(1)e 2@ ’;exp( —a+t T a)) < 0,(1)e ) (4.36)
From (4.32), (4.34), and (4.36), we have
U, (. x) < 0,()ex ™2 2p <x <3t (4.37)

Suppose 0 < x <2¢. Let m; = [2¢t — x]. Then x — 2t +m > 0 if and only if m > m,. If
m > my, then (4.35) still holds. Following the argument of (4.36), we get
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e N
Z E[l(gm\gm_mg,qxq(HS, X.(9) exp(a / At + s, X (s)) ds)]
m=m| 0

<0(1)e% iex —%a—i—L '

= P\T¢ 200

m=m|
<0,(1) 02((X2772r)) 2 + 9 "
e2C-a exp| ——a+ ———
= P\l7¢ 200
< 0,(I)e®x20, (4.38)

where the last inequality holds because [m; — (2t — x)| < 1.
For m < my, we use the estimation:

N 00 2ex—2t+m
/ At +s, Xc(9))ds < / DX HAMF @D g — . on G
0 0

—da

From (4.30) we see that, when m < m, on the event G,, N &,

N
T, (t+8, XX(S))exp<a/ A(z+s,xx(s))ds)
0

X —2t+m
- exp(o,(l)e<fo-2” +of )
2—a

=14 0,(1)e*™" + 0,(1)e* >+,
where the last equality holds because e*~2+" < 0,(1) for m < m,. Thus,

myp—1

N
> E[1<9m\9m_1>m£z (ﬁq(f +5, X($)) eXP("/ e s, Xx(s))ds> - 1)]
0

m=1

my—1
2 .
< Z e—;(m—l)a01(1)(6(10—2)1‘ +ex—2t+m)
m=1

my—1 m
2
=0,(1 (co—2)t x—2t 1=-Z=
 ( )(e +e E exp Ka

m=1
< 01(1)6(60*2” + 0{(1)6’(72"(1 _l_e(l—%a)ml)
< 0,(1)et0=2" 4 01(1)(6%21 +e%a(x72t))’

where the second last inequality holds because a # 5. The above inequality together with
(4.32), (4.34), and (4.38) implies that,

T, (t.0) — 1< 0, (1) (e + (02" 4 g5 4 pfatr=20)
< 0,(De'=P2 g <x <2,
Since 1 < @q, the above inequality implies that
0= (%, (1, ) = 0,(Ne =D, 0<x <2,

which finishes the proof of (i) for F = @,1. The above inequality together with (4.37) implies
that

~ 2
0<In(¥,(t,x)) <0,(1) + ;a(O\/ (x—21), 0=<x<3,

which finishes the proof of (ii) for F = @q. O
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5 Annulus SLE with Domain Changed

We now start proving Theorem 1.1. The proof will be finished at the end of Sect. 7.2. Let
p>0,ke€(0,4],s€R zp €T, wy € Tp, and the hull L be as in Theorem 1.1. Choose
X0, Yo € R such that zo = ¢ and wy = €07, Let y,, = yo + 2mm, m € Z.

Note that A, \ L is a doubly connected domain, whose boundary contain T, and e,
Let p; = mod(A \ L). Let L= (¢)"'(L). Then L is a subset of S, with penod 2. We

may find WL and WL such that Wit (A,\L;T,) —» (Am’ T,), WL S, \ L; R,) —»f
Sy Ry, €0 W, =W, oel,and W, has progressive period (27; 27).

5.1 Stochastic Differential Equations

Suppose & € C([0, p)) with £(0) = xo. Let g(¢,-) and g(¢,-), 0 <t < p, be the annulus
and covering annulus Loewner maps of modulus p, respectively, driven by &. Let K (¢) and
K (t) be the corresponding hulls and covering hulls. Suppose & generates a simple annulus
Loewner trace B of modulus p with 8((0, p)) C A,,. Then § also generates a simple covering
annulus Loewner trace ,8 of modulus p with ,8((0 p)) CS,. We have B =e¢' o ﬂ ﬂ(O)
£(0) = xp, K(t) = B((0,1]), and K@) =B((0,1)) +27Z,0<t < p. _

Let T be the biggest number in (0, p] such that 8((0, T)) N L = . Let B, (t) = W, (B(t))
and B.(t) = W, (B()), 0 <t <T. Then B, and EL are simple curves, B; = e’ o EL,
BL) € T, and B.((0,T)) C Ap,. Let v(t) = cap,, (BL((0,2])). Then v is a continu-
ous increasing function, which maps [0, T') onto [0, S) for some S € (0, p.]. Let y.(¢) =
B (1), 0<t < S. Then y;(t), 0 <t < S, is the annulus Loewner trace of modulus
pr driven by some 1, € C([0, S)). Let h(¢,-) and ZL(I, ), 0 <t < S, be the annulus and
covering annulus Loewner maps of modulus p;, respectively, driven by 7.

For0 <t <T,define &.(1) =n.(v(?)), gL(t, ) = hp (v(?), )3

Zow(t, ) =8, ) oW, W, ) =ZLw(t,)ogt, )" (5.1)
Then both g7 w (¢, -) and W(t, -) have progressive period (2r; 27), and

Conf

Zow ) (Sp\ (LU B(O, 1) +272)); R,) = Sppvi: Rppvin)s  (5:2)
W) Sy \ L Rpor) 2 Sy oty Ry o) (5.3)

where L, := g, L)cC Sp—:- We have g (B1(1)) = €'*t®). Since B, = ¢ (B1), thereisn € Z
such that g; (¢, B.(1)) =& (¢t) +2nm for 0 <t < T. We now add 2n7 to the driving function
nr. Then the new n, is still the driving function for y,, h, (¢, ) and k. (¢, ), and we have

ZLw(t. BO)) =EL(0); (5.4)
W(r.&() =800 (5.5)

Define g, (1), g (1), Aj (), Arm (@), X (t), X1.m(#),0 <t < T, such that
Gn(t) + (p = )i =Z(t, Y + pi); (5.6)
qran®+ (pr —v(®)i =3, w(t, ym + pi); (5.7
A=W (r,60), j=1,2,3; A @) =W (1.4, + (p— i) (5.8)
X () =&(1) — gm(1); Xpm(t) =8L(t) — qrL.m (). (5.9)

A standard argument together with Lemma 2.1 in [12] shows that

V() =W(t, g(r)) = A (t)% (5.10)
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Hence,
3Zrw(t,2) =W (t,£0) H(pr — v(0), Zw (1, 2) — £.(0)). (5.11)
Since H, (¢, -) is odd, from (3.5), (3.6), and (5.11) we have

dg,(t) = —HI(p—t,X,,,(t)) dt; (5.12)

dg'(t, ym + pi)

g'(t, ym + pi)
dqrm(®) =—A (0)°H; (pL — v(t), XL (D)) dt; (5.14)

dgy w(t, ym +tri)

Sowtym+pi)
From (5.1), (5.13) and (5.15) we get
dA7 (1)

A ()
Differentiating W(t, ) o gt,2)=¢1 w(t, z) w.rt. f using (3.2) and (5.11), and letting
w = g(t, z), we obtain an equality for B,W(t w) with w € S,_; \ L, leferentlatmg this

equality w.r.t. w, we get an equality for B,W (t,w). Letting w — £(¢) in S, \ L, in these
two equalities and using (2.1) we get

=H(p—1, X (1)) dr; (5.13)

Ai(0)*H) (pr — v(), X (1)) dt (5.15)

= A1 (0)°H)(pr —v(®), X m(®))dt —H)(p — 1, X, (1)) dt.  (5.16)

W (1, £(1)) = —3A2(0). (5.17)
A 1AM 440 )
A0 _5<A1(t)> 340 + A )r(pL —v@®) —x(p—1).  (5.18)

Let « € (0,4]. Suppose now () is a semimartingale, and d(§), = «dt, 0 <t < p. We
will frequently apply It&’s formula (cf. [8]). From (5.5) and (5.17) we have

d&L(t) = A (1)dE@) + (5 - 3) Ax (1) dt. (5.19)

From (5.12) and (5.14) we see that X,,(¢) and X ,,(¢) satisfy
dX, () =d&(t) +H,(p—1, X, (1)) dr; (5.20)
dXpm(t) =dEL(t) + A1) H; (pL —v(1), X (1)) dt. (5.21)

From (5.18) we see that

dA((1) A1) 1AM\ ([ 4\ As0)
A A d"’&“H[E(AI(r)) +<5_§)A1(r>

+ A (0)’r(pL —v(@®)) —r(p — t)i|dt.

