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Abstract

We use the whole-plane Loewner equation to define a family of continuous LERW in finitely connected
domains that are started from interior points. These continuous LERW satisfy conformal invariance,
preserve some continuous local martingales, and are the scaling limits of the corresponding discrete LERW
on the discrete approximation of the domains.
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

This paper is a follow-up of [12], in which we defined a family of random curves called
continuous LERW in finitely connected plane domains, and proved that they are the scaling
limits of the corresponding discrete LERW (loop-erased conditional random walk).

The continuous LERW defined in [12] is a simple curve that grows from a boundary point (or
prime end, cf. [1]), say a, of some domain, say D, and aims at a certain target, which could be
an interior point, a boundary arc or another boundary point of D. It is an SLE;,-type process that
satisfies conformal invariance, which behaves locally like the SLE; process in simply connected
domains introduced by Oded Schramm [10]. The special cases are when D is a subdomain of the
upper half plane H = {z € C : Imz > 0}, a = 0, and the part of D near a lies on R. In this case,
the LERW is the chordal Loewner evolution driven by some semi-martingale, whose martingale
part is /2 times a Brownian motion, and whose differentiable part contains the information of
the domain and the target set. The continuous LERW is first defined in the special cases, and then
extended to general cases via conformal maps.
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The corresponding discrete LERW is defined on the graph D%, which is the grid
approximation of D by 8Z?* for some small § > 0. For the construction, we first start a simple
random walk on D? from an interior vertex that is closest to a, and stop it when it leaves the
domain or hits a vertex that is closest to the target. Then we condition this stopped random walk
on the event that it ends at a vertex that is closest to the target. Finally, we erase the loops on this
conditional random walk in the order they appear, and get the discrete LERW.

The convergence of the discrete LERW curves to the corresponding continuous LERW curves
were proved using the technique introduced by [5]: first use Skorokhod’s embedding theorem to
prove the convergence of the driving function, and then use the tameness of the discrete LERW
curve to prove the convergence of the curves.

This paper will consider the case when the start point a is not a boundary point, but an interior
point of D. It is natural to define a discrete LERW that starts from a vertex of D® which is closest
to a and aims at a given target. The motivation of this paper is to describe the scaling limit of
this lattice path. We will uses whole-plane Loewner equation [3] to define a family of random
curves, which are still called continuous LERW, and prove that they are the scaling limits of the
above discrete LERW.

For the definition of continuous LERW in the domain D started from the interior point
a = 0 and aimed at another interior point, say z., we solve an integral equation as below. For
& € C((—o00,T)). Let Kf and (pf, —o0 < t < T, be the whole-plane Loewner hulls and
maps, respectively, driven by & (cf. Section 4.3 of [3] or Section 2.4 of this paper). Suppose
Kf C D\ {z¢} for —oo <t < T. Then foreacht € (—o0, T), D \ Kf is a finitely connected
domain containing z.. Let

XE(t) = (3,0,/0,)[G(D \ KF,ze: ) o (95) "' o ¢l o RRICE®)), (1.1)

where G(D \ K,S, Ze; +) is Green’s function in D \ Kf with pole at z,, el is the map z elz, and
Rp is the conjugate map z + z. Let x = 2, and B[g)(t), —00 < t < 00, be a driving function
for whole-plane SLE, (cf. Section 6.6 of [3] or Section 3.2 of this paper). Let A = 2, and £(¢),
—oo < t < T, be the solution to the integral equation

t
£(t) = BY (1) +/\f x4 (n)dr, (1.2)
—00

such that (—oo, T) is the maximal interval of the solution. It turns out that the solution exists,
and is a semi-martingale. So there is a random continuous curve B(t), —oo <t < T, such that
B(—o0) = 0 and K,s = B([—o0,t]), —00 < t < T. Such B is called the continuous LERW
curve in D from O to z,. If the target is a boundary arc or another boundary point, we will use
harmonic measure function or Poisson kernel function instead of Green function in (1.1), and
keep other formulas in the definition unchanged.

We then prove that these continuous LERW satisfy conformal invariance, and preserve
some continuous local martingales generated by generalized Poisson kernels. Finally, we use
the technique in [5,12] to show that these continuous LERW are the scaling limits of the
corresponding discrete LERW.

The continuous LERW defined in this paper turns out to be locally absolutely continuous
w.r.t. the whole-plane SLE;. In fact, if U is a simply connected subdomain of D that contains the
initial point 0, and is bounded away from 9 D and the target, then the continuous LERW stopped
at the time 7y when it exits U has a distribution absolutely continuous w.r.t. the whole-plane
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SLE, stopped at ty. Moreover, there is a local martingale process M (¢) such that the above
Radon—Nikodym derivative is M (ty). The formula of M (¢) will be given in Section 5. So this
gives an alternative way to define continuous LERW. First one may use whole-plane SLE, and
the Radon—Nikodym derivative M (ty) to define a partial continuous LERW (stopped at ty/), say
yu, for every U. Using the local martingale property of M (¢), one can check that these partial
processes are consistent w.r.t. each other: yy, stopped at gy, has the same distribution as yy,
stopped at ty,. Then one may construct a complete continuous LERW y such that y stopped at
any ty has the distribution of yy.

We prefer the definition using the driving function rather than Radon—Nikodym derivative.
This is because when we prove the convergence of discrete LERW, the technique in [5] and
the Skorokhod’s embedding theorem can be easily applied here without major modifications.
If one uses the other definition, and tries to prove the convergence, he first has to work
out the convergence of a particular discrete LERW to the whole-plane SLE;, and then show
the convergence of the discrete Radon—Nikodym derivative (between discrete LERW) to the
continuous Radon—Nikodym derivative M (ty7). The first step requires no much less work than
the other approach, while the second step seems very difficult to the author.

The Radon—Nikodym derivative approach is useful in other respects. For example, one may
use the density functions together with the stochastic coupling technique introduced in [13] to
prove the reversibility of continuous LERW without using discrete LERW. One may also use
them to show that the continuous LERW is a loop-erasure of a plane Brownian motion restricted
in the domain [11].

Unlike the SLE processes started from boundary, there are SLE, -type processes started from
0, which are not locally absolutely continuous w.r.t. whole-plane SLE,. process. One example
is the whole-plane Loewner process driven by £(1) = B]g ) (t) + ot, where o is a nonzero real
constant. Although this is not the case for continuous LERW, some care is required when dealing
with the definition of SLE started from interior points.

We expect that the definition of the continuous LERW started from interior points will shed
some light on the definition of some other random curves started from interior points, e.g.,
the reversal of radial SLE curves, and the scaling limits of self-avoiding walks (SAW) that
connect two interior points. In particular, our result implies a description of the reversal of radial
SLE,.

This paper is organized in the following way. In Section 2, we review some basic
notation including the radial Loewner equations and whole-plane Loewner equations. We
also study the Carathéodory topology restricted to the space of interior hulls. In Section 3,
we give the detailed definition of continuous LERW started from interior points, and prove
that such LERW satisfies conformal invariance, and preserves a family of continuous local
martingales generated by the generalized Poisson kernels. In Section 4, we prove that the
solution to (1.2) exists uniquely, and is a semi-martingale. In Section 5, we prove that the
continuous LERW started from an interior point is locally absolutely continuous w.r.t. the
whole-plane SLE; process. In the last section, we introduce a family of discrete LERW
defined on the discrete approximation of the domain, and a sketch of a proof is given to
show that the scaling limit of this discrete LERW is the continuous LERW defined in this
paper.

We will frequently cite notation and theorems from [12]. The readers are suggested have a
copy of [12] at hand. We will often use some basic properties of the SLE processes. The reader
may refer [9,3] for the background of SLE.
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2. Preliminaries
2.1. Some notation

We adopt the notation in Section 2 of [12] about finitely connected domain, conformal closure,
prime end, side arc, Green function, generalized Poisson kernel, harmonic measure function, hull
and Loewner chain, and etc. But now we call the hull and Loewner chain in [12] the boundary
hull and boundary Loewner chain, respectively, to distinguish them from the interior hull and
interior Loewner chain that will be defined in this paper. .

Throughout this paper, we use the following notation. Let C = C U {oo} denote Riemann
sphere. Let H be the upper half plane {z € C : Imz > 0}. Let D be the unitdisc {z € C : |z| < 1}.
Let T be the unit circle {z € C : |z] = 1}. Let Sy, be the strip {z € C : h > Imz > 0} for 4 > 0.
Let Ry, be the line {z € C : Imz = h} for h € R. Then S, is bounded by R and Rj. Let A, be
the annulus {z € C : e™" < |z| < 1} for h > 0. We define an almost-I) domain to be a finitely
connected subdomain of ID which contains O and A, for some i > 0.

Let ¢' be the map z — e'¢. Then ¢' is the covering map from H onto I \ {0}, from S}, onto
Ay, and from R onto T. Let Rr(z) = 7 be the complex conjugate map. Let Rr(z) = 1/z be the
reflection about T. Then el o Rr = R oel. Forw € C, let Ay, denote the map z — w +z; let My,
denote the map z — wz. Then eloA, = ei(w)Oei. Let B(zg; r) betheball {z € C : |[z—z0| < r}.
If o is a Jordan curve in C, we use U (o) to denote the bounded connected component of C \ o,
andlet H(o) := U(o) = U(o)Uo.If I is an interval on R, let C(I) denote the set of real valued
continuous functions on /. For f € C(1), if [a, b] C I, let || fllap = max{| f(x)| : x € [a, b]};
if (—oo,a] C I, let || flla = sup{| f(x)| : x < a}.

2.2. Radial Loewner equation

If H is a boundary hull in D such that 0 ¢ H, then we say that H is a boundary hull in D
w.r.t. 0. For such H, there is a unique map ¥y that maps D \ H conformally onto D such that
¥ (0) = 0 and ¥}, (0) > 0. Then dcap(H) = In(y,(0)) > 0 is called the capacity of H in
D w.r.t. 0. For example, ¥ is a boundary hull in D w.r.t. 0, ¥y = idp, and dcap(¥) = 0. From
Schwarz lemma, |y (z)| > |z| forany z € D\ H. If H C H; are boundary hulls in D w.r.t. O,
define Ho/Hy = Yy, (Hy \ Hy). Then Hy/H; is also a boundary hull in ID w.r.t. 0, and we have
VY, H = VH, © Iﬂ,}f and dcap(H1) + dcap(Hy/H;) = dcap(Hz). Thus, [y, (2)| > [V¥h, (2)]
forany z € D\ Hs.

The following proposition is the radial version of Lemma 2.8 in [4]. The proof is similar. So
we omit the proof.

Proposition 2.1. Let = be an open neighborhood of xo € T in D. Suppose W maps =
conformally into D such that, as 7 — T in =, W(z) — T. Such W extends conformally across

T near xo by Schwarz reflection principle. Then we have
d W(H
im deap(W (H)) — W (x0) |, 2.1)
H—xy dcap(H)

where H — xo means that H is a nonempty hull in D w.r.t. 0, and diam(H U {xo}) — O.

Suppose & € C([0, T)) for some T € (0, +00]. The radial Loewner equation driven by & is
as follows:

i&(1)
(D) = Ui 0) S o)

, = z. 2.2
") Yo(z) =z (2.2
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For0 <t < T, let L, be the set of z € D such that the solution v;(z) blows up before or at time
t. Then L; is a boundary hull in D w.r.t. 0, and ¥, = ¢, foreach ¢ € [0, T'). We call L; and v,
0 <t < T, the radial Loewner hulls and maps, respectively, driven by £. We have the following
proposition.

Proposition 2.2. (a) Suppose L; and Y;, 0 < t < T, are the radial Loewner hulls and maps,
respectively, driven by & € C([0,T)). Then (L;,0 <t < T) is a boundary Loewner chain in
D avoiding 0, and dcap(L;) =t forany 0 <t < T. Moreover,

Y= [\ Lie/Li, 0=<t<T. 2.3)
e€(0,T—1)

(b) Suppose L;, 0 <t < T, is a boundary Loewner chain in D avoiding 0, and dcap(L;) = t for
any 0 <t < T. Then there is &€ € C([0, T)) such that L;, 0 <t < T, are radial Loewner
hulls driven by &.

Proof. This is the main result in [6]. [

The covering radial Loewner equation driven by £ is:

Vi (z) = cota(Py (2) —£(1)),  Yo(z) =z (2.4)

In this paper, we use cot(z) to denote the function cot(z/2). For 0 <t <7, let Zt be the set of
z € H such that the solution 1//v(z) blows up before or at time ¢. We call Lt and w,, 0<t< T,
the covering radial Loewner hulls and maps, respectively, driven by &. Then w, maps H \ L
conformally onto | H, and satisfies w, (z+2km) = Y, (2)+2km forany k € Z. Since Imcoty(z) < 0
forz € H, soIm 1//, (z) decreases in t. Suppose L; and ¥, 0 <t<T,are the radial Loewner hulls
and maps, respectively, driven by &, then forany ¢ € [0, T), L, (e) (L), and w,oe =e 0%

2.3. Interior hulls and interior Loewner chains

Suppose D is a finitely connected domain. If # # F C D is compact and connected, and
D\ F is also connected, then we say that F is an interior hull in D. If F contains only one point,
we say F' is degenerate; otherwise, F' is non-degenerate. If F' is a non-degenerate interior hull in
an n-connected domain D, then D \ F is an (n 4+ 1)-connected domain. If H is another interior
hullin D, and F C H, then H \ F is aboundary hullin D \ F.

Let T € (—oo, +00]. We say the family F(¢), —oo < t < T, is an interior Loewner
chain in D started from zg € D if (i) for each t € (—o00,T), F(¢) is a non-degenerate
interior hull in D; (ii) F (1) ; F(ty) for any t; < tp < T; (iii) for any ty9 € (—o0,T),
(F(to + 1)\ F(t0),0 <t < T — tp) is a boundary Loewner chain in D \ F(fp); and (iv)
MN—oocie7 F(t) = {20}. Forany to < T, if (F(t9 +1) \ F(t)),0 <t < T — 19) is started from
a prime end w(#y) of D \ F(#), then we say that w(#y) is the prime end determined by (F(¢))
at time fy. Suppose u is a continuous (strictly) increasing function on (—oo, T), and satisfies
u(—o0) = —oo, that is, limy_s _oo u(t) = —oo. Let u(T) := lim;—7 u(¢). Then F(u~'(1)),
—o0 < t < u(T), is also an interior Loewner chain in D started from zg. We call it the time-
change of (F(¢)) through u. Suppose y : [-oo, T) — D is a simple curve. For t € (—o00, T),
let F(t) = y([—o0, t]). Then (F(¢)) is an interior Loewner chain started from y (—o0). We call
such F the interior Loewner chain generated by y. Then for each t < T, y(¢) is the prime end
determined by (F(¢)) at time ¢.



1272 D. Zhan / Stochastic Processes and their Applications 120 (2010) 1267-1316

If F is an interior hull in C, and oo ¢ F, then we call F' a bounded interior hull. For example,
if o is a Jordan curve in C, then H(oc) is a bounded interior hull. For any bounded interior hull
F, there is a unique function ¢ that maps C \ F conformally onto C \ D for some r > 0
such that ¢ (oc0) = oo and ¢F(oo) = lim; 00 2/@F(z) = 1. We call rad(F) := r the radius
of F, and cap(F) := In(r) the capacity of F w.r.t. co. Here if F' contains only one point, say
20, then ¢ (z) = z — zo, so rad(F) = 0 and cap(F) = In(0) = —oo. If F' is non-degenerate,
then rad(F) > 0 and cap(F) € R, and we define ¢ = Mrad(F) o ¢r. Then ¢ maps C \ F

conformally onto C \ D, and satisfies ¢ (c0) = oo and ¢(00) > 0. Let yF = R o ¢F o Rr.
Then {F maps C \ RT(F) conformally onto I, and satisfies ¥z (0) = 0 and ¥, (0) > 0.