Let c and o be as in (1.1) and (4.12), respectively. Then we compute that
dA, ()" o Ax (1)
Ar()® A1)

where Ag(t) := f:?g; 3 2?8)2 is the Schwarz derivative of VT/(I, ) at £(1).
Let

dE(t) + [%As(t) A ()r(pL — v(1)) —ar(p — z)} dt, (5.22)

Y, (1) =To(p =1, X, (1)), Yim(®) =To(pr —v(0), Xpm(®)), (5.23)
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From (4.10), (4.11), (5.10), (5.20) and (5.21) we find that
dy,@® 1

Y, () = —Ao(p =1, X (1) d&(1) — oM} (p — 1, X, (1) dt, (5.24)
dYr . 1 /
YLYi(t) = _AO(pL —v(), XL,m([)) d‘i:L(t) _aAl([)zHI(pL —v(f), XL,m(t)) dt
L,m(t) K
(5.25)
Define M,, on [0, T') by
Yim c [ pr—v(")
M, = A% AY, =" exp(——/ Ag(s)ds —i—a/ r(s)ds), (5.26)
Yo 6 Jo —

From (5.16), (5.19), (5.22), (5.24) and (5.25), we find that

dM,, (1) A1) A 1
TG =[a Aj(l)+ : Ao(pL—v(z),xL,mm)—;Ao(p—t,xma))]

x (&) — Ao(p—1, Xn())dt), 0=<t<T. (5.27)
Let C, . =exp(—$ f” (r(s) + )ds) > 0. We have M,, = N,, exp(cU), where

Y,

o LLm C pL=v0) c [PL—v0O 1
Al exp( (@t 3 /,, o Todst 5 /p o Jds) 629)
1 [ 1 [pPL—v0O 1 1 e 1
U=——/ Ag(s)ds — —/ r(s)+ - )ds + —/ r(s) 4+ - )ds. (5.29)
6 Jo 2 p—- ) 2 » s

5.2 Rescaling

Nm :CPVLA?

Let ﬁ_ T = p—zT —pandi=p— 'p%' Then the function ¢ — ¢ maps [0, 00) onto
[0, p), and maps [0, T) onto [0, T). Let L = ”L C Sy, Xp = ”xo, and y,, = ”y,,,, me
Z. Slnce L has period 27, and dlst(L {xo} U R,,) > 0, we see that L has period 2p, and
dlst(L {Xo} UR,) > 0. Let ﬁ(t) = ”,B(t) 0 <t < oo. Then /3 is a curve in S; U R started
from Xy, and T is the biggest number in (0, oo] such that ﬂ((O T)) NL=0. Furthermore,
we have

{T=p}={?=oo}={ﬂnL=®}={EmZ=®}={EmZ=®} (5.30)

ForO<t <T,let pL(t) = v(t) Since p; —v(t) =mod(A, \ L\ B((0,¢]), while p —t =
mod(A, \ B((0,1]), we have pr—v()<p—t,0<t<T.Thus,
2

Lty > — ;=ﬁ+t, 0<r<T. (5.31)
P
From (2.10), forany 0 <t < f,

L) prL—v(f) 1
—/ T(s)ds = / (r(s) + —> ds. (5.32)

D+t p—f s

LetmeZ.ForO0<t < f,deﬁne
+t - P+t . +
B0 = ”— (0 GO="gl: R0= ”T X (P (5.33)
( ) ~ 240 . = pL(t)
B0 = G0 =22 gL R =22

(5.34)
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From (5.9) we have )A(m :/E\— g and )A(L,m :?L —qrm-For0<r< T, define

3.2 = ig( p); §L,W(r,z>=”L(”a,w(i,ﬁz) (5.35)
T T T

From (3.3), (3.4), (5.4), (5.2), (5.6) and (5.7) we have

20t (Sa \ (B0, 1) + 2PZ): Ry, B(1). T+ 711) > (Sx: Ry E(1).G(D):  (5.36)
w1 (Se\ ((B((0,1]) +2PZ) UL): Ry, B(2), T + i)
O (Sa: Ry BL(0), G (1) + 7). (5.37)
For0§t<?, define
W, ) =8Lw(t, ) ogt, )™ (5.38)
A=W (LED),  Apa0)=W(t,Gu() +7i). (5.39)

Let L, = 2 I;. Since L, = g(t, L), we have L, = g(z, L). From (5.36) and (5.37) we have

W) S\ LRy 2 (Spi R (5.40)
W(tED)=E(t);  W(t.Gu(®) + i) =qrn(t) + i (5.41)
From (5.1), (5.8), (5.35) and (5.38) we have
pL(®) D)
A = S A, A= p+ (5.42)

FormeZand0§t<f,let
Yo =To(P+16,Xu(®),  Yiu(@®) =To(pr(0), X, (1)). (5.43)
From (4.13), (5.23), (5.33), and (5.34), we have

-~ T \* . -~ T \* .
Ym(t) = (ﬁ) Ym(t)a YL,m([) = <%> YL.m(t)- (544)

Define ﬁm on [0, f) such that

~ —~ c L)
N, = C,,,LA‘TA YL mY exp( (oz + 5) / 'F(s)ds).
P+

From (5.28), (5.32), (5.42) and (5.44) we find that
N,(t)=N,(), 0<t<T. (5.45)

From (1.1), (2.9), (4.2), (4.12), (4.14), (4.16), and (5.43), we see that for 0 <t < ?,
Nou(8) = Ay (0 A )Ty (PL(1), X1 (1))

T
Xem® —~
X exp(—a /A tanh, (s) ds —( ) (Pr()) — R(ﬁ+t))>. (5.46)
X

m (1)

J(PH0LX,0)7
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6 Estimations on ﬁm (1)

For m € Z, let P,, denote the set of (p;, p,) with the following properties.

1. For j =1,2, p; is a polygonal crosscut in S, that grows from a point on R to a point on
R, whose line segments are parallel to either x-axis or y-axis, and whose vertices other
than the end points have rational coordinates.

2. p1+2np, pr+2nP, n € Z, and L are mutually disjoint; p; lies to the left of ps.

3. p1 U p, disconnects X, and y,, + i from LinS,.

For each (py, 02) € P, let Tpl e denote the blggest number such that ,8((0 Tpl ) N
(p1 U p2) =0. Since ;3 starts from X, we have Tm o = T.Let &y be as in Sect. 4.2. Then

&, = {nmﬁ(t) - pi} = { lim B(t) =3, +m’}.
t—p t—00
We will prove the following proposition at the end of Sect. 6.1 and Sect. 6.2.

Proposition 6.1 Let m € Z.

(1) lim,_ o ln(Nm ®)/Cp1) = O) on the event &, N {T o0},
(ii) For any (p1, p2) € Pu, ln(N (t)) is uniformly bounded on [0, Tm 02)-

For m € 7, define P, = {(Zp1, £p2): (p1, p2) € Pu}. Then for each (p;, p2) € Pos P
and p, are simple curves that grow from a point on R to a point on Ry, and p; U p, dis-
connects xo and y,, + pi from L. For each (p1,02) € 73,,,, let 7, ,, denote the blggest time
such that ,3((0 Tp,.0,)) N (o1 U po) =0. Then T,, ,, < T, and the function ¢ > { maps

[0, Tpl 0,) onto [0, T» ). From Proposition 6.1, (5. 50), and (5.45) we conclude the fol-
lowing proposition:

)

Proposition 6.2 Let m € Z.

(1) lim;_, , Ny (1) = p L on the event £, N {T = p}.
(ii) For any (p1, p2) € Pu, Ny (t) is uniformly bounded on [0, T,, ,,).

6.1 The Limit Value

We now use H and D to denote the upper half-plane {Imz > 0} and the unit disk {|z| < 1},
respectively. Let H denote the set of bounded hulls in H. For every H € H, there is unique
¢y which maps H \ H conformally onto H such that as z — 00, ¢y (z) =z + ‘— +0(z|7?),
where ¢ =: hcap(H) is called the half-plane capacity of H. If H = @, then ¢y = id and
hcap(H) = 0; otherwise hcap(H) > 0.

Suppose H € H and H # @. Then H N R # @. Let ay = inf(H N R) and by =
sup(ﬁ N R). Let

EH:(C\(HU{Z: ZEH}U[aHva])-
By reflection principle, ¢y extends to Xy, and ¢y : Xy —» (C\ [cH, dy] for some cy <
dy € R. Moreover, ¢y is increasing on (—oo,ay) and (by, 00), and maps them onto

(—00, cy) and (dy, 00), respectively. So w;,] extends conformally to C\ [cy, dy].