The following results are well known (e.g., cf. [3]). If F is a bounded interior hull, a, b € C,
then rad(aF + b) = |a|rad(F); rad(B(zp;r)) = r for any z9o € C and r > 0; rad(F) >
diam(F')/4 for any bounded interior hull F, and the equality holds if and only if F' is a line
segment or a single point. By taking logarithm, we get the corresponding results for cap(F).
Suppose F1 C F are two non-degenerate bounded interior hulls. Then cap(F;) < cap(F2),
where the equality holds only if Fy = F>. Let F2/F) := R o ¢F, (F2 \ F1). Then F>/F; is a
boundary hull in D w.r.t. 0. Moreover, we have

VEy/F = R0 @R, 095 o Ry, 2.5)

and dcap(F,/F) = cap(F,) — cap(F1). Since |V r,/F (z)| > |z| for any z € D\ (F2/F),
0 l¢F, ()| > l¢r,(z)| forany z € C\ Fp. If F; C F, C F3 are non-degenerate bounded
interior hulls, then Fp/F; C F3/Fy, and (F3/F1)/(F2/F)) = F3/F>. Here F3/F) and F>/F
are boundary hulls in D w.r.t. 0, and the quotient between F3/F| and F,/F) uses the definition
in the last subsection.

Let H denote the set of all bounded interior hulls, and let H( denote the set of H € H such
that 0 € H. From Proposition 3.30 in [3], there is an absolute constant C7; > 3 such that, for
any H € Ho withrad(H) = 1, and any 7 € C with |z| > 1,

o5 (2) — z| < Cyy.

Suppose H € Hy is non-degenerate. Let Hy = H/rad(H) € Hyp. Then rad(Hp) = 1. So for any
z € C with [z] > rad(H), ¢p,' (z) = rad(H)qﬁ,;Ol (z/ rad(H)), which implies

6 (2) — 2l = I, (z/ rad(H)) — z/ rad(H)| rad(H) < Cy¢ rad(H).

If H € H is non-degenerate, then there is zo € H with |z9| = dist(0, H). Then Hy = H — z9 €
Ho, rad(Hp) = rad(H), and ¢,' = A, o ¢,;(}. Thus, for any |z| > rad(H),

67" () — 2| < Izl + |97, (2) — 2] < dist(0, H) + Cyyrad(H). 2.6)

If H = {z0} is degenerate, (2.6) still holds because ¢I}] = A, and dist(0, H) = |zg|. For any
interior hull H, Since 4)1}] maps {|z| > rad(H)} onto C\ H, so foranyz € C\ H,

|pn (z) — z| < dist(0, H) + Cyrad(H). 2.7

2.4. Whole-plane Loewner equation

Suppose F(t), —oo < t < T, is an interior Loewner chain (in @) avoiding oo, that is,
oo & F(t) forany t < T.If cap(F(t)) =t forany t < T, we say (F(¢)) is parameterized by
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capacity. In the general case, v(¢) := cap(F(¢)) is a continuous increasing function such that
v(—00) = —o0, and the time-change of (F(¢)) through v is parameterized by capacity. The
following proposition is a combination of a theorem in [3] and its inverse statement.

Proposition 2.3. (i) Suppose & € C((—o00, T)). Then there is a unique interior Loewner chain
K;, —00 < t < T, which is started from 0, avoids oo, and is parameterized by capacity,
such that the followings hold. For —oo <t < T, let ¢; = @k,. Then ¢; satisfies

e+ g (2)

0r e (2) = (DI(Z)M1 (2.8)
and for any zo € C\ {0},
lim e’ (z0) = zo0. (2.9
——00

(i1) Suppose K;, —oo < t < T, is an interior Loewner chain started from 0 avoiding oo, and is
parameterized by capacity. Then there is § € C((—oo, T)) such that for ¢; = ¢k,, (2.8) and
(2.9) both hold.

Proof. (i) This is a special case of Proposition 4.21 in [3], where u; = (Sei(g(t)).
(i) Fix € (—o0, T). Since K; € Hy, rad(K,) = €', and ¢g, = M o ¢, so from (2.7),

le'i(z) —z| < Cpe', z€C\ K. (2.10)

Fix zg € C\ {0}. Since {0} = (_,o~;<7 K:. so there is Ty € (—oo, T) such that zo & K; for
t < Tp, which implies that |e’¢;(z0) — zo| < Cxe' from (2.10). Thus, (2.9) holds.

Fix b € (—o0,T). Since (Kp4+:/Kp,0 <t < T — b) is a boundary Loewner chain in D
avoiding 0, and dcap(Kp4:/Kp) = cap(Kp+:) — cap(Kp) = t for 0 <t < T — b, so from
Proposition 2.2, there is &, € C([0, T — b)) such that K4,/Kp, 0 <t < T — b, are the radial
Loewner hulls driven by &, and for each r € [0, T — D),

€0 = () Korire/K)/ Kost/Kp) = [ Kotere/Kppr- 211
e€(0,T—b—t) £€(0,T—b—1)

Fort € (—o00,T), choose b € (—o0,t], and let x (1) = ei(éb(t — b)). From (2.11), the value
of x () does not depend on the choice of b. Since &, € C([0, T — b)) foreachb < T, so x is
a T-valued continuous function. Thus, there is & € C((—o0, T)) such that x () = ei(é (1)) for
—o00 <t < T.Since el (&, (1)) = e (E(b+1)) forO <t < T —b,s0 Kp41/Kp,0 <t < T —b, are
also the radial Loewner hulls driven by £(b + ). Let %b ,0 <t < T — b, be the radial Loewner
maps driven by &(b + -). Then for t € [0, T — b), ¥? = Yk, ., /k, = RT 0 @bt 0 (pb_l o R, and

elf b+ 1 yb(z)
el (+1) _ owtb(z)

ql (@) = vl ()

Since Rroy? = gpir09;, ' oRy, and ¢, ' o Ry maps D\ (Kp-¢/Kp) onto C\ Kp-, s0 (2.8) holds
fort € [b, T). Since b € (—o0, T) could be arbitrary, so (2.8) holds for all r € (—o0, T). O

In the above proposition, K; and ¢;, —00 <t< T, are _called the whole-plane Loewner hulls
and maps, respectively, driven by &. Since e'(&,(¢)) = e'(§(b 4+ 1)) for O <t < T — b, and
b € (—oo, T) is arbitrary, so from (2.11) we get a formula similar to (2.3), which is

(el = m Kiie/K,, —oo<t<T,. (2.12)
e€(0,T—1)
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Fort € (—oo, T),let L; = R7(K;) and ¥; = Ryog; o RT. Then ¢y = Yk, C\ L; is a simply
connected domain that contains 0, ¥, maps C \ L, conformally onto D, fixes 0, and satisfies

e + ¥ (2)

0 Y1(2) = Y (2) ED () (2.13)
We call L; and , the inverted whole-plane Loewner hulls and maps, respectively, driven by §.
The covering whole-plane Loewner equation is defined as follows. Let K, = (e) LK),

—o0 <t < T.Suppose ¢, —00 < t < T, satisfy that for each ¢, ¢; maps (C\KI (t) conformally
onto —H, €' o ¢y = ¢; o €', and the following differential equation holds:

0:@1(z) = cotz (@ (z) — £(1)), —oo <t <T; (2.14)
t_ljr_rloo(g?; (z) —it)=z, zeC. (2.15)

Then we call K; and (Z, the covering whole-plane Loewner hulls and maps, respectively, driven
by &. Such family of ¢; exists and is unique. In fact, for each 1 € ( o0, T'), we can find
some @; that maps C \ K1 (t) conformally onto —H such that ! o g;(¢,-) = g/(¢,-) o €.
Such @; is not unique. Since ¢; is differentiable in ¢, so one may choose @; such that it is also
differentiable in 7. From (2.8) we conclude that (2.14) must hold. From (2.9) we conclude that
limy— — oo (@7 (z) — it) = z + i2n7 for some n € Z, and such n is the same for every z. Now we
replace @; by ¢; — i2nm. Then (2.14) and (2.15) still hold. So we have the existence of g;(z, -).
The uniqueness follows from the same argument.

For —oo <t < T, let L = RR(K,) and ¥, = Rg o @, o Rg. Then we have L, = ()~ !(L,),
elo w, Yy o el l/ft maps C \ L, conformally onto H, and satisfies

3 Y (2) = cota (Y (z) — £(r)), —oo <t <T. (2.16)

We call L, and % the inverted covering whole-plane Loewner hulls and maps, respectively,

driven by §. It is easily seen that for —oo < 7 < T, the whole-plane Loewner objects driven by

& at time ¢, such as Ky, ¢y, Ly, Yy, K,, @1, L,, l/fn are all determined by e (E(s)) —o00 < § <t.
From (2.14) and (2.15), forany z € C \ L,, we have

~ t
Rr(¥:(2) — (z —it) = ¢;(2) — T +1i1) = / (cotz (@5 (2) — &(s)) — i)ds

_ / i(ei@@wei(as)) _1> s — f 2de'EE) @17
—oo N\ (@ (@) — el (E ) oo ¢5(€(@) —€l(E(s) '

Suppose that (1 4+ Cy)e’|ei?| < 1/2. Since |e!(Z)| = 1/|el(z)], so for any s € (—o0, 1],

T 20el@)]

Note that e'(2) € C\K; ¢ C\ Ky, —00 < 5 < t. From (2.10), for s € (—00, 1], we have
lps(€'(z)) — e e'(z)| < Cy, which together with (2.18) implies that

'@ - (14 Cx) =

(2.18)

-

lps (@) — e E@N] = s @@ — 1= [e '@ — Cp — 1 = s——.
2|el(z)|

From (2.17) and the above formula, we have

|%(Z) —(z—1i)| <41 + CH)etleiZ|, if (14 CH)etleiZ| <1/2. (2.19)
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2.5. Carathéodory topology
The following definition is about the convergence of domains in Carathéodory topology.

Definition 2.1. Suppose D, is a sequence of domains and D is a domain. We say that (Dj,)

C . . .
converges to D, denoted by D, - D, if for every z € D, dist*(z, 0¥ D,)) — dist*(z, ¥ D).

This is equivalent to the followings:
(i) every compact subset of D is contained in all but finitely many D,,’s; and
(i1) for every point zg € "D, dist#(z(), 9*D,) —> 0asn — oo.

A sequence of domains may converge to two different domains. For example, let D, =

C\ ((—o0, n]). Then D, Cara H, and D, % —H as well. But two different limit domains

of the same domain sequence must be disjoint from each other, because if they have nonempty
intersection, then one contains some boundary point of the other, which implies a contradiction.

Suppose D, % D, and for each n, f,, isa @ valued function on D,, and f is a @ valued

function on D. We say that f,, converges to f locally uniformly in D, or f, Loy f in D, if for
each compact subset F of D, f; converges to f in the spherical metric uniformly on F'. If every
fn 1s analytic (resp. harmonic), then f is also analytic (resp. harmonic).

Lemma 2.1. Suppose D, Cara D, f, maps D, conformally onto some domain E, for each n,
Lu. . . .
and f; = f in D. Then either f is constant on D, or f maps D conformally onto some

. . Ce _1 lLu. 1
domain E. And in the latter case, E, =2 E and I (Y fYinE.

This lemma is similar to Theorem 1.8, the Carathéodory kernel theorem, in [7], and the proof
is also similar.

Recall that H is the set of all bounded interior hulls in C. For every sequence (H,) in H, there
Cara Cara

is at most one H € H such that C \ H, —> C\ H because if we also have C\ H, — C\ H’
for some H' € H, then from (C\ H') N (C\ H) # @ we conclude that C\ H' = C\ H, and

Cara

so H' = H. We write H, N H for C\ H, — C\ H. We will define a metric d7; on H such
that H, — H w.rt. dp iff H, —% H.

Recall that for each H € H, ¢y maps C \ H conformally onto C \ {|z| < rad(H)} such that
¢ (00) = 00 and ¢}, (00) = 1. So ¢, is defined on {|z| > rad(H)}. For Hi, Hy € H, let

m=1

dyy(Hy, Hy) = |rad(Hy) — rad(Hy)| + ) 27" sup{|¢H3 @) —¢p @ : Iz

> (rad(H;) Vv rad(H»)) + l} (2.20)
m

It is clear that d}i(Hl, Hy) = d7v_[(H2, Hy) > 0, and d%(Hl, Hy) = 0iff H = H,. From (2.6)
we have d7vi(H1 , Hy) < oco. But a’7v_[ may not satisfy the triangle inequality.
We now define a metric dyy from d7v_[ such that for Hy, H, € ‘H,

dy(Hy, Hy)

n

= inf d,)v_[(Fk,],Fk):FQ:H],Fn:Hz, FreH,0<k<n,neNy. (2.21)
k=1
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Itis clear that 0 < dy(Hy, H2) = d(Ha, Hy) < d;fl(Hl, Hj) < oo and dy satisfies the triangle
inequality. We need to check that dy/(Hy, Hy) = 0 if and only if H] = H. The “if” part is clear
because dy (Hi, Hy) < d%(Hl , H»). For the “only if”” part, we prove by contradiction. Suppose
Hy # H> and dy(Hy, Hy) = 0. If there are Fy, € H,0 < k < n, such that Fy = Hj and
F, = H;, then from (2.20) we have

n n
> dy,(Feo1, Fi) = ) |rad(Fy_1) — rad(Fp)| > | rad(H)) — rad(Hp)|.
k=1 k=1
So we have |rad(H;) — rad(H>)| < dy(Hy, Hy) = 0, which implies that rad(H;) = rad(H>).
Let r = rad(Hy). Since H; # H», so q’);,ll #* ¢;,21 on {|z| > r}. Thus, there is m € N such that

sup{|¢yl(z)—¢ﬂz<z)| 12 zm%} = 2.22)
Since dy(Hi, Hy) = 0, so there are Fy, € ‘H,0 < k < n, such that Fp = H; and F,, = H>, and

n g —2m

k;dH(FH, Fo) < = (2.23)

For any 1 < j < n, since

—2m 1
< —

J J
\
> lrad(Feon) = rad(F)l < 3 dyy(Fer, Fo) < S— < o,

k=1 k=1

sorad(F;) < rad(Fp) + ﬁ =r+ ﬁ Thus, from (2.20) and (2.22)

n
Zd;-/{(Fk—l, Fr)

k=1

. 1
>3 0 2mgn {|¢Fk1—l (2) — d’;k] (@) : |zl = (rad(Fy—1) V rad(Fy)) + %}
k=

! 1
> 272" "sup {|¢Fk11<1> —¢p @1zl =+ ;}
k=1

1

2—2m

> 272" sup {Iqb;,l(z) ~ b @Izl =7+ i} -
- 1 H, - m)~ m
which contradicts (2.23). Thus, d; is a metric on H.

Suppose H, — H w.r.t. dy. Then we have rad(H,) — rad(H) and q&;nl converges to ¢,;1

Cara

uniformly on {|z| > rad(H) + ¢} for any ¢ > 0. Thus, {|z| > rad(H,)} — {|z| > rad(H)}

and ¢1_1,3 L c/);ll in {|z| > rad(H)}. From Lemma 2.1, we have C \ H, = ¢;1’} ({lz] >

rad(H,)}) ﬂ‘; ¢1_11({|z| > rad(H)}) = C\ H, i.e., H, ﬂ> H. On the other hand, suppose

Cara

C\ H, — C\ H. We will show that H, — H w.r.t. d3y. For this purpose, we will derive a
stronger result.

Recall that H) is the set of hulls in 7 that contains 0. Since d3;(H,, Hy) — 0 implies H, i)
Hy, so Hy is a closed subset of (H, dy). Forany F € H,let H(F) = {H € H : H C F},
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Ho(F) = H(F) N"Ho, and Hy(F) = {H € Ho(F) : cap(F) > x}, x € R. Then Ho(F) and
Hé (F) are closed subsets of H(F) because rad is continuous w.r.t. d7y. The hulls in Hg (F) are
non-degenerate because they have finite capacities. If o is a Jordan curve in C, we write H(o),
Ho(o), and H (o) for H(H (o)), Ho(H (o)), and Hy(H (o)), respectively.