Example 1 Suppose r > 0. Let H={z € H: |z| <r}. Then H € H, ay = —r and by =r.
It is clear that 9y (2) =z + é Thus hcap(H) =r?, and [cy, dy] = [—2r, 2r].
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From (5.1) in [14] there is a measure py supported by [cy, dy] with |y | = hcap(H)
such that for any z € Xy,

1 -1

(o (z)—zzf ——dpuy(x). (6.1)
CcH - X

Since ¢y = id, (6.1) is also true for H = @ if we set ug =0, ag = cy = 00 and by =dy =

—o00. The following lemma is a combination of Lemma 5.2 and Lemma 5.3 in [14].

Lemma 6.1

(1) Forany H € H, ¢ (x) <x on (—00,ay) and ¢y (x) > x on (by, 00).
(ll) Ile, H,eH and H, C H,, then [CHl’dHl] C [CHZ’ de].

Conf
Lemma 6.2 Let r > 0. Suppose H € H and H C {|z| <r}. Suppose W : (H\ H; 00) —

(H; 00), and satisfies that W'(00) = 1, W((—o0, —r)) C (—00,0) and W((r,0)) C
(0, 00). Then for any z e HUR with |z] = (1 +7)2, |[W(z) — z| <r* +2r.

Proof Let H. = {z € H: |z| <r}. Then H C H, € H. From Lemma 6.1(1) and Ex-
ample 1, we have [cy,dy] C [cn,,du, ] = [—2r,2r]. Define K = ¢y (H, \ H). Then
K € 'H and ¢y, = ¢k o ¢y, which implies that hcap(H,) = hcap(K) + hcap(H). Thus,
hcap(H) < hcap(H,) = r?. Applying Lemma 6.1(ii) to K, we find that ¢y (x) < o, (x)
for any x € (by,,00) = (r,00). Thus, inf ¢y ((r, 00)) < infey, ((r, 00)) = dy, = 2r. Simi-
larly, sup ¢y ((—o0, —r)) > —2r. Since both W and ¢y map H \ H conformally onto H
and fix oo, and have derivative 1 at oo, there is w € R such that W(z) = ¢p(z) — w for
any z € H\ H. From the assumption of W, we get inf W ((r, 00)) > 0 > sup W ((—o0, —r)).
So we have |w| < 2r. We now suffice to show that for any z € HUR with |z| > (1 +r)?,
lon (z) —z| <r?.

Letze HUR and |z| > 1 4 2r. Since [cy,dy] C [—2r,2r] and |py| =hcap(H) < r2,
from (6.1) we have |<p,}'(z) —z|<r? Lety ={zeH: |z] =1+ 2r}. Then go;I] (y)isa
crosscut in H, which divides H into two components. Let D denote the unbounded compo-
nent. Then ga;,l maps {z € HUR: |z| > 1 + 2r} onto D. Since |g0;,1(z) —zl<r’forzey,
we have ¢! (y) C {|z] < 1+ 2r + 2}, which implies that D D {z e HUR: |z| > (1 +7)?}.
Thus, if z e HUR and |z| > (1 47)?, then ¢y (z) € {z e HUR: |z| > 1 4 2r}, which implies
that |¢p (2) — 2| = ¢y (9r (2)) — u ()| <77 O

Lemma 6.3 Let K be a hull in S, such that Rez < ¢ for any z € K. Suppose that V : (S, \

Conf
K; 4+00) = (Sy; +00), and satisfies V ((c, 00)) C Rand V ((c, 00)+ i) C R,,. Then there
isheRsuchthatifz €S, URUR, and Rez > c +1n(4), then |V (z) —z — h| < 12¢°7Rez,

Proof Thereis h € Rsuchthat V(z) =z+h+o(1) as z € S; and z — 400. By considering
V — h instead of V, we may assume that V(z) =z + o(1) as z € S; and z — +o00. Let
z€S, URUR, withRez > c+1n(4). Leta =Rez —c. Then ¢* > 4, and there is r € (0, 1]
such that (1+7)?/r =¢. Let H = X exp(K) and

W(z) =exp(V(Inz —In(r) +¢) +In(r) — c). (6.2)
Then H e M, HC {z € H: |z| <r}, W: (H\ H:o0) — (H:o0), and W(o0) = 1.

Since V((c,o0)) C R and V((c,00) + wi) C R,, we have W((—o0, —r)) C (—00,0)
and W((r,00)) C (0,00). Since z€ S, URUR, and Rez=c+a=c+2In(1 +r) —
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In(r), we have ¢?t"0=¢ c HUR and |e?™"®"=¢| > (1 4 r)2. From Lemma 6.2, we have

|W (extn=¢) _ pztIn—c| < 2 4 27 So the line segment [e*TN)=¢ W (e2HN")=)] Jies

outside ID. Since |In’(z)| < 1 for z € C\ D, we have | In(W (e =¢)) — (z +1In(r) — ¢)| <

r? 4+ 2r < 3r. From (6.2), V(z) = In(W(e*™"=¢)) —1In(r) + ¢, so |V (z) — z| < 3r. Fi-
1

nally, since e‘r = (r + D?=r242r+1<3r+1, we have r < s Since a > In(4),

e —3>1>4e % Thus, |V(z) —z| < 12¢7% = 12¢¢7Rez, 0

Proposition 6.3 Let K = K. UK_ CS,, where Re K _ is bounded above by c_ € R,Re K
is bounded below by ¢ € R, and ¢, — c— > 2In(12). Suppose W maps S, \ K conformally
onto S, and satisfies W ((c_,c;)) CRand W((c_, cy)+mi) CR,. Then there exists h € R
such that if 7 € S, satisfies that d :== min{c; — Rez,Rez — c_} > In(12), then |W(z) —
z—h| <48e79.

Proof Choose W_: (S, \ K_; +00) ey (Sy; +00). By composing a suitable U : (S, ; +00)
Conf

—» (Sy; 400) on its left, we may assume that W_ satisfies W_ o W~!(—o00) = —o0. Let
Conf
K, =W_(K,)and W, =W o W=". Then W, : (S, \ K.; —00) — (Sy; —00).
The assumption on W implies that there is no x € (c_, 00) such that W (x) = —oo. Since

W_ o W™ (—00) = —o0, there is no x € (c_, 00) such that W_(x) = —oo. This implies that
W_((c—, 00)) C R. Similarly, W_((c_, 00) + mi) C R;. From Lemma 6.3, there is 7_ € R
such that

|W_(2) —z—h_| <12¢“ 7R ifz€S, URUR, and Rez > c_ +1n(4). (6.3)

Letcy=cy —c_>2In(12) and ¢, =cy +h_ — 127 % If z € S; URUR,; and
Rez > ¢y, then Rez > c_ 4+ ¢4 > c_ + In(4), which implies that Re W_(z) > c; by (6.3).
Since Re K is bounded below by c,, we find that Re K/, is bounded below by c/,.
Suppose W_((c_, c4)) = (a—,a;). The above argument show that a, > ¢/,. Since W =
Wy o W_ and W((c_,cy)) C R, we have W, ((a—,a;)) C R. Since W, fixes —oo, we
have W, ((—00, a;)) C R, which implies that W, ((—o0, ¢;)) C R as a4 > ¢,. Similarly,
W, ((—o00,cy) 4+ mi) C R,. From a mirror result of Lemma 6.3, we see that there exists
h, € R such that

[We(w) —w—hy| < 12e%" %, ifweS, URUR, and Rew < ¢, —In(4). (6.4)

Now suppose that z € S, satisfies that d := min{c; — Rez,Rez — c_} > In(12). From
(6.3) and that c;, —Rez,Rez — c_ > d >1n(12), we obtain

ReW_(z) <Rez+h_+12¢ R <c, —d+h_+ 127" =c, —d +12¢7 + 12¢7¢

13
< C;_ —d + 126_21n(12) 4 12€_ln(12) :C;_ _d+ E
<cd, —d+In@3) <c, —In4). (6.5)

Leth=h, + h_. Applying (6.4) to w = W_(z) and using (6.3) and (6.5), we get

(W@ —z—h| < [We(W_(2)) = W-(2) = hs| +[W-(2) =z —h_]|

< 12eReW-(@—¢y 4 19pc-—Rez _ 9,0)~d 4 19,~d _ 48p~4 O
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Differentiating (6.1) w.r.t. z, we see that for z € ¥,

1y i
(en') @ —1 :/ —x) dpp (x);

CH

( )(ﬂ)()_/dHer’/l:dﬂH(x)’ nzz
n (Z _ x)n+

The proofs of Lemma 6.2, Lemma 6.3, and Proposition 6.3 can be slightly modified to prove

the following proposition.