Lemma 2.2. H(F), Ho(F) and H(F) are all compact subsets of (H, dy).

Proof. Let rr = max{|z| : z € F}. Then for any H € H(F), rad(H) < rad(F) < rf.
Suppose (H,) is a sequence in H(F). By passing to a subsequence we may assume that
rad(H,) — ro € [0,rFr]. For eachn € N, let g,(z) = d:H (z) — z for C \ B(0; rad(H,)).
Then g, is analytic. From (2.6), |g,| is bounded by Cr := (1 + Cy)rr. Since rad(H,) — ro, SO

Cara ~

C \ B(0; rad(H,)) — C \ B(O rp). Since (g,) is a normal family, by passing to a subsequence,

we may assume that (g,) —> goin (C\B(O; ro). Then |go| is also bounded by Cr on (C\B(O; r0).
Let fo(z) = go(z) +z for |z] > ro. Then fo(z) — z is bounded, and ¢;Inl @) =8.2)+7z— fo@
uniformly on {|z| > r} forany r > ro. From Lemma 2.1, fj is either constant or a conformal map
on C\B(0; ro) Since f(z)—z is bounded, so fj cannot be constant. Thus, fj is a conformal map,

and (C\H —> fo((C\B(O ro)) Since fo(z) —z1is bounded so 0o = fp(oo) € fo((C\B(O r0))
and fo(oo) = hmn_,oo(qu ) (00) = 1. Since fo((C \ B(0; r9)) is simply connected, so its

complement in C is some Hy € H. Thus, fo = ¢I}; and rad(Hy) = ry.
We now have proved that, by passing to a subsequence, we have rad(H,) — rad(Hy) and

(l),;nl 1—u> ¢I_1; inC \ B(0; ro). Moreover, for any |z| > rad(H,) V rad(Hp),

65, () — ¢y (D] < g (@) — 2| + ppg0 () — 2| < 2CF.

Given ¢ > 0, there is M € N such that Z’M(ZCF) < ¢/3. Thereis N > M such that, forn > N,
| rad(H,)—rad(Ho)| < (¢/3)A(1/N), and |¢ ;! (2)—¢ ) (2)] < &/3 forany |z| > rad(Ho)+1/N.
Thus,

dy((Hy, Ho) < dy;(Hy, Ho) = | rad(H,) — rad(Ho)|

+ Y 27" suplley (2) — bl (@) ¢ Izl = (rad(Hy) v rad(Ho)) + 1/m)

m=1

<§+ ZZ_ +2CF Z 27" <§+3+§=
m=N+1

So we have d3;(H,,, Hy) — 0. Thus, H(F) is compact. The rest part of the lemma follows from
the facts that Hp and {H € H : cap(H) > x} are closed. [

Suppose H, ﬂ) H. Choose ry € (0,00) such that H C {|z| < ro}. Then {|z| = rp} is a
compact subset of C \ H. Let § = dist(H, {|z| = r1}) > 0. Choose z90 € dH = 9(C\ H).

Cara

Since C\ H, — C\ H, so there is N € N such thatif n > N, then {|z] = ro} C C\ H, and
dist(zg, d(C\ Hy)) < §, which implies that H, N {|z| = ro} = ¥ and H, N {|z| < ro} # @. Since
H, is connected, so H, C {|z| < ro}if n > N. Thus, {H, : n > N} C H{|z] < ro}). From
Lemma 2.2, {H, : n € N} is a pre-compact set. Assume that H, 4 H w.r.t. dyy. Then there is
& > 0 and a subsequence (H,,) of (H,) such that dy/(H,,, H) > ¢ for any k € N. By passing

to a subsequence, we may assume that H,, — H' w.r.t. dyy. Then H # H and H,, ow
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Since H, 1) H, so the subsequence H,, 1) H as well. Then we must have H = H,
which is a contradiction. So H, — H w.r.t. d3;. So the topology on H generated by dy agrees
with Carathéodory topology. From (2.20) and (2.21) we see that if H, — H w.r.t. dy, then
rad(H,) — rad(H) and ¢;1: 1—u> gbl}l in {|z| > rad(H)}. From Lemma 2.1 we have ¢y, 1—u>

¢n in C\ H. Recall that for every non-degenerate interior hull H, ¢ = rad(H) !¢y maps
C\ H conformally onto {|z] > 1} and ¥y = Rpo@g o R maps C\ Ry T (H) conformally onto D.

Lemma 2.3. Let o be a Jordan curve, F be a compact subset of C\ H (), and b € R. If (Hy);2 |

is a sequence in HP (@), then there is H € HY(«) and a subsequence (Hy,) of (H,) such that
$H, —> $H uniformly on F, and ank — Yy uniformly on Rt (F).

Proof. From Lemma 2.2, there is H € H’(¢) and a subsequence (H,,) of (H,) such that
Hy, 1) H.Thenrad(H,, ) — rad(H) and qﬁan 1—u> ¢y inC\ H.Since H C H(x) and F isa
compact subset of C\ H (), so F is also a compact subset of C\ H. Thus, ¢H,, — ¢n uniformly
on F. Since rad(H,,) — rad(H) > e’ so $H,, — $H uniformly on F, and Ipan — Yy
uniformly on R (F). O

3. Continuous LERW
3.1. Continuous boundary LERW

Let 2 be an almost-D domain, and p € (2. Let 0 = e)~1(2) and p = (&))" '(p). For
& € C([0, 7)), let 1/f,S (resp. 1;;) and Lf (resp. Zf), 0 <t < T, denote the radial (resp.
covering radial) Loewner maps and hulls, respectively, driven by &. Suppose L,E c 2\ {p},
that is, Zf c \ p. Then 2\ L,g is a finitely connected subdomain of (2, and contains p. Let
& =i @\L), 0F = @) = U@\ LD, pi = v (p), and ji = ¥ (). Then
th is also an almost-ID domain, pf € Qf ,and ﬁf C f),s. For a finitely connected domain D and
20 € D, let G(D, zp; -) denote the Green function in D with the pole at z. Let

JE=GWO\LE piyo ™ =GWf, pi, 3.1)

and };g = J,E oe'. Then JNf is harmonic on fo \ f)’f, and vanishes on R, so can be extended
harmonically across R by Schwarz reflection principle. Let X5(r) = (0x0y/ By)zé (£(?)). The
following theorem is similar to Theorem 3.1 in [12]. The difference is that here we use radial
Loewner equation. We will prove the theorem in Section 4.1.

Theorem 3.1. (i) Forany f € C([0, 00)) and A € R, the equation

t
£(1) = f (1) +xf X5 (s)ds (3.2)
0

has a solution £(t) on [0, a] for some a > 0.
(i) If for j = 1,2, &; solves (3.2) for 0 <t < Tj, and T; > O, then there is S > 0 such that

§1() =&@) for0 <1 <S.

Remark. The statement of the above theorem is enough for the use of this paper. In fact, the
followings are true. Eq. (3.2) has a unique maximal solution £7(#)(¢), 0 < t < Ty, for some
Ty > 0. Here we call a solution maximal if it cannot be extended. Moreover, for any a > 0,
{f € C(0,00)) : Ty > a}is open w.r.t. || - [lo,q, and f + &y is (|| - llo,a» |l - llo,«) continuous
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on {Ty > a}. Let A = 2 and f(1) = V2B(t), where B(r) is a Brownian motion. Let £(7),
0 <t < T, be the maximal solution to (3.2). For0 <t < T, let

t
u(t) = / 3, JE (£(5))2ds.
0

One can prove that (Li—' o 0 < t < u(T)) has the same distribution as the continuous
LERW({2;1 — p) defined in [12]. The proof is similar to that of Theorem 3.2 in [12]. So
the radial Loewner equation plays an equivalent role as chordal Loewner equation in defining a

continuous boundary LERW.
3.2. Continuous interior LERW

Let D be a finitely connected domain that contains 0. Fix z, € D \ {0}. Let {2 = Rr(D),
p = Rrp(ze), 2 = ()71(2), and § = (e))~1(p). Let & € C((—o0, T)). We use K°
(resp. Lf, Z;":) and (p;": (resp. wf, 1},‘5 ), 0 <t < T, to denote the whole-plane (resp. inverted
whole-plane, inverted covering whole-plane) Loewner hulls and maps, respectively, driven by
& € C((—o0, T)). Recall that if £ € C([0, T")), we use wf, 1;,5, Lf and Zf to denote the radial
Loewner objects driven by £. But this will not cause ambiguity.

If for some t < T, K5 C D\ {z.}, thatis, L5 ¢ 2\ {p}or L} C 2\ p, then let 2f =
UE@RN LD, pf =¥ (), B = @) 7N ) = 9 @\ L), and B = &) (p)) = ¥ (B).
Then Qf is an almost-ID domain that contains pf.

Let
I =GON\L] pi) o W) =G, b, (33)
and .7,5 = J,E o el. Then :i;é is a positive harmonic function in f)f \ ﬁf, and vanishes

on R. From Schwarz reflection principle, JNIE extends harmonically across R. Let Xé(r) =
(059, /0y) JE (£(1)). Recall that ¥F = Ry o ¢° o Rr. It is easy to check that the X% (¢) here
agrees with that in (1.1).

For a € R, let 7, denote the topology on C((—o0, a]) generated by || - |54, b < a. For
f1, fo € C((—o0, a]), we write f] 2 frif el(fi(t)) = e'(fo(1)) for any t < a. Let ’TaT be the
set of S € 7, such that na’l (1, (S)) = S, where 7, is the projection map from C ((—o0, a]) onto
C((—o0,al)/ <. Then ’Z;T is also a topology on C(R). Let ]—'g be the o-algebra generated by
7;T. Then ]—'3 agrees with the o-algebra generated by the functions f +— e'(f(¢)), t € (—o0, a].
The proposition and theorem below will be proved in Section 4.2.

Proposition 3.1. If Lf, C 2\ {p}, then the improper integral ff o X §(1)dt converges.

Theorem 3.2. Fix A € R. For any f € C(R), the equation

t

E(1) = f(t)+k/ X& (s)ds (3.4)

—00

has a unique maximal solution &y € C((—00, Ty)) for some Ty € (—00, +00]. Moreover,

(i) foranya e R, {f ¢ CR) : Ty > a} € 7;11‘, and f +— &Er is (’Z;T,’Z;T)-continuous on
{(feCMR) : T > a};

(ii) there does not exist a Jordan curve a such that Ur<Tf Kff C H(x) C D\ {z.}.
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Let B4 (¢) and B_(t), 0 <t < oo, be two independent Brownian motions. Let x be a random
variable that is uniformly distributed on [0, 277), and independent of Bi(¢). For x > 0 and
t € R, let Béé( )(t) =X+ /K Bsign(r) (|2]). Then the whole-plane Loewner hulls driven by B[g )(t)
are called the whole-plane SLE, hulls. We will be particularly interested in the case that x = 2.

Let (F;) be the usual augmentation of (}_to) w.r.t. the distribution of Blg ). So (Fy) is right-
continuous. Let oo = V,ecr F;. Suppose S is a finite (F;),cr-stopping time. Then for any
t > 0,8+t is an (F;),er-stopping time. So we have a filtration (Fs4;);>0. For t > 0, let
Bs(1) = (B (S + 1) — B (8))/+/2. It is well known that (Bs(1), 1 > 0) is an (Fs1)r=0-
Brownian motion.

Suppose £ € C((—oo, T)) is the maximal solution to (3.4) with f = B]g ) and % = 2. Then

we call (K,S ,0 <t < T) a continuous interior LERW process in D from 0 to z,, and let it
be denoted by LERW(D; 0 — z.). From Theorem 3.2(i), T is an (F;);cR-stopping time, and
(e'(E(1))) is (Fy)-adapted. So for any fixeda € R, (§(a+1t)—£&(a),0 <t < T —a)is (Fut1)i>0-
adapted. Since K,s, Lf, Z,g, (pf, 1//,5, I/fo are determined by e 0 £(s), —00 < s < ¢, so they are all
(Ft):cr-adapted. Note that in general (£(¢)) is not (F;);cr-adapted.

Let R = dist(0; 3D U{z.}) > 0.Fix r € (0, R). From Theorem 3.2(ii), there is zy € (—o0, T)
such that K; ¢ B(0;r). Then T > 1o = cap(K;) > In(r/4). So T > In(R/4). Fix
a € (—oo,In(R/4)). Thena < T.LetT, =T —aand &,(t) =&(a+1t) —&(a) for0 <t < T,.
Then T, is an (F,4)>0-stopping time, (§,(¢)) and (X5(a + 1)) are (Fa+t)r=0-adapted. Recall
that B,(t) = (BH%) (a+1) — B]g) (a))/ﬁ is an (F44+)r>0-Brownian motion, so &, solves the
(Fu+1)>0-adapted SDE:

A&, (1) = V2dB,(t) + 2X5(a +1)dt, 0<t < T,. (3.5)

From Girsanov’s theorem [8] and the existence of the radial SLE; trace, one can easily show
that the interior Loewner chain K f —o0 < t < T, is as. generated by a simple curve S(r),
—00 <t < T, with B(—o0) = 0. We call such g an LERW(D; 0 — z.) curve.

Suppose z0 # z. € D. If z0 € C, we define LERW(D; z0 — z.) to be the image of
LERW(AZ'(D); 0 - AZ'(z.)) under the map A;,. If zo = 0o, we define LERW(D; 20 — z.)
to be the image of LERW (W (D); 0 — W (z.)) under the map W(z) = 1/z.

Remark. A continuous LERW(@ : 0 — 00) has the same distribution as a whole-plane SLE,.
This can be seen from the fact that X% () = 0.

3.3. Conformal invariance

Theorem 3.3. Let D be a finitely connected domain, and zg,z. € D with zo0 # Zze. Let
(K;,—00 < t < T) be an LERW(D; z9 — z.) process. Suppose V maps D conformally
onto another finitely connected domain D*. Then after a time-change, (V(K;), —o0 <t < T)
has the same distribution as (K", —o0 < t < T™*), which is an LERW (D*; z(’g — z}) process,
where 7 = V(z0) and z; = V (2e).

Proof. WLOG, assume zg = zS = 0. Let ¢« = 2. From the definition, K; = K,E for
—oo <t < T,where &£(t), —oo < t < T, is the maximal solution to the equation

s =B 0+ (3- g)/

t
Xds. (3.6)
o0
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Since k < 4, so from the property of SLE, (cf. [9]), a.s. V’l(oo) ¢ K, forany r < T. Since
V() =0,s0 (V(K;), —00 < t < T) is a.s. an interior Loewner chain started from 0 avoiding
oo. Let u(t) = cap(V(K;)) for —oo < t < T, and T* = u(T). Let v(t) = u~l(r) and
K} = V(Kyy)) for —oo < t < T*. So (K/) is a time-change of (V(K;)). We will prove
that (K, —oo < t < T*) has the same distribution as an LERW(D*; 0 — z}). Since (K/)
is parameterized by capacity, so from Proposition 2.3, there is £* € C((—oo, T*)) such that

K =K ,E for —oo < t < T*. For simplicity, we omit the superscripts &, and replace the
superscripts £* by * for the whole-plane Loewner objects driven by & or £*, respectively, in the
rest of this proof.