Proposition 6.4 There are constants Cy, Cy > 0 such that the following hold. Let K =
K, UK_ CS,, where Re K is bounded above by c_ € R, Re K, is bounded below
by c; € R, and ¢y > c_ + 2C,. Suppose W maps S, \ K conformally onto S,, and
satisfies W((c_,c;)) CR and W((c_,cy) + mi) C R,. Then for any z € S, with d :=
min{c; —Rez,Rez —c_} > Ca, we have |[W'(z) — 1|, |W"(2)|, IW"(z)| < Cie™?

Proof of Proposition 6 1(i) From (5 46), we sufﬁce to show that (i) holds if ln(N (t) /Cp.1)
IS replaced by ln(Al ([)) lIl(A[ m (t)) IH(F (P + 1, Xm (t))) IH(F (pL(Z) XL m (t)))
XL m(@) — X,,, (1), or R(pL(t)) — R(p + 1), respectlvely Suppose &, N {T oo} occurs.
From (5.31) and (2.9) we conclude that R(pL 1) — R(p +1t)—0ast— oo.

Decompose L into Zl and Z, such that ZI N R (resp. Z, N R) lies to the left (resp. right)
of X. Let Ly, =8(t, L) and L,, =2(t,L,), 0 <t < T. Then L;, N R (resp. L,, NR) lies
to the left (resp rlght) of S(t) Let E, be a subset of Sy, Wthh touches both R and R,
dlsconnects ﬁ from L in S, and is disjoint from L and ﬁ As t — o0, the dlameter of
,8((1‘, 00)) tends to 0, which implies that the extremal distance (cf. [2]) in S, \ (ﬂ((O, t]) +
2pZ) between E, and the set

S, := (=00, x0] U (B((0, 11) — 2pN) U {the left side of B((0, 1)} U {y + iz y <y

tends to co. From (5.36) and conformal invariance, the extremal distance in S, between
g(t, E,) and (—00, EM] U fx + 7i: x < (1)} tends to oo as t — oo. Since E, touches
both R and R, g(¢, E,) also has this property. Thus, dist({g(t),fim(t)},ﬁt, E.)) — o0
as t — o0. Since E, d1sconnects Efrom Z in S;, we see that g(z, E,) disconnects E(t)
and g, dm (t) + mi from L,, Thus, dlst({é @), gu(t) + mi}, L,,) —> 00 as f — 0. Similarly,
dlSt({éj([) G () + i}, Ll ;) = 00 as t — oo. Thus, dlst({g(t) G (0) + JTl} L 1} — o0 as
t — oo. From (5.39), (5.40), and Proposition 6.4 we conclude that ln(Al(t)) - 0 and
ln(AI m(t)) — 0 as t — oo. From (5.41) and Proposition 6.3, we see that XL m(t) — X (1) =
EL(t) —E(®) — @r.m(t) —Gu()) > Oast — 00.

Let a,.(t) = mm{Lm N R} and a;(t) = max{zlq, N R}. From the last paragraph, we
see that a,(f) — £(t), a,(t) — Gu(1), £(t) — a;(t), and G, (1) — a;(¢) all tend to +oo as
t — o0. Since )?m :E— Gm» We have a,(t) — a;(t) £ X,,(t) — o0 as t — oo. Since Z,
has period 2(p + t), we have a,(t) — a;(t) < 2(p + t). Thus, 2(p + 1) — |X,,(¢)| = o0
as t — oo. Let by, b, € R be such that by <y, < b, = by + 2p. Using (5.37) and an
extremal distance argument, we conclude that, as 11— 00, EL (t) — Regr w(t, by + mi),
G —Regrwt,by+mi),Regr w(t,by+mi)—&.(t),andRe gy w(t, by +7wi) —qGr.m(t)
all tend to +oo. Since g7 w has progressive period (27; 27), from (5.35), g w (¢, ) has pro-
gressive period (2p; 2p(t)). SoRe gL w(t, by +mi) —Re g w(t, by + i) =2p.(¢). Since
Xpm=&L — qL.m» We conclude that 2py (¢) — |)A(L,m(t)| — 00 as t — oo. From Proposi-
tion 4.1(i) and (5.31) we see that ln(fq (p+t, )?,,, (t))) and ln(fq (pL(0), )?L,m (1)) tend to O
ast — oQ. O
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6.2 Uniformly Boundedness

Now we introduce the notation of convergence of domains in [14]. We have the following
definition and proposition.

Definition 6.1 Suppose D, is a sequence of plane domains and D is a plane domain. We
Cara

say that (D,) converges to D, denoted by D, — D, if for every z € D, dist(z, dD,) —
dist(z, @ D). This is equivalent to the following:

(1) every compact subset of D is contained in all but finitely many D,,’s;
(ii) for every point zy € d D, dist(zp, dD,) — 0 as n — oo.

Suppose D, Loy D, and for each n, f, is a complex valued function on D,, and f is a
complex valued function on D. We say that f, converges to f locally uniformly in D, or

fu =% £ in D, if for each compact subset F of D, f, converges to f uniformly on F.

Conf
Proposition 6.5 Suppose D, Corg D, f,: D, = E, for each n, and f, LN fin D. Then
either f is constant on D, or f maps D conformally onto some domain E. And in the latter

Cara _ 1 Lu. 1 .
case, E, — Eand f7' — f~linE.

Fix m € Z and (p1, p2) € Pu. Choose (pf, p;) € P such that pf U pj is disjoint from
(p1 U p2) + 2pZ, and p} U p; disconnects p; U py from L in Sz. Then pf, p1, P2, O3,
and pf + 2p lie in the order from left to right. Suppose p; N R = {a;}, p; NR={a}},
pj "Ry ={b; + mi}, and ,0;.‘ NR, = {b;f + mi}, j =1,2. Then we have a] < a; <Xy <
a, <ajy <a}+2pand b} <b; <, <by <bi <b} +2p.

Let I (z) = 2m — 7 denote the reflection about R;. Let X, ,, denote the region in Sy,
bounded by p; U I (p2) and (o1 U I (p1)) + 2p. Fix # € (b3, bt +2p). Then # + i € Ty.

Let D,, ,, denote the family of simply connected subdomains of S,, which contain X, ,Dz’

Conf
and are symmetric about I,. For each D € DPI 0> there is a unique fD (Sop; F +mi) —

(D; # + mi) such that fD (7 + i) > 0. Such fD commutes with /,;. Define a topology on
Dy, .p, such that D, — Dy iff fD” LN fDO in Sy,.

Lemma 6.4 Every sequence in D, ,, contains a convergent subsequence.

Proof Choose V such that V : (S,,; 7 + m) (]D) 0). Let (D,) be a sequence in D, ,,.
Then V o fDn, n € N, is a family of conformal maps from S,, into . Since this fam-
ily is uniformly bounded, it contains a subsequence (V o fan) which converges lo-
cally uniformly in S,,. From Lemma 6.5, this subsequence converges to either a con-
stant function or a conformal map defined on S,,. Suppose that the first case happens.

Since V o fD,, (7 + i) = 0, the constant is 0. Then we conclude that foan LG + i
in Sy, which implies that fl’)nk (7 + mi) — 0. Since dist(# + 7i, 0S,,) = 7, from Koebe’s
1/4 theorem (cf. [2]), we should have dist(? 4+ mi, 9D, ) — 0, which contradicts that
dist(* + i, dD,,) > dist(* + 7i, R U Ry, U py U (p1 + 2p)) > 0. Thus, (V o fp, ) con-
verges locally uniformly to a conformal map, which implies that ank converges locally
uniformly to a conformal map defined on S,,, say f. Since fan all map into S,,, fix
7+ i, have positive derivative at # + i, and commute with 7, f should also satisfy these
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properties. Let Dy = f (S2x). Then Dy is a simply connected subdomain of S,,, contains
7+ mi, and is symmetric about R,. We suffice to show that Dy D X, ,, because if this is
true, then Dy € D, ,, and f= fD(,, which implies that D,, — Dy. Suppose Dy 8 X, ,,.
Since # +mi € Dy, and X, ,, is connected, there exists zg € X, ,, N Do. From Lemma 6.5
we have D, Loy Dy. From Definition 6.1(ii), we see that dist(zo, dD,,) — 0, which con-
tradicts that zo € X, ,, C D, for each k. This finishes the proof. d

Let Iy(z) = 7 denote the reflection about R. For D € D, ,,, let
DT =D U I4(D) U (az, a) + 2D).

Then DT is a simply connected subdomain of S;tn = {27 <Imz < 27}, and is symmetric

o Conf . .. o
about R. Let gD = fl; D — S,;. From Schwarz reflection principle, ¢p extends to a

conformal map §% p from Di into SZn’ which commutes with /.

Lemma 6.5 [f D, — Dy, then D Loy Dy and §7, LN 85, in Dy .