Recall 2 = Rp(D), 2 = (€)"(). p = R’H‘(Ze) P =@ P, &% =92\ Ly), and
Q = (¢")~1(2,). We can define 2%, !2* p*, p*, 2, and .Q* similarly for D* and the driving
function £*. Let W = Rt o V o Ry. Then W maps {2 conformally onto 2%, and W(p) = p*.
There is W that maps Q2 conformally onto 2* such thatel o W = W o el. Let

We=yrpoWoy ', Wi=yi,oWoy ', —oco<i<T. (3.7)

Then ¢! o W, = W, oéel, and W, (resp. ﬁ/t) maps (2 (resp. FZt) conformally onto Q;(t) (resp.
b:(z))' Since W;(z) — T as 2 3 z — T, and W,(z) — Ras fz, > z — R, so from Schwarz
reflection principle W; (resp. W,) extends conformally across T (resp R). Since W:(Kiye/Kr) =
u(l+8)/Ku(t —o0 <t <t+e < T.Sofrom (2.12), W,(e'((t))) = e (é‘ (u(1))). Since
dcap(K;4+s/K;) = ¢ and dcap(Ku(He)/Ku([)) u(t +¢e) — u(t), so from (2.1) we have,
W (1) = W/ EONIP = W/E@)?, —oco<t<T. (3.8)
Now el o W, (£(1)) = W, o el(£(r)) = el(E*(u(t))), so W,(E(v(z))) is also the driving function of
(K/). So we may choose £* such that,
E*u(r) = W, (£(t)), —oo <t <T. (3.9

Differentiate the equality W, o Izt () = {Z:(t) o VT/(z) w.rt. t fort € (—oo, T) and z € 17, \ Zt.
From (2.16), (3.8) and (3.9), we have

Wi (Y1 (2) + W, (¥ (2)) cota (Y (2) — E(1)) = /(1) cota (Y, 0 W(2) — E*(u(®)))
= W/(6(1)* cota(W; 0 Y11 (2) — Wy (6(1)).
Since J, maps Q2 \ Zt onto .FZI, so for any w € f)t,
9 Wi (w) = W/ (E(0))* cota(Wy (w) — Wi (1)) — W} (w) cota (w — £(1)).
Letting w — £(¢) in fZ,, we get
AW E@)) = —3W/ EW))). (3.10)
Since W maps 2\ Ly conformally onto 2%\ L}, and W(p) = p*,s0 G(2\ L, p;-) =

G2\ Lu(t), ;) o W. Thus, J; = J* Jury © W;, and so J; = J;(t) o W;. Since X(¢) =

(B23y/0) T (E (1)), X* (1)) = (.9, /0y) T, iy & (1)), so from (3.9),

X (1) = W)/ W/ (E®) + W/ (E@) X (), —oo <t <T. (3.11)

We now want to apply Itd’s formula. The following non-rigorous argument illustrate the idea
of the proof. From (3.6), £(¢), —oo < t < T, satisfies the SDE



1282 D. Zhan / Stochastic Processes and their Applications 120 (2010) 1267-1316

ds () = B (1) + (3- 5 ) X (0ar. (3.12)
One may think of By (1) as \/KB(t). From (3.9), (3.10), and Ito’s formula, we have

dE*(u(r)) = W/ (E(0)dE(r) + 3 Wi (£(0))dr + %Vv;’(s(r))dr

W/ (E)dBE (1) + (3 - g) (W] (&)X (t)dt — W] (£(2))) dt. (3.13)
From (3.11) we then have

de* () = W/ 0)BE 1)+ (3 = 3) W/ €)X @)ar.
Finally, we use (3.8) to conclude that there is another copy of B]IKQ (t) such that

dg* (1) = dBY (1) + (3 - g) X*()dt, —oo <1 < T*.

So £*(t) is a driving function for continuous LERW in D* from O to z}. The argument is not
rigorous because Bﬁ{ ) (¢) is not a Brownian motion in the usual sense, and It6’s formula does not
directly apply to time-intervals of the form (—oo, T'). We have a way to solve these problems,
which is to truncate the time interval.

We will use the filtration F;, + € R, in Section 3.2. Suppose that a is a finite (F;)-
stopping time such that @ < T always holds. Let 7/ = F,44, 0 < t < oo. Then we
have a new filtration (F});>¢0. Let T, = T — a > 0. Then 7, is an (F})-stopping time. Let
Ba(t) = (BY (a+1) = BY (@))//k,0 < t < 00. Then B, (1) is an (F¢)-Brownian motion. Let
£, (t) =&(a+1)—&(a) and X,(¢t) = X (a + ). Then (&,) and (X,) are both (F})-adapted, and
£,(1), 0 <t < T, satisfies the (F{')-adapted SDE:

d&, (1) = /xdB, (1) + (3 - %) X, (1)dt. (3.14)

Letu,(t) =u(a+1t) —u(a),0 <t < T,. Then u, is continuous and increasing on [0, 7;), and
ua(0) =0.Let & (1) =&*(b+1) — &*(b) for b € (—oo, T*) and ¢ € [0, T* — b). Let

Wa,t = Ag_*l(u(a)) o Wa+[ o Ag(a)-
Then (Wcl,f) is also (F}')-adapted. From (3.9), (3.8) and (3.10) we have

£l a (1) = Wi (Ea (1)), (3.15)
ul, (1) = W), (£4(1))%, (3.16)
3 Wt (Ea(1)) = —3W/ ,(84(1)). (3.17)

Now we apply Itd’s formula to the (F;')-adapted SDE. From (3.14), (3.15) and (3.17), we have
&) Wa) = W, Ea)ViedBy (1) + (3= 5 ) (Wh ,Ea(0) Xa(0)dr = W], (Ea(0) dr.
From (3.11) we have
&) Wa(0) = W, Ea()VdBo (1) + W, 6 (1)? (3= 5) Xy Wa®)dr,  (.18)

where X} (1) = X*(b +1t) forb € (—oo,T*) and t € [0, T* — b). Now we apply some time-
change. Recall that u, is continuously increasing, and maps [0, 7;) onto [0, T* — u(a)). So its
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inverse map, say v, is defined on [0, T* — u(a)). We extend v, to be defined on [0, co) such
that if # > T* — u(a) then v,(¢t) = T,. Since (u,) is (F})-adapted, so for every ¢ € [0, 00),
va (1) is an (FY)-stopping time. Let F;"" = .7-"3 " 0 <t < oo. Then we have a new filtration
(F")0<r<00. From (3.16) and (3.18) we see that there is a stopped (F;"")-Brownian motion
Bay(1),0 <t < T* —u(a), such that £ (1) satisfies the (F"")-adapted SDE:

K
d& ) (1) = VKdBqu(0) + (3 - 5) Xi@@Odt, 0=t <T*—ua. (3.19)
Using Proposition 3.1, we may define
K t
B (1) = £*(1) — (3 _ —)/ X*(s)ds, —oo <1 <T*. (3.20)
2/ )

From (3.19) we have
ViBay(t) = B*(u(a) +t) — B*(u(a)), 0<t<T*—u(a). (3.21)

From (3.9) and (3.11) we know that (e (&* (u(t)))) and (X*(u(t))) are both (F;)-adapted. So
(el (B*(u(t)))) is also (F;)- adapted Especially, e'(B*(t)), —co < t < u(a), are J,-measurable.
Since 7, = Fj = ]—"g , so from (3.21), B, ,(t) = (B*(u(a) + t) — B*(u(a)))/+/x,
0 <t < T*—u(a),is astopped Brownian motion independent of ei(B*(t)), —o0 <t < ula).

Recall that in the above argument, we need that a is a finite (F;)-stopping time such that
T > a always holds. Let R = dist(0, C \ (D* \ {z V(00)})). From Theorem 3.2(ii), for any
r € (0,R), thereis t, < T such that K; ¢ V~ L(B(0; r)), so K*(l) = V(K;) ¢ B(;r).
Thus, T* > u(t,) = cap(Ku(t )) > In(r/4). So T* > In(R/4). Fix any deterministic number
b € (—oo,In(R/4)). Then T* > b always holds. Leta = u~1(b). Then a is a finite stopping time
such that T > a always holds, and u#(a) = b is a deterministic number. From the last paragraph,
we then conclude that (B*(b + t) — B*(b))//k, 0 < t < T* — b, is a stopped Brownian
motion independent of ei(B*(t)), —00 < t < b. Since this holds for any deterministic number
b € (—o0,In(R/4)), so we may extend B*(¢) to be defined on R such that (e (B*(t))) has the
same distribution as (ei(Bﬁ{ ) (7))). This means that there is an integer valued random variable n
such that (B*(¢) — 2nm) has the same distribution as (B]g)(t)). Since £*(¢) and £*(¢) — 2nw
generate the same whole-plane Loewner objects, so by replacing £*(¢) by £*(¢) — 2nm, we may
assume that (B*(¢)) has the same distribution as (B]g ) (1)). From (3.20), £*(¢) solves

t
£5(1) = B (1) + (3 - g)/ X*(s)ds, —oo <1 <T*. (3.22)
—0o0
So we can conclude that K = V(Kyq)), —oo < t < T¥, is a stopped LERW process in D*
from O to z}. To finish the proof, we need to show that (—oo, T'*) is a.s. the maximal interval of
the solution to (3.22) for the extended function B*(¢), which is now defined on R.

Assume that (—oo, T*) is not the maximal interval of the solution. So we have K 7., which
is an interior hull in D* \ {oo, z}} that contains K;* for all t € (—oo, T*). Since k < 4, so
a.s. V(co) € K7.. Excluding a null event, we may assume that K3, C D* \ {oo, V(00), z}}.
We can find a Jordan curve ¢* in C such that K3, C H(c*™) C D* \ {oo, V(00), z;}. So
V(K;) = K*(t) C H(o*) for —oo <t < T.Leto = V~!(6*). Then o is a Jordan curve in
C,and H(o) = V"' (H(6*)) c D\ {V~'o0, 00, z.}. We have K; C H(c) for —oo <t < T,
which contradicts Theorem 3.2(ii). So (—oo, T*) is a.s. the maximal interval of the solution, and
the proof is finished. [
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Remark. The ideas behind (3.8), (3.9) and (3.10) first appeared in [4], which were used
there to show that SLEg¢ satisfies locality property. From the above proof we see that for any

k € (0, 4], the above theorem still holds if £(¢) is the solution to (3.4) with f(¢) = B]f{ ) (1) and

A=3— % If k > 4, the statement should be modified. We can conclude that after a time-change,

(V(K;), —oo0 < t < S) has the same distribution as (K, —oco < t < §*), where § € (—o0, T]
is the biggest number such that K; ¢ D \ {V~!(c0)} for t € (—00, S), and §* € (—oo, T*] is
the biggest number such that K C D* \ {V (o0)} for t € (—o0, §%).

3.4. Local martingales

Let D be a finitely connected domain, 0 € D, and z, € D \ {0}. Let p = Rr(z.) and {2 =
RT(D). For & € C((—o00,T)), let L,E (resp. Zf) and wf (resp. 1;5) be the inverted whole-plane
(resp. covering whole-plane) Loewner hulls and maps driven by &. Suppose |, _ L,S C 2\{p}.
For eacht € (—o00,T) and x € R, let Pt (t, x, -) be the generalized Poisson kernel in (2,é
with the pole at e'*, normalized by P%(z, x, wj(p)) = 1,and let PE(t,x, ) = P5(t,x,-) oel.
It is standard to check that both P¢ and P% are C!''2" differentiable, where “h” means
harmonic.

Lemma 3.1. Foranyt € (—oo,T) and z € Q \ Zf we have ]7, (z) = 0, where
Vi(z) = 01 PE (1, £0), U (2)) + 200 P (1, E0), UE (2) X5 + B PE(t, £1), PF (2))
+2Re(d3,. P (1, £(t), ¥ (2)) cota (P (2) — £(1))).

Here 01 and 0, are partial derivatives w.r.t. the first two (real) variables, and 93 ; = (93, —
103,y)/2 is the partial derivative w.r.t. the third (complex) variable.

Proof. For simplicity, we assume that d{2 is smooth, so every boundary point of {2 or _Q,S
corresponds to a prime end. In the general case, we have to work on the conformal closure

of 2. Forany t € (—oo, T) and z € 2\ Lf, let

Vi(@) = 31 PE(, E(1), W7 (2)) + 202 PE (1, 6(0), i () X5 + 3PS (1, £(1), Y7 (2)

0 + i (2
elé() _ wf(z) '
It is easy to check that V,oel = ]7,. Fort € (—o0, T),x € Rand z € 342, since 1//,S (z) € BQ,S \T,
so P&z, x, w{é (z)) = 0, which implies that 9, P& = 822PE =0at (z, x, tﬁf (2)), and
O 4Yi) _,

e —yi))

+2Re (az,sz (1, (), ¥f @)V () (3.23)

31 PE(t, x, ¥ (2)) + 2Re (ag,zpf (1, £(), U7 ()Y} (2)

Thus, V; vanishes on 0 {2 for ¢ eN[O, T). '
Let W, =V, 0 (wf)_l and W; = W, o e!. Then W; vanishes on 8Qf \T fort € (—o0, T),
and W, =V, o (@f)’]. Thus, fort € (—oo, T) and w € (Zf,
Wi (w) = a1 PE(t, £(t), w) + 20, PE (1, (1), w) X*
+02PE (1, £(1), w) + 2Re(d3 . PE (1, (1), w) cota (w — £(1))). (3.24)
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Since ﬁs(t, &(1),-) vanishes on R\ {§(r) + 2nw : n € Z}, and cota(w — &(7)) is real on
R\ {£@) + 2nmw : n € Z}, so W, vanishes on R \ {£(¢) + 2n7w : n € Z}, which implies
that W, vanishes on T \ {€€®}. So W, vanishes on 8027 \ {ei€®}.

Since P¢ (t, x,-) has period 2w, and has simple poles at x + 2nmw, n € Z, so there are
c(t, x) € R and some analytic function F (¢, x, -) defined in some neighborhood of R such that
in that neighborhood, P5(t, x, w) = Im(F (¢, x, w) + c(t, x) cota(w — x)). Then we have

9 PE(1,£(r), w) = Im(d) F (1, £(1), w) + d1¢(t, £(1)) cotr (w — £(1))),
N PE(t, E(t), w)

=Im (82F(t, E(1), w) + dac(t, 1)) cota(w — £(1)) + —— 2 ED) ) ’

2siny(w — §(1))?

P (1, £(1), w) = Im(a§F<t, E(1), w) + d3¢(t, £(1)) cotr (w — (1))

2d2¢(1, £(1) c(t,§(1)) cosy(w — (1))
2siny(w — &(1))? 2sina(w — &(1))? ’

2Re(d3 . PE (1, &(1), w) cota(w — &(1)))

=Im (ZF’(t, E(t), w)cotr(w — &(t)) —

c(t,§(1)) cosy(w — E(t)))
2siny(w — &(1))?

From (3.24) and the above formulas, V~V,(w) equals the imaginary part of
01F(1,&(1), w) + 91¢(t, §(1)) cotp(w — §(1)) + 2<32F(t, £(1), w)

c(t, §(1))

2sing (w — £(1))?

drc(t, §(1)) c(t, &(t)) cosa(w — §(1))
sing(w — £(1))? 2siny(w — &(1))3

c(t,&(1)) cosa(w — £(1))

2F'(t,£(1), tr(w — £(7)) —
+2F (1, 6(1), w) cotr(w — §(1)) 2 sin G — £(0))7
Ar(7)
sing (w — &(1))?
for some function G;, which is analytic near R, and real valued functions A(¢) and A;(¢), where
Ax(1) = c(t, E(D)X; + (1, £(1)).

Since J; = G(QE, gof (p); ), so for x € R, BnJS (e™) equals the value at (pf (p) of the
(usual) Poisson kernel in Qf with the pole at e”*. Comparing the residues of Ban (e*) and
P5(t, x, (pf (p)) at e™, we conclude that

+ 0ac(t, £(t)) cotp(w — &(2)) + )Xf +822F(t,§(t), w)

+ 03¢, (1)) coty(w — (1)) +

= G;(w) + A1 (1) cota(w — £(2)) +

nJf @)/ (—1/7) = P51, x, ¢f (p))/Qe(t, x)) = 1/(2¢(t, x)).

It is clear that dpJ; (€) = 9,J; (x). Thus, c(t,x)d,J;° (x) = —1/(2x) for any x € R.
Differentiating this equality w.r.t. x, we get

0 = c(t. £(1))d,8y T (E(1) + dac(t, E)By T (E(1) = Ax(1)dy T (E(1)).
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Thus, As(t) vanishes. So VTJ[(w) equals the imaginary part of some analytic function plus
A1(t) cotr(w — é(t)) near R. Hence, W, (w) equals the i 1mag1nary part of some analytic function

)
plus —iA1(¢) lm'“” near T. Since W, is harmonic in Q, , and vanishes at every prime end of _Q,S

other than e¥®_ so W, = C(¢) P4 (s, E(t), ) for some C(¢) € R. Since P(z, x, wf(p)) =1 for
any t € (—oo, T) and x € R, so from (3.23), we have V;(p) = 0. Thus, W,(l//f (p)) = 0. So for
t € (—oo, T), we have C(¢) = 0, which implies that VV, vanishes on .Qf, and so 17, = Wlolﬁfoei
vanishes on 2 \ Zf |

Theorem 3.4. Let (1), —0o0 <t < T, be an LERW(D; 0 — z.) curve. For eacht € (—oo, T),
let P; be the generalized Poisson kernel in D \ B([—o0, t]) with the pole at B(t), normalized by
Pi(ze) = 1. Then for any z € D \ {0}, (P;(2)) is a continuous local martingale.

Proof. We may assume that the driving function £(¢), —oco < t < T, is the maximal solution
to (3.4) with f(1) = B (1) and A = 2. Then |J,_; L; C 2\ {p). Let P% be defined as at
the beginning of this subsection. Then P; o R o el () = ps (t, &), %g (2)). Let (F;) be the
filtration generated by (ei(B]g) (#))). Then (el (£(7))), (x[ff), (!2,5) and (X,S) are all (F;)-adapted.
Let R = dist(0; d DU{z,.}). Fix aconstanta € (—oo, In(R/4)). Then a is always less than T'. Let
T, =T —aand & (1) = &(a+1)—&(a) for0 < 1 < T,. Let Bo(1) = (BY (a+1)— BY (@)/+/2
for + > 0. Then B,(¢) is an (F44+)r>0-Brownian motion, and &,(¢) satisfies the (F,4¢)r>0-
adapted SDE:

d&,(t) = V2dB, (1) +2X5,,d, 0 <t <T,. (3.25)
For each t € [0,T,) and x € R, let Q(¢, x,-) be the generalized Poisson kernel in
els(g)( H) with the pole at e /el¥@ normalized by QO(t, x, wa +(p)/e¥@) =1, and let
Q(t x,)) = Q(,x,:) o€ Itis clear that Q(t x,7) = Ps(a +t,x + &(a), z + &(a)) for
0<t<T,,xeRandz e A lm)( +,) Since €6 is F,-measurable, and Q§+t is Faqs-
measurable, so (Q(t, -, -)) i is (Fu+1)>0-adapted, and so is (Q(t, ;).
ForO <t < T,andz € 2\ L5, ,,let g (z) = Vo, (2)—E(a). Then (3;) is (Futs)s=0-adapted,
and satisfies 9;8;(z) = cotz(g;(z) — £, (¢)). From Lemma 3.1, we have that

0Ot £(1), 81(2)) + 20,01, (1), 3 () Xgy, + 93Ot £a(1). 3(2)
+2Re(33, 0 (t, £4(1), 8 (2)) cotz(g:(z) — &4 (1)) = 0.
Since P,4; 0 Rr o e'(z) Q(t £,(1), 2:(2)), so from Itd’ 0’s formula, the above formula and that
0,2 (2) = cota(g;(z) —&,4(2)), we conclude that forany z € .Q (Pa+,oRToe (2,0<t<T,)isa
continuous local martingale. Since Rroel maps 2 onto D\{0}, so for any z € D\{0}, (P;(z),a <

t < T) is a continuous local martingale. Since this holds for any a € (—o0, In(R/4)), so the
proof is completed. [

Remark. The similar local martingales first appear in [5], which was used to prove the
convergence of LERW to radial SLE,. For the process in the case (k, A) # (2, 2), so far we
do not know any local martingale generated by harmonic functions.

3.5. Other kinds of targets

Suppose D is a finitely connected domain that contains 0, and [, is a side arc of D. Then
Rt(l,) is a side arc of {2 = Ry(D). Now we change the definition of J,S in (3.1) by replacing
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G2\ L%, p;) by H(2\ L%, Rp(1,); -), which is the harmonic measure of Rp(I,) in £2 \ L§,
and still let f? = J,E oel and Xf = (0y ay/ay)ff(g(t)). Let everything else in Section 3.2 be
unchanged. Then Theorem 3.2 still holds. For the new meaning of Xf, let & € C((—o0, T))
be the maximal solution to (3.4) with f = B]g) and A = 2. Let Kf, —o00 <t < T, be the

whole-plane Loewner hulls driven by &. Then we call the interior Loewner chain K ,0<t<T,
a continuous interior LERW in D from O to /. Let it be denoted by LERW(D; 0 — I.). Such
a Loewner chain is almost surely generated by a random simple curve started from 0, which is
called an LERW(D; 0 — 1,) curve. Through conformal maps, we can then define continuous
LERW from any interior point to a side arc. Then we can prove that this kind of continuous
LERW is conformally invariant up to a time-change.

Let B(r), 0 <t < T, denote an LERW(D;0 — 1I,) curve. For each t € [0,T), let
P, be the generalized Poisson kernel in D \ B([0, #]) with the pole at B(¢), normalized by
f I, on P;(z)ds(z) = 1, where n is the inward unit normal vector, and ds is the measure of length.
Then for any fixed z € D, (P;(z)) is a continuous local martingale.

Remark. After a time-change, a continuous LERW(D; 0 — T) has the same distribution as a
standard disc SLE, defined in [14].

Now let w, be a prime ends of D. Then Ry(we) is a prime end of §2. Choose & that maps
a neighborhood U of Rp(w) in 9] conformally onto a neighborhood V' of 0 in H such that
h(RT(w,)) =0and (U N 89) C R. Here 2 and 92 are the conformal closure and conformal
boundary, respectively, of {2 as defined in [12]. Change the definition of J by replacing
G2\ L%, p;) by P(2\ LE, Rp(w,), h; -) in (3.1), where we use P(£2 \ LS, Ry(w,), h; -
to denote the generalized Poisson kernel P in {2 \ Lf with the pole at Rp(w,), normalized
by Poh l(z) = —Im(1/z) + O(1), as z — 0 in H. We still let J° = J* o e and
X,é = (axay/ay)}? (&(?)). For the new meaning of X,s, let £ € C((—oo, T)) be the maximal
solution to (3.4) with f = B]g) and A = 2. Let Kf, —o0 < t < T, be the whole-plane

Loewner hulls driven by £. Then we call the interior Loewner chain K ,E, 0 <t < T, acontinuous
interior LERW in D from O to w,. Let it be denoted by LERW(D; 0 — w,). Such a Loewner
chain is almost surely generated by a random simple curve started from 0, which is called an
LERW(D; 0 — w,) curve. Through conformal maps, we can then define continuous LERW
from any interior point to a prime end. Then we can prove that this kind of continuous LERW is
conformally invariant up to a time-change.

Let 8 (t) 0 <t < T, denote an LERW(D; 0 — w,) curve. le h that maps a neighborhood
U of w, in D conformally into H such that 2 (w,) = 0 and A (U N 8D) Cc R.Foreacht € [0,T),
let P; be the generalized Poisson kernel in D \ B([0, ¢]) with the pole at 8(¢), normalized by
0y (P o h~1(0) = 1. Then for any fixed z € D, (P,(z)) is a continuous local martingale.

4. Existence and uniqueness
4.1. The radial equation

In this subsection, we will prove Theorem 3.1. We will use the notation in Section 3.1, and
use coty(z), sinz(z), cotha(z), sinha(z) and cosh;(z) to denote the functions cot(z/2), sin(z/2),
coth(z/2), sinh(z/2) and cosh(z/2), respectively.
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Lemma4.1. Let £ € C([0, T)) Suppose ael0,T)and H > 0 sansfy coshy(H) > e%/2. Then
forany z € Cwithlmz > H, Wa (z) is meaningful, and coshy (Im Wa (z)) > cosho(H)/e/?.

Proof. Let i1 > 0 be the solution of cosh, (k) = coshy(H)/e*/?. Suppose z € C and Imz > H.
Let b € (0, a] be the maximal number such that 1//,S () exists fort € [0, b). Let h(t) = Im 1//5 (2)
for ¢ € [0, b). From (2.4) we see that there is some real valued function 8 (¢) such that

I (1) = Imcota (75 (z) — £(1)) = Imcota(0(1) + 1A (1)) > — cothy (h(1)),
which implies that tanhy (h(¢))h'(¢)/2 > —1/2. So for ¢t € [0, b),
In coshy (h(¢)) — Incosho(Im z) = Incoshy (h(t)) — Incoshy (h(0)) > —1/2.

Thus, coshy(h(t)) > coshy(Imz)/e'/? > coshy(H)/e%/?> = coshy(h), and so h(tr) > h for
t € [0,b). Since h > 0, so wf (z) does not blow up at b. Thus, b = a, and Im wf (z) =
lim,_, ,- h(t) > h. So we have coshy (Im Jﬁ () > coshz(H)/e“/z. O

Lemma 4.2. Let a,h > 0 be such that coshy(h) > e4/2. There is C > 0 such that, for any
n, &€ C(0,al), bel0,al, and z € {Imz > h}, W;Z o (gb}f)’l(z) is meaningful, and

lz =) o (F) " @I < Clin — o (4.1)

Proof. Suppose n,& € C([0,al), b € [0,a], and Imz > h. Since Im J,S(w) decreases in t, so
Im(y5)""(z) > Imz > h. From Lemma 4.1, we see that for 0 < 7 < b, ¢ o (5)'(z) and

¥ o ()~ (z) are meaningful, and cosh3(Im ;" o (¥5)~!(2)), cosh3(Im ¥/ o (¥5) " (2)) >
cosh% (h)/e*, which implies that

sinh3(Im " o ()" (2)), sinh3(Im ¢ o (%)~ (2)) > cosh3(h)/e? — 1. 4.2)

Since |cot2(z)| = 2| sin, (z)| <3 smh (Imz) soifImzy,Imzy > H > 0, then

|eota(ar) — cor (@) = 5 sinhy2(H)ley — 22l @3)
Let

g =10 o W) @~ o @) @I 0<1<b.
From (2.4), (4.2) and (4.3), we see that forany 0 < < b,

t ~ ~ ~ ~
gt) < | |eoa@E o ()" (2) — &(s)) — cota (T o (F5) 7" (2) — n(s))| dr

0
t t
< /0 Ci(g(s) +16(s) — n(s)Ddr < C1/0 (g(s) + & — nllo,p)ds, 4.4)

where
1/2
-2
cosh3(h)/ed — 1

Let C = e®C1 — 1. Solving (4.4), we get
lz =) o ()" @) = gb) < €' = DlIn—E£llop < Clin—Ellop. O
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Lemma 4.3. There are ag, C > 0 such that, for any t € [0, ag), and ¢, n € C([0, t]), we have
L7, Lf € 2\ {p}, and |X] — X{| < Clln — llo..

Proof. There is H > 0 such that Sy C Q \ p. Choose ag > 0 such that e%0 < coshy(H). Let
h > 0 be such that coshy(h) = coshy(H)/e%/2. Then coshy(h)?/e® > 1. Fix t € [0, agp].
Suppose ¢,n € C([0,1]). From Lemma 4.1, for any z € C with Imz > H, xp, (z) and
I//t (z) are meaningful, and Im 1,0, (z), Im 1//t (z) = h. Thus, L, , L’7, C Sy C 7] \ p, and
SpC 25\ p5, 2"\ . Sowehave LS, L, C 2\ {p}.

Choose hg > hgs > hi > hy € (0, h) such that coshy(hy) > e®/2. Let Cp > 0 be the
C given by Lemma 4.2 with a = ap and h = hj. Let C, > 1 be the number depending only
on h and hg such that, if f is positive and harmonic in S, and has period 27, then for any
X1, X2 € Ry, f(x1) < Cy f(x2). Let

. | hos—h1 (ho— hos)(h1 — h2)
§ = min > 0.

, 4.5
Co 8hoCoCy @.5)

Suppose first that ||n Clloy < 6.Letm = 1nf{J§,(z) ZE€Ry LM = sup{ﬁt(z) z € Ry},
and Dy = sup{|VJf (2)| : z € Spy). Since Sy, C .Q{ \p, , SO Jf is positive and harmonic in
Si, and vanishes on R. After a reflection about R, Jt is harmonic in {|Imz| < A}, and |Jf| is

bounded by M on {|Im z| < hg}. Moreover, JNf has period 27. Thus, M < C,m. From Harnack’s
inequality, we have

Dy <2M/(ho — hos), (4.6)

and for any x € R,
Oy TF () = mfhy,  10:dy TS (Ol <AM/RE, 1820,05,(0)] < 12M /K3 (A7)

For j =1,2,let p; = (Jzn)_l(th). Then p; and p; lie in Q \ P\ ﬁ,, and p, disconnects
o1 from 177,. Since coshy (h2) > e%/? and € [0, ag], so from Lemma 4.2, for any z € C with
Imz > hy, @f o (%”)’l(z) is meaningful, so p; and p, lie in H \ Zg, and p, disconnects p;
from ZZ Thus, p1 and p lie in Q \ P\ (Z U 277 ¢), and p; disconnects p; from Zf U Z;’,. For
£ e Cq0,1]), let G5 = G2\ LS, p;)and G5 = G5 oel. Then JF = G* o (°)~ L. For
j = 1,2, define

N; = sup {|77,2) — IF @l = sup {IGT 0 G () = G o (WE) @I (48)

eRy,. eRy .
2€Rp; 2€Rp;

N; = sup{IG{(w) = Gy w)}}y = sup {|G} o ) '@ = G{ o (IH' @I (49)

wWep; ZGR;,J.