Proof From Lemma 6.5 we have D, Lo Dy and gp, L gp, in Dy. Then we easily

C
see that Di Cory D0 Let (D,,) be a subsequence of (D,). Choose V : S —Og D. Then

(Vo éﬁnk) is uniformly bounded family, which contains a subsequence (V o8 Du, ) that
1
converges locally uniformly to some function G in Dj. Since g%n; LN gp, in Do, we
i
see that G is the analytic extension of V o gp,. Thus, G=V o gﬁo. So we conclude that
g%nk LN g‘;; in Di. The proof is now finished because every subsequence of (g%n) con-

tains a subsequence which converges to gﬁ locally uniformly in D0 O

For each D € D, ,,, let D(Z) be the connected component of D \ (Z Ul (Z)) that
contains 7 + mwi. Then D(L) is a simply connected subdomain of Sz,,, and is symmetric

about R;. There is a unique gp 7 such that g, 7 : (D(L) P+ m) (Szn, 7+ i) and
DE('H”) > 0. Let

D*(L) = D(L) U Iy(D(L)) U (a2, a1 +2p) \ L).

Then g, 7 extends to a conformal map ¢ &t 7 from Di(L) into Szﬂ, which commutes with /.

We easily see that D, Comy Dy iff Di (L) ﬂ DO (L) Using some subsequence argument

we can derive the following lemma.

Cara

Lemma 6.6 If D, — Dy, then DE(L) <3 DF(L) and &5+~ &=+ in DE(D).

For each D € D, ,,, p; and p; are compact subsets of D* and D*(L). From
Lemma 6.4, Lemma 6.5, and Lemma 6.6 we conclude that, there is a constant C > 0 which
depends only on py, 02, o}, 053, L, # such that, for any D € Dy, .p, and z € pj U p3, the fol-
lowing quantities:

1178, |ép1(@) —z

11/8) 7

|8p(2) — 2|,

)

are all bounded above by C.
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Fix 1 € [0, T, ,,). Let D = Sy, \ (B((0, 1]) +2 )\1 (B((0,]) + 2pZ). Then D e

Dy, - We have gp 1 (Sy \ (B, 1]) + 257Z); Ry) = (Sn; Ry). Let hy = g(t, 7 + i) —
(7 +mi) € R. Since gp fixes * + 7i, from (5.36) we have ¢p = g(, -) — h;. Similarly, using
(5.37) we conclude that &, 7 =gr.w(t,-) — hy for some h, € R. Thus, for any z € oy Ups,
the following quantities:

|gLw(t,2)—z—hal,

|g(t,2) — 2z —

|N ’1/?L,W(taz)‘a
are all bounded above by the C in the last paragraph. Let 4 = h, —h; and C' = max{2C, C?}.
From (5.38), we find that,

\W(t,z)—z—h\sc/, l/C’SIVT”(I,z)ISC’, zeg(t, pf)Ug(r. p3). (6.6)

Proof of Proposition 6. I(ii) From (5. 46) we sufﬁce to show that (ii) holds if ln(N (1)) is
replaced by In(A, (1)), In(A 7, (1)), In(F, (51, X, (1)), InTy (P (@), X (1)), X (1)
X (1), or R(pL 1) — R(p + 1), respectively. From (2. 9 and (5.31) we see that R(pL (1))
and R( p + 1) are both positive and bounded above by R('ﬁ) which is a uniform constant.
So R(pL (1) — R(p +1)is umformly bounded.

Fix (p1, p2) € P, and ¢ € [0, Tp1 0,)- Then (6.6) holds. From Schwarz reflection princi-

ple, W(t -) extends conformally to a conformal map on ¥ :=C\ (Lt @) I()(L )+ 2wiZ),
and the extended map commutes with both /o and 1. Thus, W(t -) has progressive period
(2mi; 2mi). So W’ (t,"), 1/ W’ (t,-), and W(t -) — - are all analytic functions with period
2mi. Let

o=@, 07) U Io(2(t, p7))) +27iZ,  j=1,2.
Then p}, and pj, are two disjoint simple curves with period 27, which lie inside ¥, and

(6.6) holds for any z € pf, U p3 . Since E(t) and G, (¢) + mi lie inside the region bounded
by pf, and pJ ,, from Maximum Principle, (5.39), and (5.41) we have

EL(t) = &) = h|, |GLan(®) —Gu(®) —h| <C',  1/C" < A1(t), Apu(t) <C'.

Since 3(\ 5 qm and XL m= ‘g‘L —qr. ms We have |XL m() — Xm(z)| < 2C’ Thus, the
lemma holds if ln(Nm (1)) is replaced by ln(Al ®)), 1n(A1 m(t)), or XL m(t) — Xm ().

We know that p}, p;, and p;* + 2p are pairwise disjoint, and lie in the order from left
to right. Since Z(7, -) has progressive period (2m; 27), from (5.35), g(t, -) has progressive
period (2p; 2(p+1)). Thus, g(t, pi), 8(z, p3), and g(¢, p}) +2(P + 1) are pairwise disjoint,
and lie in the order from left to right. Since E(t) and g, (t) + i are bounded by g(t, o7)
and g(z, p3) in S,, they are also bounded by g(z, p}) and g(t, p}) +2(p + ) in S,. Thus,
X ()| = |E(t) — G (1)] is bounded above by 2(p +1) +diam(g(z, py)). Since [g'(t,2)| < C
on p}, diam(g(z, pi) < C diam(p}). Thus, |X,,, ®|—2(p+1)is bounded above by a uniform
constant. From Proposition 4.1(ii) we see that the lemma holds if ln(N (1)) is replaced by
ln(F (p+t, X (#))). Similarly, |XL m (t)| —2p (1) is bounded above bya umform constant,
which implies that the lemma holds if ln(N (1)) is replaced by ln(l" (P, XL =())). O

7 Restriction
7.1 Brownian Loop Measure

Lemma 7.1 Let py > 0 and L be a hull in A, w.rt. Ty,. Let Zo (e)~(Ly). Suppose

Conf

that py = mod(A,, \ Lo) € (0, po), Wo : (A, \ Lo; Tpy) = (A, Rp)), and Wo (Spe \
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Conf

Lo, IZQ) — (Sp;Rp)), and e o Wo Wp o et Let X0 € R be such that dist(e’™, Ly) > 0.
Let SWy(xo) denote the Schwarz derivative of WO at xo. Let ,ixy denote the Brownian
bubble measure in A,_, rooted at eixo, Let &1, denote the set of curves that intersect L.
Then

1~ 1~ 1 1 1
Moizg [ELy] = —=SWo(x0) + —Wé(xo)2<l‘(l71) + —> - (1‘([70) + —>
6 2 P 2 Po
Proof Let 7y € Sp,. The bubble measure iy, equals lim, ‘izgrgllz, where P ., is

the distribution of a planar Brownian motion started from ¢'® conditioned to exit A,
from e'*. Choose xj, x, € R such that x; < xg < x» < x; 4+ 27. Then P..x, equals the
limit of P, (x, x,) as x1, X2 — Xo, where PZO Grx) =Py [ €, x, 1, Py is the distribution of
a planar Brownian motion started from ', and &,, ., denotes the event that the curve ends
at the arc €' ((x1, x2)).

Since the Poisson kernel function in A, with the pole at ¢* € T is z — 7-(ReS(po,

ix Injz|
z/e™*) + o ), we get

1 (% Z
on[gxpxz]:_gf Im<H(P07 ZO_X)"FP_(:)) dx. (7.1)
x]

From conformal invariance of planar Brownian motions, ]P’ZO [E,, X2 \ 5L0] is equal to the
probability of a planar Browman m0t10n started from Wy(e'%0) = e’ (Wy(zp)) hits A, at
the arc Wy(e'((x1, x2))) = e ((Wg()C]) Wo(xz))) From (7.1) and change of variables, we
get

Wo(zo)

1 *2 ~ ~ ~
Po[E¢i s \ ELol = o / Im<H(P1, Wo(z0) — Wo(x)) + >W6(x)dx.

Then we get an expression for P, .., +,[Er,] = P [E1, 1€y, 1, 1. Letting x1, x5 — X, we
get

Wy xo) Im(H(py., Wo(z0) — Wo(xo)) + Tao=Fot)

Poyixol€Lol = s
0:x0 L<Lo Im(H(po, 20 — Xo) + %)

. . Proixgl€Lgl . .
Finally we compute lim,,_,, %XO‘L;’ The proof is completed by some tedious but
straightforward computation involving power series expansions. O

Lemma 7.2 For the U(t) defined in (5.29), we have pioopl L1 1=U(), 0=t < T, where
Ly denotes the set of loops in A, that intersect both L and ((0,1)).