Note that JN,’7 — JN,C is harmonic in Sy, and vanishes on R, since both J~,'7 and ]Vf satisfy these
properties. Since the probability that a plane Brownian motion started from a point on Ry, visits
Ry, before Ris hp/hy, so

Ny < (ha/h1)N1. (4.10)

Since every z € p is a removable singularity of 5;7 - éf, so after an extension, 5? — CN}f is
harmonic in 2\ (Lf U L";). Since p; and p; lie in 2\ (Lf U L"), and p; disconnects p; from
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Zf U L7 +, s0 from the maximum principle, we have

N{ < Nj. 4.11)

Fix j € {1,2} and z9 € Rh.i‘ Since Imzg > ho, cosha(ha) > e%/2 and ¢ € [0, ag], so from

Lemma 4.2, the choice of Co, (4.5), and that || — ¢|lo.; < 8, we have

20— ¥ o (™' 2o)| = Colln = ¢llos < Cod < hos — hu. 4.12)
Thus, Im Jf o(%n)_1 (zo) < Imzg+hgs—hi < hgs. On the other hand, since 1’;,; O(%'I)—l(m) €
H, so Im ;o (%)~ (z0) > 0. Thus, [zo, Y5 o (%) ™" (20)] C Shys. So from (4.6) and (4.12),

G o (¥7) " (z0) = G o ()™ @o)l = 1T (z0) — J&e 0 9 o ()™ (20)]

< sup {IVIE @I} lz0 — ¥F o ()~ (z0)

ZEShO,S

2M Colln — ¢llo.r

< DvColln — < 4.13
< DyColln = ¢l = === — (4.13)
Let
2M —
A Colln §||o,z. @.14)
ho — hos
Then from (4.8), (4.9), (4.13) and (4.14), we have
INj = Njl = sup {IGf o (J) '@ = Gi o (IH ' @I = A, j=1.2. (4.15)
zeth
From (4.10), (4.11) and (4.15), we have
Ni < Ni+A <Ny + A< Ny +24 < (hy/ )Ny +2A.
Thus,
Ny <2hA/(hy — hy). (4.16)
From Harnack’s inequality, for any x € R,
18,37 (x) — 8y T ()] < Ni/h1 < 2A/(hy — ho); @.17)
1858y, (x) — 8,3y I ()] < 4Ny /W3 < 8A/(hy (hy — h2)). (4.18)
From (4.5), (4.7), (4.14), (4.17), M < C,m, and that || — ¢|lo,; < J, forany x € R,
~ m 2A m A4MCyé m
Ay J (x) > — — > — — > —. (4.19)
o ho hy—hy  ho  (ho—hos)(h1 —ha) = 2hg
From (4.18) and (4.19), we have
~ ~ ~ ~ 16hoA
1858y I (1)) /8y T (1(1)) — B3y T (0(1)) /3y T ((1))] < —————. (4.20)
mhy(hy — h3)
From (4.7), (4.17) and (4.19), we have
—_ ~ ~ ~ 16M A
[0x 9y J €+ (1)) /3y I, (n(2)) — 3xdy €1 (n(2)) /Dy Iy (n(1))] < (4.21)

m2(hy — hy)’
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From (4.7) and that M < C,m, for any x € R,
10, (3:8y/3) T ()] < 1070y/0y) T (0] + [(3:y/9,) T (x)]?
< (12M/h)/(m/ ho) + (4M/ h§)* [ (m/ ho)* < 28C}/h].
Thus,
1858y /8,)J € (1)) — (858, /3,) I (£ (1)) < 28C2/h3lln — ¢ lo.s- (4.22)
From (4.14) and (4.20)—(4.22), and that M < C,m, we get | X, — Xf| < Clln = ¢llo,s» where
_32C,Coho/ hy 32C2Cy 28C?
" (ho—hos)(hi —h2)  (ho —hos)(hi —h) R}

In the above argument, we assumed that |7 — {|lo; < 8. In the general case, we can find
n € Nsuchthat || — ¢llo,;/n < 6. Letexr =¢ +k(n—¢)/n,0 <k <n. Then

> 0.

n n
X7 = X5 < DX = X1 <Y Clle = Gietllos = Clln = ¢llog. O
k=1 k=1

Proof of Theorem 3.1. (i) Let ag, C > 0 be given by Lemma 4.3. Use the method of Picard
iteration to define a sequence of functions (§,(¢)) in C([0, ag]) such that () = f(1),
0 <t <apy, and forn € N,

t
E(1) = £(1) + A / X5 s, 0<1<ap. 4.23)
0

Then for a € [0, ag], if 0 <t < a, then

t
Ent1(t) — £ ()] < I)»I/O X8 — X |ds < ClAtlEn — Eumit 0.

Thus, [1&,41 — &ullo.a < ClAlallér — &n—1ll0.a. Choose a € (0, ap) such that C|Ala < 1/2. Then
(&n) 1s a Cauchy sequence w.r.t. || - |lo.q. Let & € C([0, a]) be the limit of this sequence. Let
n — o0 in (4.23), then & solves (3.2) for0 <t < a.
(ii) Suppose for j = 1,2, &; solves (3.2) for 0 < t < T; for some T; > 0. Choose
S € (0, Ty ATy A ap) such that C|A|S < 1/2. Then

&1 — &21lo,s < CIAISIE — &2llo,s < 11&1 — &2Ml0,5/2,
which implies ||§; — &2lo,s = 0. Thus, &1 (1) =& () for0 <t < S. O

4.2. The whole-plane equation

In this section, we will prove Proposition 3.1 and Theorem 3.2. We use the notation in
Section 3.2. Let R = dist(0, D U {z,}) > 0 throughout this subsection.

Lemma 4.4. Suppose t < In(R) — In(1 + Cpy). Let h = In(R/e' — Cx) > 0. Then for any
£ € C((—o00, 1)), we have K& C D\ {z.} and S, C 2 \ p?.

Proof. Suppose £ € C((—oo, t]). From (2.10),if 1 < |z| < e”, then [(¢f)~!(z) — e'z| < Cxe',
and so |(¢7) ™ (2)] < ¢ (Jz] + Cp) < R.Thus, (¢]) "' ({1 < [z] <€"}) C {z] < R} C D\ {ze).
which implies that {1 < |z| < e"} C @5 (D \ K5 \ {z}), and s0 S, € 2 \ p. Since K? is
surrounded by (¢5)~1({1 < |z] < e"}),s0 K5 C {lz] < R} C D\ {z.}. O
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Lemma 4.5. There are non-increasing functions S| and Sy defined on (0, 00) with Sj(h) =
O(he_h) ash — oo, j = 1,2, such that for any h > 0, if J(z) is positive and harmonic in Sy,
vanishes on R, and has period 2r, then for j = 1, 2,

|(8){8y/8y)J(X)| < S8;(h), foranyx eR. (4.24)

Proof. There is a positive measure p on [0, 2;r) such that J(z) = f Sn(z — x)du(x), for any
z € Sy, where

l nh+elz
Si(z) == Im Z—FIPV > (4.25)

nez, 2)[n — ekl
Such Sy, is positive and harmonic on Sy, has period 277, and vanishes on R U Ry, \ {2mm + hi :

m € Z}. And 2mm + hi is a simple pole of Sy, for each m € Z. In fact, Sj, o ¢! is a Poisson kernel
in A, with the pole at e ™" Let

Sj(h) = sup{|(3]0,/0,)Sh(x)| : x € R}, j=1,2.

Then for j = 1,2, S;(h) € (0, 00), and |8){8ySh(x)| < S;(h)dySy(x) for any x € R. Since

J(z) = fSh (z — x)dp(x), so |3 dyJ(x)| < S;j(h)dyJ (x) for any x € R, which implies (4.24).

If h’ > h, applying (4.24) to J = S}, we find that S (h) < S;j(h). So §;(h) is non-increasing.
Now forx e R, j =0,1,2,

, dj-H 1 nh+ iz
30,80 = —— [~ +-pv. 3 T

1 : h_
dz/ h i neT oot enh — ez ~
7=x
So
1 2enh ei)c zenh eix 2efnh eix
9,Sh(x) = — + — at :
ySp (x) h T (enh — elx)2 %: <(enh —ei¥)2 (e=nh — e‘x)z)
1 4enhgix 1 4eh
(anh _ aix)2 = h _ 1)2
h neN,2n (e e) h neN,2fn (e D
1S denh
LI 426
~ h r; (enh _ 1)2 ( )
4i nh ,ix (anh + ix 8 2nh e 8 2nh
193y Sp (x)| = Z le( ih(_e ix)3e ) = Z ( nhe_ 13 = ( nhe_ e
ne€Z,2n ¢ ¢ neN,2{n e n=1 €
4.27)
—4ehtheix (e2nh 4 et eix 4 ei2x) X gednh
1829ySn)l = | Y e N C 1)
neZ,2n (e —e") n=1 =1

Thus, 1/0,S,(x) = O(h) and ngaySh(x) = 0@ for j = 1,2,a8 h — o0, uniformly in
x € R.Sofor j = 1,2, we have S;(h) = O(he ") ash — co. O
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Fort < In(R), let
Eo() =e'™"® Ej() = (n(R) —ne™® Ey0) = Eo(t) + E1(1).  (4.29)
Thenlim; ,  Ej(t) =0, j=0,1,2; and fioo Ej(s)ds =E;j1(1), j =0, 1
Lemma 4.6. There are absolute constants M, C > 0 such that, if t < In(R) — M then for any
£ € C((—o0,1]), Ki C D\ {zc} and |X;| < CE1(1).

Proof. Since S1(x) = O(xe™) as x — 00, so there are hg, Cy > 0 such that, if x > hg then
S1(x) < Coxe ™. Let M = In(2Cy + e"0). Suppose t < In(R) — M and & € C((—o0, t]). Let
h = In(R/e" — Cx). Then h > hgand In(R) —t > h > In(R/2) —t. Let C = 2Cy. Then
Si(h) < Cohe™ < CE;(t). From Lemma 4.4, we have K* C D\ {z¢} and S, € 27\ p°.
Since X,é = (0x0y/ By)J?: (&(t)), and J~,é is positive and harmonic in f)f \ 17,5, vanishes on R,
and has period 27, so from Lemma 4.5, we have IX,SI <Si1(h) <CEi(t). O

Proof of Proposition 3.1. It is easy to check that Xf is continuous in . So from the above
lemma, the improper integral converges. [

Lemma 4.7. Suppose & € C((—o00,t]), z € C\ zg’ and s € (—oo, t]. Then

¢’ sinh3(Im /¢ () > ¢’ sinh3(Im ¥/ (2)); (4.30)

exp(Imz)/4 > ¢ sinh}(Im ¥~ (2)). 4.31)
Proof. Let i(r) = Im 17}5 (z) for r € (—o0, t]. From (2.16), there is a real valued function 6 on
(—o00, t] such that for r € (—o0, 1],

h(r) = ImCOtz(lZf (z) —&(r)) =Imcoty(6(r) +ih(r)) < —tanhy(h(r)),

which implies that cothy (h(r))R’(r) < —1. So we have
t
21nsinhy (h(t)) — 2Insinhy (h(s)) = / cothy (h(r)h (r)dr < —(t — s).
N

This immediately implies (4.30). Now let ¢ be fixed and let s — —o0. Since 1}5 (2)—(z—is) — 0,
so e’ sinh% (Im 1//5 (z)) — exp(Imz)/4, which implies (4.31). U
Lemmad4.8. Let h, > h3 > 0, s <t,and ¢, n € C((—o0, t]). Let
1 2(1 + Cp)ef ™!
CO = T’ AO = +7
2sinh3(h3) sinh5(h2) (4.32)

Ao =ePAg+ € — DIn —¢lls.r-
Assume that

Ap <1, Ao < hy — h3. (4.33)
Then for any z € C with Imz > hy, Jtn o (Jf)_l (z) is meaningful, and

19 o (W) Nz) — 2| < Ao.
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Proof. Fix z € C with Imz > h;. From (4.31), we have

exp(Im(Y;) ™' (2)) = 4e’ sinh3 (7).
Then we have (1 + C)e® exp(—Im(i5 )1 (2)) < Ag/2 < 1/2. Thus, from (2.19),

W2 o ()71 @) — ()7 (2) —is)| < 4(1 + Cppe’ exp(—Im(y) 7 (2)) < Ao/2.
Similarly, [ o (/)7 (2) — (¥/) "' (2) —is)| < Ag/2. Thus,

W7o (W)™ @) = ¥ o ()™ @) < Ao (4.34)

Note t}gt Aog < Ag < hy — h3. Let £y be the maximal number in (s, ¢] such that, for r € [s, #g),
Ul o (UF)~1(2) is meaningful, and

g(r) =1y o (U1)' @) = ¥f o ()T (@) < ha — hs.
From (4.34), g(s) < Ay. Since Im %{(w) decreases in r, so forr <t,

myf o ()@ = Imy o () ') =Tmz > hy.
Thus, for r € [s, t9),

My o (Y) M2 = Imyf o (¥7) 7' (2) — (ha — h3) > hs.
So ¥ o (¥f)~1(z) does not blow up at r = 1o, and Im J,'(’J o (¥F)"1(z) > h3. From (4.30), for
rels,topland & = ¢ orn,

212 TE 71 10— ainin2 it Tiy—1 10— i
sinh;(Imy; o (Y;) (2)) > € sinh;(Im Wto oY) () = ¢ sinhj(h3).

Thus, for any r € [s,70] and w € [¥f o (¥7)~'(2) — L), ¥/ o (%)~ (z) — n(r)], we have
sinh3(Im w) > e0~" sinh3(h3). Since | cot,(w)| < 4 sinhy *(Imw) for w € H, so for r € [s, ],

gr) +1In(r) —¢@)|
2e%0~7 sinhy (h3)?

cotz (" o (B~ (2) = n(r) — coa (P o (FH)N2) — ¢ ()] <

From (2.16) and the above formula, for r € [s, fp],

g(r) < g(s) + /r gu) + [n() — ¢ ()|

- du
s 2elo~uginhy(h3)?

< Ao+ Coe™™ /Sr e“(g) + lIn — ¢lls,)du.
Solving this inequality, we get
g(t0) < Age®1 =) 1 — ¢l (€U — 1) < Ag < hy — 3.
From the choice of #y, we have ty = ¢, and so J," o (&f Yy l(z) is meaningful, and
W o ) @ =2l =W o BT @ =¥ o ()T @I =g(0) < Ap. O

Suppose f is positive and harmonicin{a — H <Imz < a+ H}forsomea € Rand H > 0,
and has period 2. From Harnack’s inequality, there is C > 0 depending only on H such that

sup{f(z) : z € Ry} < Cyinf{f(z) : z € Ry} (4.35)

Let S1(h) and S>(h) be given by Lemma 4.5. Let S3(h) = S>(h) + Si (h)2. Then S3(h) is non-
increasing, and S3(h) = O(he_h) as h — oo.
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Lemmad4.9. Let s <t € Rand {,n € C((—oo,t]). Let h > 0 and H € (0,h/8). Let
hy = h— {4+ MH for ., = 0,0.5,1,2,3. Let Cy be given by (4.35). Let Cy, Ag, Ao be
given by (4.32). Suppose Lf c 2\{p}, S, C Qf \ﬁf, and

Ag <1, Ao < H?/(16C4hg). (4.36)
Then L, C 2\ {p}, and

IX! — X5 < 192C2 Ao/ H? + S3() [n(t) — £ (1)) 4.37)

Proof. This lemma is similar to Lemma 4.3. The difference is that this lemma is about the
whole-plane Loewner objects, while Lemma 4.3 is about the radial Loewner objects. Recall
that X,{ = (0 ay/a )Jg(g“(t)) J{ is posmve and harmonic in Qg \pt , and vanishes on ]R Since
Sn C \ Pz, so after a reflection, Jf is harmonic in {|Imz| < h}. Letm = 1nf{J§,(z)
7 € Rho} M = sup{]ft(z) : 2 € Ry}, and Dy = sup{|VJ§t(z)| 12 € Spys). Since
{ho — H < Imz < ho + H} C Sy, and J¢, has period 27, so from (4.35), M < C,m. From
Harnack’s inequality, we find that (4.6) and (4.7) also hold here. So we have Dy <4M/H.

From (4.36), we have Ag < H = hy — h3 So (4.33) holds From Lemma 4.8, we see that
for any z € C with Imz > h», both l/ft o (I/ft )~ 1(z) and 1//, o (wt ) !(z) are meaningful, and
W o ()~ 1<z)—z| < Ao Fixw € C\ (2\ p). Let z = (F{)w) € H\ (I \ Fp).
Since S, C Qg \ p,, so Imz > h > hy. Thus, h[ft (w) — z| < Ao, which implies that
Imwt (w) > Imz — Ay > h — = ho. Since this holds for any w € C\ ({2 \ p), so
L" C 2\ {p}and Sy, C !277 \ ;. On the other hand, since ¢ < %, so Spy CSp C Qf \p,.
Thus, J and J, 7" are both harmomc in Sp,.

For ] =1,2,letp; = (wl )~ l(Ith) Then p; and p; lie in 7] \ L7, and p2 disconnects pg
from L’7t. Since for any z € C with Imz > h», l/fr o (1//, Yy (z)is meaningful, so p; and p; lie in
C\ Zf, and p disconnects p; from Zf Thus, p; and p; lie in f)\ (Zf U Z;',), and p; disconnects
pi from LS U L7, For £ € C((—o00,1]), let G = G(2\ L}, p;-) and G5 = G o el. Then
JN,"t = CN;f o (1;;)_1. For j =1, 2, define N; and Nj’. by (4.8) and (4.9). Then the same argument
can be used to derive (4.10) and (4.11).