Proof For 0 <t < T, let u, denote the Brownian bubble measure in A,_, rooted at e/s".
The argument in [7] shows that pigep[ L1 ] = fol us[{- N Ly # @}1ds for 0 <t < T. From
(5.3), (5.8) and the previous lemma, we have

1 1 R 1
N LA 0] = =2 As() + 3 A1) (r(pL — () + —)

pL—v(s)
1 1
—§<r(p—s)+ p—s)'

The proof can now be completed by integrating the right-hand side of this formula from 0
to ¢ and using (5.10) and that v(0) = 0. O

@ Springer



Restriction Properties of Annulus SLE

Lemma 7.3 Let m € 7.

(i) On the event &, N {,@ N L =@}, U(p) is finite. ~
(it) For any (p1, p2) € P, U(t) is uniformly bounded on [0, T,, ,,).

Proof From [7], if two sets in C have positive distance from each other, then the Brownian
loop measure of the loops that intersect both of them is finite. (i) If £, occurs and 8 N
L = @, then dist(L, 8((0, p))) > 0. From Lemma 7.2 and the above observation, U (p) =
Mioop[ L1, p] is finite. (ii) Let £y ,, ,, denote the set of loops in A, that intersect both L and
p1 U pa. Since dist(L, p; U p;) > 0, we have ioop[Lr,p), 0] <00.1If t < T, ,,, then p; U oy
disconnects $((0,t]) from L, which means that a loop in A, that intersects both L and
B((0, t]) must also intersect p; U p2. So Ly ; C Ly p,,p,- Thus, U(#),0 <t < T, is bounded
above by tieopl L1, p;,00]- O

7.2 Radon-Nikodym Derivatives

Let s € R and m € Z. Consider the following two SDEs:

dE(t) = Kk dB(t) + <3 - —) Azit;
1

0<t<T; (7.2)
d&(t) = /k dB(t) + <3 - g) 2? 2 dt + A () Ao(pr — v(1), Xpm(1)) dt

0<t<T. (7.3)

dt + Ai() Ay (pr — v(t), Xp0(t)) dt

Let the distribution of (§(¢), 0 <t < T') be denoted by f11 5y Or jLr m, respectively, if (§(¢)),
0 <t < T, is the maximal solution of (7.2) or (7.3), respectively, and & (0) = x.
Suppose that (§) has distribution ;. From (5.1), (5.7), (5.9) and (5.19), we get

dEL(t) = A\ (1)K dB(1) + A1 (1)* Ao(pr — v(1), EL(1)
—ReZ(t, Wy (v + pi)))dt, 0<t<T.

Since &7 () = ny (v(r)) and . (¢, ) = ﬁL (v(2), -), from (5.10) and (5.8) we conclude that
there is another Brownian motion B, (¢) such that

dnp(t) = /K dBy(t) + No(pr — 1, 1. (1) — Re Ty (1, Wy (v + pi)))dt, 0=t <v(T).

Recall that ﬁL and y; are the covering annulus Loewner maps and trace of modulus p;
driven by 5. Thus, y.(t), 0 <t < v(T), is a covering annulus SLE(k; A) trace in S,
started from VT/L (£(0)) with marked point WL (Ym + pi), stopped at v(T).

There are two possibilities. Case 1: v(T) = p. Then Y7 (¢), 0 <t < v(T) is a complete
covering annulus SLE(k; Ao) trace. From the last paragraph of Sect. 4.2 we know that a.s.
limy— o7y~ 72.() = Wo (v + pi). Since 7.(1) = B(v(1)) = WL(B(v(1))), we have T = p
and lim,_, 7 ﬂ(t) =y, + pi, which means that the event &,, occurs. Case 2: v(T) < pr.
Then lim,_, ,r)- ¥ (¢) exists and lie in S, , which implies that lim,_, 7 E(t) exists and lie
inS,\ L. This means that the solution £(t),0 <t < T, can be further extended, which is a
contradiction. So only Case 1 can happen, which implies that u; ,,{T = p}NE&,) = 1.

Similarly, if (£(¢)) has the distribution (), then a.s. v(T) = py, Yr.(2), 0 <t <v(l),
is a complete covermg annulus SLE(k; A ) trace in S,, started from WL(S(O)) with
marked point WL (yo + pi), and lim,_, , 7, ¥z (¢) exists and belongs to yo + pi + 27 Z. Thus,
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(T =pP =1and s U,z En) = 1. Since X ,,(0) = W, (£(0)) — Re Wy, (3 +
pi), from (4.22) we have

d,U«L,m _ 327”"” To(pr, Xi,m(0))

Sm'
dur.s) L (pr, X1,0(0)

Suppose (£(¢)) has the distribution pi (. Since y; is the trace driven by 7, the above
argument shows tklat, y(t),0<t <v(T), is a complete annului SLE(k; A) trace in A,
started from e’ o W (£(0)) = W (¢™) with marked point e’ o Wy (yo + pi) = W (e~ P).

Since Wy 1 (A, \ L; B0~ (1)) ' (A, ; y.(1)), we see that S(v="(1)), 0 <1 < v(T), is an
annulus SLE(k; A) trace in A, \ L started from e'*0 with marked point e*0=7,

The process (M,,(t)) defined earlier will be used to derive the Radon-Nikodym deriva-
tive between the ., , defined here and the p,, defined as the distribution of the solution
of (4.19). Suppose that (£(¢)) has distribution p,,. Then £(¢), 0 <t < p, solves the SDE:

d&(t) =ik dB(1) + Ao(p — 1, Xu())dt, 0<t<p, £0)=x. (7.5)

From (5.27) we see that M,,(t), 0 <t < T, is a local martingale under ,,.

Let (o1, p2) € 7;,,,. From Proposition 6.2(ii), Lemma 7.3(ii), and M,, = N,, exp(cU), we
see that M,,(¢) is uniformly bounded on [0, 7, ,,). Thus, M,,(t A T, ,,) is a bounded
martingale, and we have E,,, [M,,(T,, ,,)] = M,,(0). If we now change the distribution of
(¢(2)) from p,, to a new probability measure v defined by dv/du,, = M, (T,, ,,)/ M, (0),
then from Girsanov’s Theorem and (5.27) we see that the current £(¢) satisfies SDE (7.3)
for 0 <t < T, ,,. Thus, on the event {T,, ,, = p}, r,m <K im, and the Radon-Nikodym
derivative between the two measures restricted to the event {7, ,, = p} is M,,(p)/M,,(0).
From Proposition 6.2(i), Lemma 7.3(i), (5.30) and M,, = N,, exp(cU), we see that M,,(p) =
C,.rexp(cU(p)). So

d/'LL,m/d:um = Cp,L eXP(CU(P))/Mm (0) on {Tpl,pz = P}~ (76)

Suppose &, occurs and T = p. Then BN L = ¢. Since B starts from xo, we can find
(p1, p2) € Py such that 8N (p; U po) =¥, which implies that 7, ,, = p. Thus,

Ex{T=ptc |J {T,,=n) (7.7)
(PLPz)Eﬁm

(7.4)

Since u,,(E,) =1 and P, is countable, from (7.6) and (7.7) we see that duy ,,/dp, =
Cp.exp(cU(p))/M,,(0) on {T = p}. Since u; , {T = p}) = 1, from (5.30) and Lemma 7.2
we know that

ditym C,,
dML :Mp(g)1{%2:@)exp(cu.oop[cL,,,]), (7.8)

where L , is the set of loops in A, that intersect both L and B((0, p)).
Let s € R. Now we compare (i, with py (). Define

Y (1) =Ty (p — 1, Xo()), Y (1) =T (pL — v(®), XL 0(1)).

Define M, using (5.26) with Y,, and Y, ,, replaced by Y,y and Y7 (), respectively, and A; ,
replaced by A o.

Since g(t, -) has progressive period (27; 27), from (5.6) we have g, (t) = go(t) + 2mr.
Since W(t, -) has progressive period (27r; 27r), from (5.8) we have A, ,, = A;o. Thus,

Mm(o) — IjO(va)(L,m(O))/ FO(P, Xm(o))
M (0) Ty (pr, X1.000)/ T (p, Xo(0)
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Since X,,(0) = xo9 — yn, from (4.22), (7.4), (7.8) and the above formula, we get
dprsy  Cpo

dus — Miy(0)

Recall that when (£(¢)) has distribution (5, B(t), 0 <t < p, is an annulus SLE(k; Ay)

trace in A, started from zo = €0 with marked point wy = e?°~7. When (£(¢)) has distribu-

tion fiz ), a time change of B: Bw™(1)),0<t <v™(T), is an annulus SLE(k; Ay) trace

inA, \ L started from zo with marked point wy. This finishes the proof of Theorem 1.1 with

pL
zZ= M5 (0)

1snr=p) CXP(Cﬂloop[ﬂL.p])~

8 Other Results
8.1 Restriction in a Simply Connected Subdomain

We now give a sketch of the proof of Theorem 1.2. Let p > 0, k € (0,4], s e R z9 € T,
wo € ’JI‘,,, and the set L be as in Theorem 1.1. Choose xo, yo € R such that t 20 = €0 and
wy = e P Let y,, = yo + 2mm, m € Z. Let L = (e~ (L) Then S, \ Lisa disjoint
union of simply connected domalns Dm, m e 7, quch that D,,, = DO + 2mm for m € Z.
‘We label one of the domains Do such that xy € 8D0. There is a unique m € Z such that

~ . ~ Conf —
Ymy + pi € dDy. We have e’ : Dy = A, \ L. Let J, be the component of T, \ L that
Conf ~ ;
contains wy. We may find Wy, such that Wy : (A, \ L; Jo) 2 (S;;R,). Let WL =W,oé,

and JO be a component of R, \L that contains y,,, + pi. Then WL (Do, Jo) —» (Sn, R,).

Let “;‘(t) g, ), g(t,), ,B(t) ﬂ(t) O<t<p,and T € (0, p] be as in Sect. 5.1. Now we
deﬁne ,BL(t) =Wr(B(@)) = WL(,B(I)) 0<t< T Then ,BL is a simple curve with ,3(0) eR
and B((0, p)) C S,. Let v(¢) be the capacity of B ((0,7]) in S, w.r.t. R, for0 <t < T. Let
S =supv([0, T)), and Y. (¢) = ,BL(v*'(t)) 0 <t < S. Then ¥, is the strip Loewner trace
driven by some n; € C([0, S)).

Let hL(t R O <t < S, bethe strlp Loewner maps driven by 1. Define &, (t) = 1 (v(t))
and g, (¢,-) = hL(v(t) -). Define gy w(t,-) and W(t -) using (5.1). Then (5.2) and (5.3)
hold with p; — v(¢) replaced by 7. From (3.9) we see that (5.4) and (5.5) hold.

For m € Z, define g, (t) and ¢y, ,, () using (5.6) and (5.7) with p;, — v(¢) replaced by 7.
Define A;(t) and A;,,(¢) using (5.8). Define X,,(¢) and X ,,(¢) using (5.9). A standard
argument shows that (5.10) holds here. So (5.11) holds with H(p, — v(¢), -) replaced by
coth,. Now (5.12) and (5.13) still hold here. From (3.7) and (3.8) we see that (5.14), (5.15)
and (5.16) hold here with H, (p;, — v(¢), -) replaced by tanh,.

By differentiating W, ) o 8(t,2) =gL.w(t, z) wrt. t and z, and letting w = g(¢,7) —
&(t), we conclude that (5.17) holds here, and (5.18) holds with r(p, — v(t)) replaced by é
which comes from the power series expansion: coth,(z) = % +i+ O(z?) when z is near 0.
Then (5.19) and (5.20) still hold here; (5.21) holds with H; (p; — v(¢), -) replaced by tanh,;
and (5.22) should be modified with é in place of r(pp — v(?)).

Define Y, (t) using (5.23), but define Y; ,,(¢) := ﬁ,o(v(t),XL’m(t)). Since 'y solves
(4.11) and ﬁ,o solves (4.17), using (5.10), (5.20), and the modified (5.16) and (5.21) we
find that (5.24) still holds, and (5.25) holds with H; (p; — v(¢), -) and Ao(pL — v(t), -) re-
placed by replaced by tanh, and KF;O /Foo = (5 — 3) tanhy, respectively.

Define M,, using (5.26) with af:ffv(') r(s) ds replaced by otf[fi. r(s)ds — 2v(-). Us-
ing (5.10), (5.19), (5.24), and the modified (5.16), (5.21), (5.22), and (5.25), we find
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that (5.27) holds here with Ao(p, — v(¢),-) replaced by (5 — 3)tanh,. We may write
M,, = N,, exp(cU), where

i oo ) o)) L)
m= "y exp| |« 3 pi'rs s 6 O[p,,s s
1 1 1 [r 1
U=- 6/A5(s)ds+ﬁv—§/[’(r(s)—l—;)ds

To get estimations on N,,(¢), we do some rescaling. Let p, T. 1, X0, Ym» and B\be as
defined in the first paragraph of Sect. 5.2. Then (5.30) holds here. From (2.10), we see
that (5.32) holds if py(¢) is replaced by p and p; — v(t) is replaced by p. Define ?,:(t)
qm (1), and Xm (t) using (5.33); define SL, qL.m, and XL m using (5.34 ) with the factors
LLil L(t) removed. Define g(z, -) and g, w (7, -) us1ng (5.35) with the factor 22 L([) removed. Then
(5 36) holds here and (5. 37) holds if “S, \ ((/3((0 t]) + ZﬁZ) U L) R 7 s replaced by
“Dy \,B((O t1); Jo”, where Dy := pDO and Jo 1= pJo Define W(t ), A1), and Alm(t)
using (5.38) and (5.39). Then (5. 41) still holds, (5. 42) holds with py (¢) replaced by 7, and

~ -~ o~ Conf -~ o~
9.40) should be replaced by W (¢, ) : (Do ; Jo.r) 5 (Sz; Ry), where Dy, :=g(t, Do) and
Jo.o =g, Jo). R
Let 9(¢t) = v(f). Define Y (#) using (5.43), but define YL m() = C,o(v(t), X1.m()). Then
(5.44) holds with py (1) replaced by 7. Define N on [0, T) such that

Y A o po E p+-’\ _?
N, = A A,mYLmY exp| | @+ r(s)ds .
V 2 P 6

From the modified (5.32), (5.42) and (5.44), we find that (5.45) holds here. From (1.1), (2.9),
(4.2), (4.12), (4.14), (4.16), and the modified (5.43), we see that

—~ o~~~ ~ )?L,m c\ ~
N =CoRYAY, Ty (P4 R exp<_°‘/A tanha(e)do (“ * §>R(ﬁ+ ~>>,

where C), := (£)* exp(—(a + 5)(R(P) + £)).

Let &, m € Z, be as in Sect. 6. Since E () stays 1ns1de 50 before time f, we see that
{T oo} NE, =0 for m € Z\ {mg}. Suppose that {T 00} N &y _occurs. An argument
using extremal length shows that d1st({§ @), gm() + i}, (S, UR,)\ DO ;) —> 00ast — o0.
Applying Proposition 6.3 and Proposition 6.4, we find that Proposition 6.1(i) holds here with
m =mg and C, ; replaced by C),.

Let P, denote the family of pairs of disjoint polygonal crosscuts (p;, p2) in Do such
that, (i) for j = 1, 2, the two end points of p; lie on R and R, respectively; (ii) for j =1, 2,
the line segments of p; are parallel to x or y axes, and all vertices other than the end pomts
have rational coordrnates and (iii) dist(p; U p3, aDo) > 0 and p; U p, disconnect X, and
Y +7 i from 8D0 in S, . For each (p;, p2) € P,,, define Tpl 0, 10 be the biggest time such
that ,3((0 Tp1 0,)) N (p1 U py) =0. Applying Lemma 6.4, Lemma 6.5 and Lemma 6.6 we
find that Proposition 6.1(ii) holds here. We define P, as in Sect. 6. Then Proposition 6.2
holds here with m =mg and C,, ;, replaced by C,,.

Following the argument of Lemma 7.1 and Lemma 7.2, we can show that U (t) equals
the Brownian loop measure of the loops in A, that intersect both L and B((0, ¢)). Here we
use the fact that — ﬁ Imcoth, (- — x) is the Poisson kernel in S,; with the pole at x € R.

Let u ,, denote the distribution of (§(¢)) if £(¢), 0 <t < T, is the maximal solution
of (7.3) with (% — 3) tanh, in place of Ao(p, — v(?), ), and satisfies £(0) = x¢. Suppose
(¢(2)) has distribution gy, ,,. From (5.19) we conclude that 8. (1) = W, (B8(1)),0<t < T,
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is a time-change of strip SLE(k; k — 6) trace in S started from W/ (¢'*0) with marked point
Wy (e~PT0mo). Thus, under this distribution, B is a time-change of a chordal SLE(«k) trace
in A, \ L from zo = € to wy = 7. Let u,, denote the distribution of the maximal so-
lution of (4.19), or equivalently (7.5). Using the argument in Sect. 7.2, Girsanov’s theorem,
and the modified (5.27) and Proposition 6.2 we conclude that for some constant Z,,, > 0,

dML mo 1/3QL =0
— = L 8.1
dﬂmo Zmo exp(cﬂloop[ L p]) ( )

Let s € R. If the distribution of (§(¢)) is the p(,y in Sect. 4.2, then B is an annulus
SLE(k; A(yy) trace in A, started from zo = e with marked point wy = =770, Since
{BNL=0}NE, =0 for m € Z \ {myp}, from (4.22) we see that (8.1) holds with fi,,,
replaced by p( and Z,,, replaced by some other Z,, > 0. This finishes the sketch of the
proof of Theorem 1.2.