Fix j € {1,2} and zy € Ry,,. Since Imzg > ho, so from Lemma 4.8, |z0— ¥/ o (¥;) "' (z0)| <
Ap. Thus, Im 1/7,; o (J;’)*1 (z0) <Imzg+ Ag < hy + H/2 = hgs. On the other hand, we have
¥y o (Y1)~ (z0) € H, so the line segment [z, ¥ o (%)~ (z0)] lies in Sy 5. So

1G¢ o () z0) = GE o (I z0) = 1TE (z0) = T4 0 % o () z0)
< sup (IVIF @1} - 1z0 — ¥ o (PN (z0)| < Dy Ao < 4M Ag/H.

2€Sny 5

Let A = 4M Ay/H. From (4.8), (4.9), and the above formula, we find that (4.15) also holds
here, which together with (4.10) and (4.11) implies (4.16). Thus, (4.17) and (4.18) both hold
here. From (4.7), (4.17) and (4.36), A = 4M Ay/H, M < Cym and h| — hy = H, we find that,
for any x € R,
~ m 2A m 8SM Ay m

0y J,' (x) = — — > - > —
ho hy—hy ho Hhy — hp) 2hg
This is similar to (4.19). Then (4.20) and (4.21) both hold here.
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Using (4.20), (4.21), A =4M Ay/H, M < C.m, h; — hy = H and hg < 2h;, we get

18,0y T (0(10) /3, T (1(8)) — 8y JE,((0)) /8, T (n(1))| < 128C, Ao/ H?, (4.38)
18,0y TE (1)), T (0(£)) — 8,0y TE (1)) /0y T ((t))] < 64C2 Ao/ H™. (4.39)

From Lemma 4.5 and the definition of S3(%), for any x € R
|0 (BBy /0y) T ()] < 1020y /0,) T (0] + 135y /3,) Tf (07 < S3(h).
Thus,

|(3x3y/3y)jf(n(t)) — (0x0y/0y)JE (€ ()] = S3(M)n(@) — ¢(1)]. (4.40)
Then (4.37) follows from (4.38)—(4.40). [
Lemma 4.10. For j =0, 1,2, let E;(t) be as in (4.29). There are absolute constants M, C > 1
such that the followings hold.
(1) Foranys <t <In(R) — M, if ¢, n e C((—oo,t]) and ||n — ¢ |ls.r <1, then

X! — X7 | < C(Eo(s) + E1(Dlln — ¢lly.0)- (4.41)
(i1) Foranyt <In(R) — M and ¢, n € C((—o0, t]),

1X] — X{| < CE;(0)ln — ¢l (4.42)
Proof. (i) Let C, > 0 be the C in (4.35) with H = 1. Let

C1 = max{20e>(1 + Cx) exp(5/(2e*)), 2¢¥(exp(5/(2e*) — 1)} > 1. (4.43)
Let 4, > 0 be such that, if 4 > h, then h/eh < 1/(32CC,). Let
M = max{In(e® + 20e’Cy), In(Cy + ")} > 1.
Suppose s <t <In(R) — M, ¢,n € C((—oo,t]),and ||n — ¢|ls.r < 1. Let h = In(R/e' — Cypy).
It is straightforward to check that & > max{8, h, In(R/2) — ¢}, and In(R/2) — ¢ > 1. Since
M > In(1 4+ Cy), from Lemma 4.4, we have K¢, K' C D\ {z¢} and S, C 2°\ pr, 2"\ p7.
Let H=1.Then H € (0,h/8]. Let h), = h — (1 + A)H for A = 0,0.5, 1,2, 3. Then all
h) > 4. Tt is easy to check that sinh%(x) > e*/5if x > 4. Let Cy, Ag, 4y be given by (4.32).
Then
2(1 + Cpp)e* ™! 201+ Cpe’™! - 2(1 + Cp)et ™!
eh2/5 - eh=3Ys ~ e 'R/(10e3)
= 20e>(1 + Cx) Eo(s). (4.44)
Since s < t < In(R) — M, so Eo(s) < e ™ < 1/(e® + 20e3Cy). Thus, Ag < 1. Since
Co <5/(2e"),h3 =h—4=>4,and h > In(R/2) —t,50 Cy < 5/(2¢*) and Cy < 5¢*Eo(1).
Thus,

0=

exp(5/(2e*)) — 1
e€0 < exp(5/(2eY), e 1< 5 -5¢*Eo (1), (4.45)

where the second inequality follows from that (e* — 1)/x is increasing on (0, co0). Then from
(4.32) and (4.43)—(4.45), we have

Ag = C1(Eo(s) + Eo@lIn — ¢ lls,0)- (4.46)
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Since h > hy, so h/e" < 1/(32C;Cy). Since h < In(R/e'), so Eo(t) < 1/e". From
7 — ¢lls.e <1, we have

Ag < 2CEo(t) < 2C1/e" < 1/(16C,h) < 1/(16C,ho).
Hence (4.36) holds. From Lemma 4.9, we have

IX! — XP| < 192C2 Ag 4 S3(h)[n(t) — £(1)]. (4.47)

Since S3(x) is non-increasing, and S3(x) = O(xe™ ) as x — o0, so there is an absolute constant
Cs > 0O such that S3(x) < Cgxe™ forany x > 1. Since 2 > In(R/2) —t > 1, so

$3(h) = S3(In(R) —1In(2) — 1) = CsE1(In(2) +1) < 2C5E1(1). (4.48)

Since In(R/2) —t > 1,50 Eo(t) < E1(t). Let C = 128C£C1 4+ 2Cs > 1. Then (4.41) follows
from (4.46)—(4.48).

@{) If |n — ¢l < 1, then (4.42) follows from (4.41) by letting s — —oo. If ||n — ¢||; < oo,
then there isn € N such that |[n — ¢|l; <n.Letge = ¢+ (n—Ok/n, k =0,1,...,n. Then
lZk—1 — &kll: < 1 foreach k, and ||n — ¢ll; = Y p_ I&k—1 — Skl So (4.42) follows from the
result in the case ||[n — ¢||; < 1. If ||n — ¢||; = oo, (4.42) always hods. [

Proof of Theorem 3.2. Let M, C be given by Lemma 4.10. Let ap < In(R) — M be such that
C|A|E2(ap) < 1/2. Define a sequence of functions (§,) in C((—oo, ag]) inductively such that,
forany t <apandn € N, & () = f(¢) and

t

En() = f(1) + X/ X5 ds. (4.49)

—00
From Proposition 3.1, the above improper integrals converge, and ||§&; — &ll, < oo. From
Lemma 4.10, for t < ay, |X§’1+1 - X,S"| < CE|(t). So from (4.49), for any r < ay,

t
[Ent1(1) — & (1)] < CI)»I/ Ev(s)dsli&n — En—1ll: = 150 — En—1llag/2-

Thus, (§,) is a Cauchy sequence w.r.t. || - ||4,. Let £x be the limit. Then &, solves (3.4) for
t € (—00, apl.

Let S be the set of all couples (&, T') such that & solves (3.4) for r € (—oo, T']. We have proved
that S is nonempty. Suppose (&, To) € S.Let 2 = Qé and p = pST e . For £ € C([0, S))
for some § > 0, let Lé and 1/ft denote the radlal Loewner hulls and maps driven by &. If

L5 c 2\ () It Jf = G@\ LS pi) o (F5) " and XF = (3,9,/0,)(JF o €)(E(1)). From
Theorem 3.1(i), the solution to

1 o
E(t) = £(To) + f(To+ 1) — f(To) + A /0 XEds (4.50)

exists on [0, b] for some b > 0. Let T, = Ty + b > Ty. Define &.(t) = &(¢t) fort < Tp and
E() =& —Tp) fort € [Tp, T,]. Itis clear that £, € C((—o0, T,]). Since &, agrees with & on

(=00, Tpl. s0 & solves (3.4) for t € (—o00, Ty. For r € [0, T, — Ty], we have v, = Vi o ¥y,
and L%Jﬂ = LE U (wTO) 1(LE) where 1//T0+t, w%) and L%H, Lg}o are the inverted whole-plane

Loewner maps and hulls, while w, and L,E are the radial Loewner maps and hulls. Since w;o
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maps p to p, and maps {2 \ LST;H onto {2 \ Iig, SO

JP= GO\ LY piy o) o ()T = GO\ LY L, pi) o (g, )
&e
= JT()—H'

Thus, for r € [0, T, — Tol, X; = X7, ,,. Since £(To) = f(Tp) + A /70 X;*ds, so from (4.50),

. To+t
& (To+1) =¢8@) =§(To)+f(T0+f)—f(To)+?»/T Xieds
T()-H‘ ’
=f(To+t)+Af Xbeds, 0<r1<T,—Tp.

Thus, (&, T,) € S. So we find that for any (¢, Ty) € S, there is (&, T,) € S such that T, > Tp,
and &,(¢t) = &(¢) fort € (—o0, Tyl.

Suppose (1, T1), (§2,T») € S. For j = 1,2, a8t — —oo, §;(t) — f(t) — 0, so
&1(t) — &) — 0. There is T < min{ag, T1, T>} such that ||&; — &7 < 1. Then from the
argument of the first paragraph, we have [|§; — &7 < [|§1 — &7 /2. Thus, & (t) = & (¢t) for
—o0 <t < T.Let Ty < Ty A T, be the maximal such that &£ () = &(¢) for —oco < t < Ty.
Suppose Ty < Ti A T». Let £1(1) = &(To + 1), é2(t) = &(Ty + 1) for t € [0, Ty — T].
Then &; and &, both solve Eq. (4.50) for ¢ € [0, T} A T» — Tp]. From Theorem 3.1(ii), there is
S € (0, Ty A T, — Tp] such that 5'1 ) = é‘z(t) for 0 <t < §, which implies that & (¢) = &(¢)
for 0 < ¢t < Top + S. This contradicts the maximum property of Tp. So £1(f) = &(¢) for
t € [0,T1 ATp). Let Ty = sup{T : (§,T) € S}. Define & on (—o0, Ty) as follows. For
any t € (—00, Ty), choose (§,T) € Ssuchthats < T, and let £¢(¢) = £(¢). Then & is well
defined, and solves (3.4) for t € (—oo, T¢). We also have the uniqueness of &¢. There is no
solution to (3.4) on (—o0, T¢]. Otherwise, there exists some solution on (—o0, T + ¢] for some
& > 0, which contradicts the definition of T'y.

(i) Let My, C; and M», C; be the M, C given by Lemmas 4.6 and 4.10, respectively. Let
C=CivCyand M = M; v M>. Choose ay < In(R) — M such that C|A|Ez(ap) < 1/2.
Then the solution & ¢ exists on (—00, ap] for any f € C(R).

Fix a € R. We now prove that {f € CR) : Ty > a} € 1, and f — &f is (Zy, Ta)-
continuous on {7y > a}. First suppose a < ap. Then {f € CR) : Ty > a} = C(R) € T,.
Suppose &7, € G € 7,. Then there are by < a and ¢ € (0, 1) such that By (&), &) =
£ € CR) : I — &fllpp.a < €} C G. We may choose b < by and § > 0 such that
26 + 6C|A|E2(b) < €. Suppose f € C(R) and || f — follp.« < 6. Then

b ,
1Er (D) = &7, D) = |f (D) — fob)| + Iklf (X5 + X5 s

b

= Ilf—follb,a-l-lf\I/ 2CE (s)ds
—00

= | f — follb,a + 2C|A|E2(b) < &.

Let a; € (b, a] be the maximal number such that ||y — &4 |lp.q, < 1. From Lemmas 4.6 and
4.10, for any ¢t € [b, a1],

b : i 4 :
&7(1) = &5 (D] < If(t)—fo(t)|+|)»|/ (|X§f|+IX§’°|)ds+IA|/b X5 — X3%ds
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b
<170~ ho+200 [ B
—00

t
+C|)»|/b (Eo(b) + Ex()I&r — &y llp.s)ds

< Ilf = follb,ay +3CIAE2(b) + CIAE2(a)§f — &, llba; -
Since C|A|Ez(a1) < C|M|E2(a) <1/2,s0
ILf — follp,a, +3CIAE (D)
1 — CIA|Ex(ar)
So we have a; = a. From the above formula, we have [|§f — &7 llpg.a < 16 —Efllpa < €.

Hence &¢ € Bpya(éfy,6) C Gif | f — follp,a < 8.So f — &y is (7, 1y)-continuous.
Now consider the case that @ > ag. Let My = In(R) — ap. Suppose fo € {Ty > ao}

and £7 € G € 1,. We may choose & > 0 such that S, C szfO \ ﬁifo. Let H = h/8 and
hy=h—(0+XMHforr=0,05,1,2,3. Let C, > 0 be given by (4.35). Recall the definition
of S3(h) before Lemma 4.9. Let

1§ = &rllbay < <20f = follpay +6CIA| <& < L.

1
8 =h2""Cc Vexp (—5 sinhy % (h /2)) : (4.51)
21+ C 212(1 + ) C 1
My = My + max {07111 (M),ln( ( +2 H) *>+ — }; (4.52)
sinh5(h/2) h sinh(h/2) 2sinh5(h/2)
1. 2(1 + CppeMo 1
Cp=3-2"2C%ex <—smh2h2> = 4 — )+ S5(h). 453
There are by < ap and ¢ € (0, 8;,) such that By, 4(§4,, €) C G. Let
i {5 ¢ } (4.54)
£p = min R . .
‘ " exp(Chlrl(a@ — ap))

There is b1 < min{bg, In(R) — M}} such that Eg(b1) < €9/5. From the last paragraph, there are
b < by and § € (0, &9/5) such that, if || f — follp,a, < & then [|Ef — &4 llpy.a0 < €0/5. Suppose
feC®and| f— follp.a < 8. Sincea > agp, so 16 —&fllby,a0 < €0/5 < 8n. Letay € (ao, al
be the maximal number such that &7 is defined on (—o0, ay) and |£§¢(t) — &7, (1)] < 8, on
[b1,a1). Fix t € [ag, a1). Since t < a, Im ijb (z) decreases in s, and S;; C FZj‘fO \ 1’5510, SO
Sn C F?f/b \ ﬁf‘fo. Let Co, Ag, A be given by (4.32) with s = by, { = &y, and n = &. Since
t>ayp=In(R) — My and hy > h3 = h/2, so

Moy

- 2(1 + Cx)e

Eo(by). 455
sinh2(h/2) 0b1) (435)

Since Cy = % sinhz_z(h/Z), so from (4.32) and (4.55), we have

| 2(1 + Cpy)eMo
A — sinh; 2(h/2 _
oSexp(2 sinh; “(h/ ))( Snh2(h/2)

Using (4.51)—(4.56) and the facts that by < In(R) — My, |Ef —&f,llp,,r < 8, and H = h/8, one

may check that (4.36) holds, i.e., Ag < 1 and Ay < H2/(16C*h0). From Lemma 4.9 and (4.56),

Eo(by) + & — éfollbl,z) . (4.56)
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we have

X5 XT0| < Ch(Eobr) + 167 — £ llor). 1 € Lao. ay). (4.57)
Recall that b < b; < bg < ap < a; < a. From (3.4) and (4.57), for any ¢ € [ag, a1),
¢ (t) — &5, (O] < | f(a0) — folap)| + | f @) — fo(O)| + 1&f(ao) — &, (ao)l

t
3
L[ 1xE = x.%1ds
agp

<20f = follb.a + 115f — &Efllby.a0

t
+Ch|)\|/ (Eo(b1) + 11&f — &£y llby.5)ds.
ag
Fort € [ap, a1), let g(t) = 1§ — &£, llp, > then

t
g(®) =21 f — follb.a + 1&r — &follby.ap + Ch|)~|/ (Eo(b1) + g(s))ds.
ao

Solving this inequality using (4.54) and that || f — follp;,a0 < If — follp,ay < 6 < €0/5, and
& — &fyllby,a0 < €0/5, we have that for any ¢ € [ag, a1),

g(t) < M= — follba + I1EF — &y llbyae) + (€I — 1) Eg(by)
< eCnlM@=a0) e /5 1 g0 /5 + 89/5) < 4e/5 < ¢.