8.2 Multiple SLE Crossing an Annulus

Fix k € (0,4] and p > 0. Let n € N and n > 2. Let z3, ..., z, be n distinct points that lie
on T in the counterclockwise direction. Let wy, ..., w, be n distinct points that lie on T,
in the counterclockwise direction. Let 7 = (zy, ..., z,) and W = (wy, ..., w,). Let G denote
the set of (B, ..., B,) such that each §; is a crosscut in A, that connects z; and w;, and the
n curves are mutually disjoint.

Definition 8.1 A random n-tuple (84, ..., B,) with values in G is called a multiple SLE(x)
in A, from Zto w if for any j € {1, ..., n}, conditioned on all other n — 1 curves, Bjisa
chordal SLE(k) trace from z; to w; that grows in D, which is the subregion in A, bounded
by B;_1 and B4 (Bo = B, and B, = B) that has z; and w; as its boundary points.

Theorem 8.1 Let sy,...,s, € R. For j =1,...,n, let v; denote the distribution of the
annulus SLE(k; A, (s;)) trace in A, started from z; with marked point w;. Define a joint
distribution vM of (Bi, ..., B.) by

n

dUM lgdisj
n = - exp| ¢ Moo, (Ezs) ) (82)
l_[j=1 v; VA Z P

s=2

where Eysj is the event that 8, 1 < j < n, are mutually disjoint; L~ is the set of loops in
A, that intersect at least s curves among B, 1 < j <n;and Z > 0 is a constant. Then M
is the distribution of a multiple SLE(k) in A, from 7 to .

Proof Suppose for 1 < j < n B; is a crosscut in A, connecting z; with w;. Fix j €
{1,...,n}. Let £’>S (resp. ll ) denotes the set of loops in A, that intersect at least s curves

among B, k # j, and intersect (resp. do not intersect) B;. Then Lo, = EL? ucl! | Let

>s—1°

Eés = ﬁ’z? U E’ZSI Then Eés depends only on B, k # j. Since z:fzﬁ,’ =}, we have

n—1
Z Mloop(£>s) == Z Nloop >s + Z /’Lloop >¥ /’Lloop( >1 + Z /Lloop >s)
s=2
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Let 6’({isj denote the event that B, k # j, are mutually disjoint. When Eiisj occurs, let D;
be the simply connected subdomain of A, as in Definition 8.1. Let L; = A, \ D;. Then

Eaisi = EC{isj N{B; N L; =@}. Thus, we may rewrite the right-hand side of (8.2) as

lgt{isjl{ﬁ'me'f:ﬂ} — j jil il
# exp| ¢ Z Mloop (‘CZS) + CM100p ([:21) = C*l{,ﬁjﬂLJ-:(b} exp(cﬂloop (‘Czl ))7
s=2
where C, = %1 & exp(c Z;’;zl moop(ﬁis)) is measurable w.r.t. the o-algebra generated
disj =
by B, kK # j. Let va denote the conditional distribution of 8; when (B, ..., B,) ~ M
and all By other than B; are given. The above argument shows that the conditional Radon-
Nikodym derivative between vj-” and v; is Cu1ig;nL =) €XP(CLbioop ([,211 )). Note that [,gl is
the set of all loops in A, that intersect both 8; and L ;. From Theorem 1.2 we conclude that
v}” is the distribution of a time-change of a chordal SLE(«) trace in A, \ L; = D; from z;

tOU)j. O

Choose x;,y; € Rsuch that z; = ¢, w; =€ P, 1 < j<n, zi<z3 <+ <2, <
Z1+ 27, and w; < wp < --- < w, < w; + 27w. For each m € Z, let G,, denote the set of
(B1, ..., By) € G such that for each j, (ei)"(ﬂj) has a component that connects x; with
y; +2mm + pi. Then G is the disjoint union of G,,’s. Let v¥ be given by Theorem 8.1, and
let v = vM[.|G, ], m € Z. Then each v is also the distribution of a multiple SLE(k) in A,
from Z to w, and the same is true for any convex combination of v’s. In fact, the converse
is also true.

Proposition 8.1 If v is the distribution of a multiple SLE(x) in A, from Z to W, then v is

some convex combination of v, m € Z.

Proof Define another probability measure v* by % = %exp(—c Z;’=2 Mioop(L>s)), where
Z € (0,00) is a normalization constant. From the proof of Theorem 8.1, we see that, if
(Bi, ..., Bu) ~ v*, then for any j, conditioning on the other n — 1 curves, B; has the dis-
tribution of an annulus SLE(k; A(;)) trace in A, from z; to w; conditioned to avoid other
curves.

Let A denote the set of (21, ..., £2,) such that each ; is a subdomain of A, bounded
by two crosscuts crossing A, and the €2;’s are mutually disjoint. Let Sg; denote the event
that the curve stays within ;. Let u = v*[:| ]_[';:l Sg; 1. From the property of v*, we see
that, if (B1,..., By) ~ u, then for any j, conditioning on the other n — 1 curves, B; has
the distribution of an annulus SLE(«x; A<Sj)) trace in A, from z; to w; conditioned to stay
inside €2;. Thus, pu = ]—['}:1 vj[-|Sq;]. This implies that v* = C(Qy, ..., 2,) ]_[';:1 v; on

]_[;f:, ng for some positive constant C (21, ..., 2,).
Decompose A into A,,, m € Z, such that A, is the set of all (2,...,2,) € A
such that there exists (Bi,...,8,) € G, with 8; € Q;, 1 < j <n. Fix m € Z and

(Q1,...,2,),(Q],...,2),) € A,. Then Vj(Se; N SQ/j) > 0 for each j. Thus, ]_['J’.:1 So; N
]_[3;1 SQ//_ is a positive event under [ [ v;. So we must have C (4, ..., R,) = C(Q], ..., Q).
This means that the function C(2y, ..., ,) is constant, say C,,, on each A,,. For m € Z,
we may find countably many (€24, ..., 2,) € A,, such that the events ]_[';.:1 SQ,. cover G,,.
Thus, v =C,, ]_[_’;=1 vj on G, for each m € Z, which implies that v[-|G, ] = v,’,‘f for each
m € Z. Since v is supported by G = |, G, the proof is finished. |
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Remarks

L.

Theorem 8.1 extends the main result in [3] which states that, if A, is replaced by a simply
connected domain D, if zy, ..., 2,, Wy, ..., wy are 2n distinct points that lie on d D in the
counterclockwise direction, if v; is the distribution of a chordal SLE(«) trace in D from
zj tow;, and if (B, ..., B,) has joint distribution vM which is defined by (8.2), then for
any 1 < j <n, conditioning on the other n — 1 curves, 8; is a time-change of a chordal
SLE(k) trace from z; to w; that grows in the component of D\ | J, j Be whose boundary
contains z; and w;. In fact, for the (B, ..., B,) in Theorem 8.1, if we condition on one
of the curves, say f3,, then the conditional joint distribution of the rest of the curves
Bi, ..., Ba—1 agrees with the joint distribution given by [3] with D = A, \ ;.

2. Since G,,’s are mutually disjoint, Proposition 8.1 implies that for each m € Z, v¥ does
not depend on the choice of sy, ...,s,. In fact, if we define another multiple SLE(«)
distribution v™’ using s{, ..., s, € R, then there is a constant Z > 0 such that for each

M’ 2wm S . . el eqe
m € 7, ‘;”VM —e¢ o XL o G- Moreover, since each p; satisfies reversibility, we
see that v¥ and v should also satisfy reversibility.

3. In the case n =2, if we let the inner circle shrink to 0, it is expected that the two curves
tend to the two arms of a two-sided radial SLE (k). The two-sided radial SLE(x) (k <4)
generates two simple curves in D, which connect 0 with two different points on T, and in-
tersect only at 0. The union of the two arms can be understood as a chordal SLE(x) trace
connecting the two boundary points, conditioned to pass through 0. Thus, the knowledge
on multiple SLE(«x) with n = 2 can be used to study the microscopic behavior of an SLE
trace near a typical point on the trace.
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