So from (4.57) we have |Xff — Xff°| < Cp(Eog(b1) 4+ ¢) forany t € [ag, a1). Let
S = Ch(Eo(b1) + ) + sup{|X- | - 1 € [ag, al} < oo.

Then |X§f| < Sforanyt € [ag, a1).Since E¢(t) = f(H)+ A fioo Xffds, so lim;_, 4, & ¢ (1) exists
and is finite. By defining & r(a1) = lim,_, 4, §¢(¢), we have &y that solves (3.4) for —oo < t < ay.
Thus, Ty > ay. Since [|§f — Efllp,,r = g(t) < 4¢/5 < 8 for all t € [ap, a1), so from the
definition of a1, we have a; = a. Thus, Ty > a and |§5 — &5 llp),a = lim;— 4 g(1) < 4e/5 < €.
Thus, f € {Ty > a} and &y € By o(§5y,6) C Gif | f = follp,a < 8. S0 {Tf > a} € 7, and
f = &ris (7, 1,)-continuous on {Ty > a}.

Let f1, f» € C(R). Suppose for some a € R, Ty, > a, thatis, &y, (¢) is defined on (—o0, a],
and f] ~ f>. Then there is k € Z such that fo(t) = fi1(t) + 2km for t < a. It is clear
that £(¢) = &y, (t) + 2km solves (3.4) with f = f; for —00 < t < a. Thus, Ty, > a and
Enp() = &5 () +2km fort < a,soéy, ~ & 1, From the results of the last paragraph, we have
{Tr >a} e ’Z;T, and f +— &y is (TaT, THT)—continuous on {Ty > a}.

(i1) Suppose « is a Jordan curve such that U1<Tf K,Ef C H(a) C D\{z.}. Thent = cap(Kff) <

cap(H(a)) forany t < Ty, so Ty < cap(H (a)) < oo. We may choose another Jordan curve ag
such that H () C U(ap) and H(cp) C D \ {z¢}. Let h = min{In |@p (o) ()| : 2 € ap} > 0. For

any t < Ty, since Kff C H(a), so for any z € «ay, Igoff(z)l = Igost @ = leH@ @) = el
t

Since «q disconnects Kff from C\ (D \ {z¢}),s0 {1 < |z| < e} C wff(D \ {ze} \ K,Ef). Thus,

S C FZ[S T\ ﬁff fort < Ty. Now Zéf is positive and harmonic in Sy, vanishes on R, and has

period 27, so from Lemma 4.5, |Xff| < S1(h) fort < Ty. From (3.4), lim[_)Tf— & r(t) exists and
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is finite. Define & (Ty) = limt%T; &7 (t). Then &7 solves (3.4) for —oco < t < Ty, whichis a

contradiction. [
5. Partition function

For k > 0 and A € R, let a («x, A)-process denote the whole-plane Loewner chain driven by
the solution to (3.4) with f(¢) = B]g )(t). In this section, we will prove that a (k, A)-process is
locally absolutely continuous w.r.t. the whole-plane SLE, processes started from 0. By setting
k = ) = 2, we conclude that the continuous LERW from an interior point to another interior
point is locally absolutely continuous w.r.t. the whole-plane SLE, process.

Suppose D is a finitely connected domain, 0,z, € D, and z, # 0. Let K; and B(¢),
—00 <t < 00, be a whole-plane SLE, hulls and trace from 0 to co with the driving function
being £(1) = Bﬂ({ )(t). Let 1 be the distribution of (£(¢)). Let (f?) be the filtration generated
by (€)Y, Let (F;) be the completion of (]-'ZO) w.r.t. u. Let v, and 1/7, be the inverted and
covering inverted whole-plane Loewner maps driven by &. Let ¢; = ¢k, and ¢; = ¢g,. Then
@ = Ry o, o Ry and ¢, (z) = €'¢,(z). Let T € (—00, 0o] be the maximal number such that
K, C D\ {z.} for —oo <t < T. Let ]f, JNf, Qf, fzf, pf, and ﬁf, —o00 <t < T, beasin
Section 3.2. For simplicity, we omit the superscripts £ in this section.

Let R = dist(0, 9D U{z.}). Let Tg = In(R) —In(1 +Cp). Let h(z) = In(R/e' — Cy) > 0 for
t < Tg. From Lemma 4.4 we have Sy,) C {2 \ p; fort < Tg. From Lemma 4.5, we conclude
that |(8){8y/8y)f,(§(t))| < Sj(h(t)) fort < Tg and j = 1,2, where S;(h) = O(he™) as
h — oo.Sofor j =1,2,

319,/0) T (E(0) = O(te"), 1 — —c0. 5.1)

Now we study the behavior of ayj;(é(t)) as t — —oo. We have to consider two cases. The
first case is that D = C. Then % = Dforalt € R.If z, = cothen p = p; = 0 for all
t € R.Thus, J,(z) = G({%, pr;2) = —%lnld, and so 7,(1) = J,(e%) = %Imz. So we have
Byft(é(t)) = % for all € R. Now suppose that D = C and Ze € {0, oo}. Recall that

pr = ¥:(p) = Rt 0 ¢ o RT(p) = Ry 0 ¢;(z.) = Rr(e™ ¢k, (20)).
From (2.7) we have |¢k, (z¢) — z¢| < Cpe’. Thus, p; = O(e') ast — —oo. We have

i
e — p;

~ . . ) 1
Ji(@) = Ji (%) = G2, pr;e°) = G(D, py; %) = ——In | =—
pett =1

2

So we have

1 —|p:l? 1
[P =—+0(E"), t—> —oc.

~ 1
WI (M) = ——
y @) =50 11— pe— €02~ 27

Thus, when D = @ we always have
~ 1
Oy iEM) = 5—+ 0@, t— —oo. (5.2)

The second case is that D # @ Fort € (—o0, T),let G;(z) = G(D\ Ky, z¢; z) and G?(z) =
Gi(#;'(2)) = G(¢(D\K)), ¢1(ze): 2). Since 2 = Rrog(D\K;) = Rro M o (D\K)),
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pr = Ry o ¢(z0) = Ry o MZ' 0 ¢4(z0), and Ji(2) = G(, pr; 2), 50 Jy = G? o Met o Ry.
As t decreases, D \ K; increases, so G; increases. Let G_oo(2) = G(D, 2¢; 7). Ast — —00,
since K, — {0}, so G;(z) — G_x(z) in D \ {z., 0}. Moreover, since diam(K;) < 4e’, so
Gi(z2) — G_x(z) = O(1/t) ast — —oo, uniformly on any subset of D \ {z,, 0} that is bounded
away from 0. Using Harnack’s inequality, we conclude that VG, — VG_, as t — —o0o,
uniformly on any compact subset of D \ {z., 0}.

Letr = R/2and § = R/4. Let A = {r — 38 < |z| < r + é}. Then A is a compact
subset of D \ {z., 0}. So there are constants 74 € (—o00,T) and M4 € (0, 0c0) such that
IVG:| < Mg on Aift < T4. From (2.6) we see that |¢t_1(z) —z| < Cpe' forany ¢ < In|z|.
Let T = T4 A In(8/C%). Suppose |z| = r and t < Tp. Then |¢l_1(z) —z] < Cne' <68.S0
[z. ¢~ ' (2)] C A. Thus,

1G?(2) — Gi(2)| = 1G1(¢;5(2) — G1 ()| < Mald; ' (2) — 2] < MaCyye.
Since Gy — G_ = O(1/t) ast — —o0, umformly on{|z] =¢ } SO G¢ G_so = 0(1/t) as
t — —oo, uniformly on {|z| = €'}. Since ], G oMy o Rroe',soast — —o0,

Ti(x +in@r) — 1) = GP(relx) = G_oo (re™) + 0(1/1) (5.3)

uniformly in x € R.

Fix t € (—oo, Tp]. Let h = ln(r) — 1. Let Sy,(z) be defined as in (4.25). So Sy, o )i
a Poisson kernel function in {e™" < |z| < 1} with the pole at e ™", Since J, is harmonic in Sh,
continuous on Sh, vanishes on R, and has period 27, so for any z € Sj,, we have

~ 1 T
Ji(z) = — / Ji(x +1h)S;(z — x)dx.
27 J_,

Thus, for any xg € R, By:i;(xo) = % ffn J~,(x + 1h)3ySp (xo — x)dx. From (4.25) and the
computation in the proof of Lemma 4.5 we have 9,S,(x) = % + O(e_h) = % + O(e") as
h — oo, uniformly in x € R. From (5.3) we have J,(x + ih) = G_oo(re™) + O(1/t) as
t — —o0, uniformly in x € R. Thus, as ¢t — —oo, we have

~ 1 (7 o dx G-x(0) 2
0y Ji(x0) = — G_oo(re™)— + O(1/(ht)) = —+0(1/t )
2w J_, h In(r) —
uniformly in x € R, where the second “=" holds because G _, is harmonic in {|z| < r}. So as
t — —o0, we have
— 13y Ji(E(1) = G_0s(0) + O(1/1) = G(D, z0; 0) + O(1/1). (5.4)

Next, we study the behavior of (8t8y/8y)j;(§(t)) ast — —oo. Fort € (—oo, T), we have
Ji oy o Ry = G = G(D \ Ky, 2, -), which implies that

Ji o1 0 Rr(z) = Gi(e) = G(D \ Ky, 2e, €(2)). (5.5)

Let P; denote the generalized Poisson kernel in £2; with the pole at e, normalized by

P,(z) = Re zégiﬂ + 0(z — ey as z — @ So P; o Y; o Ry is a generalized Poisson
kernel in D \ K; with the pole at 8(¢). If § > 0 is small, then K;4s \ K, is contained in a small
ball centered at B(¢). So it is intuitive that G; = G(D \ K;, z., -) is differentiable in ¢, and

—09;G¢(2) is a generalized Poisson kernel in D \ K; with the pole at B(¢). This can be proved by
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expressing G;(z) — G;+s(z) as an integral of Poisson kernels in D\ K5 with poles on K; s\ K;.
We do not go into details here. Thus, there are C(7) > 0 such that —9;,G; = C(t) P; o Y1 o Rr,
—oo <t <T.Let Pt = P, oel. Then P,(z) —Imcoty(z —&(¢)) + O(z — &(2)) as z — &(2),
and we have

— 3G =CWHP oY, (), —oo<t<T. (5.6)
Differentiating (5.5) w.r.t. ¢ and using (2.14) and (5.6), we see that for any z € )"N(D\ K)),
8 Ji (Ui @) + 3 Ji (@) Reco (1 @) — (1)
+ 9y Ji (Y1 (2)) Imcotz (Y4 (2) — (1)) = —C (1) P (¥ (2)).
Since % o Rr maps (eh)~! (D \ K;) onto Fz,, so for any w € f),,
3 T (w) + 8¢ Jp (w) Re cota (w — £(1)) + dyJ; (w) Imcota (w — £(1)) = —C (1) P (w). (5.7)

Suppose in some neighborhood U of £(¢), J; =Im J and P, = Im P(C where J, 7€ is analytic
in U, and P(C is meromorphic with a pole at £(¢) in U. From (5.7) we have
Im[d, 7, (w)] + Im[(J;%)’ (w) cota (w — &()] = Im[—C (1) BF (w)]. (5.8)

Comparing the residues at £(¢) of the two sides, we find that C(t) = (ZC)/(é 1) = ayf,(é(t)).
Differentiating (5.8) w.r.t. w, we get

8,(J~t(c)’(w) + (ZC)N(U)) cotr(w — £(1)) + (.Z(c)’(w) coty(w — &(1))
= —(TEY EO)PEY ().

Letting w — £&(f) in ?Zt in the above formula, and comparing the constant term in the power
series expansion at £(¢) of both sides, we get

~ ) ~ 1
0 €)= T ED) Tim (—(FD)'w) = cotyw) + £ ED). (59)
Let @t = —13, — Imcoty. Then é, is continugus on ﬁ,, vanishes on R, equals — Imcot, on

9% \ R, has period 27, and is harmonic inside (2. From (5.9) we have

~ ~ 1 ~
(0:0y/0y)J1 (5(1)) = 8, 0:(6(1)) + g(a)%ay/ay)-]t(é(t)) (5.10)

For the behavior of (9,0dy /0y )J~, (€(t)) as t — —oo, we also need to consider two cases.
The first case is D = C. Then ) =D, so P(z) = Re eli,;'” which implies that IN’,(z) =
— Imcoty(z) and Q, = (0. From (5.1) and (5.10) we have

(3:3y/8,) T (E(1)) = O(te"), t — —oo0. (5.11)

The second case is that D # C. Let Q; be continuous on ﬁ,, harmonic in (2, vanishes on T,

and equals to Re % on 3f2 \ T. Then Q, = Q,0¢.LetS; = Q; o Ry o ¢;. Then S; is
@+e®

Re % on dD.

Since ¢;(z) = e "¢, (z), so from (2.7) we have ¢;(z) = e~ 'z + O(1) as t — —o0, uniformly in

7€0D.S0S; =14+ 0O(e')ondD ast — —oo. Since diam(K;) < 4e’, 0 S;(z) =1+ O(1/1)

continuous on D \ K, harmonic in D \ K;, vanishes on dK;, and S;(z) =
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as 1 — —oo, uniformly on any compact subset of D \ {0}. The argument that is used to derive
(5.4) can be used here to prove that 9, Q,(§(¢)) = —1/t + O(l/tz) ast — —o0. So from (5.1)
and (5.10) we have

@Dy /o)) 1 E(M) = =1/t + 0(1/1), 1 — —c0. (5.12)

Leta = A/k € R. We define M(¢) fort € (—oo, T).If D = C, let

050y J5 (E(5))
3y J5(5(5))

K /f 820, Jé(g(s)) “ft atast(%'(s)) >

~ t
M(t) = 2mdy Ji(6(1)* eXP(-%Ol(Ol - 1)/ (

_k (5.13)
oo 0yJ5(E(s)) oo ByJy(E(5)

2
From (5.1) and (5.11) we see that the three improper integrals all converge. From (5.2) we have
lim; s _ooM(t)=1.1f D= (C let

N
M) = NEESTNACIONS __a(a_l)/ Bxast(g(s)) ©
G20 0T E)

, -
K, /, 329 J(g(s)) ds a/’ ata)gs(é(s)) LS ds). (5.14)
27 Jooo By Ji(E(5)) —o0 \ yJ5(E(s)) s2+1

From (5.1) and (5.12) we see that the three improper integrals all converge. From (5.4) we have
lim;_, o M(t) = 1 in this case.

Lemma 5.1 (Boundedness). Let p be a Jordan curve in C such that 0 € U (p) and H(p) C
D\ {z.}). Let t, be the first t such that K; N\ p # . Then there is a constant C € (0, 00)
depending only on p, D, and z,, such that | In(M (¢))| < C on (=00, 7,].

Proof. Let R, = dist(0, p) > 0. Then In(R,/4) is a lower bound of z,,. From (5.1), (5.2), (5.11)
and (5.13), or from (5.1), (5.4), (5.12) and (5.14), we conclude that there is b € (—o0, In(R,/4))
and C; € (0, oo) depending only on p, D, and z,, such that [ In(M (¢))| < C; on (—oo, b]. The
boundedness of | In(M (¢))| on [b, 7,] follows from Lemma 2.3. [

Now we study the martingale property of M(t). Since (J,) is (Fy)- adapted has perlod 27,

and (e¥®) is also (F;)-adapted, so (3, T (@) is (F,)-adapted, and so are ((3;d /3y VT (E@D))),

= 1,2, and ((9;0y/9y)J;(§(¢))). From (5.13) or (5.14) we see that (M (¢)) is (F;)-adapted.
We will truncate the time interval to apply It6’s formula. Recall that In(R/4) is a lower bound
of T.Fixa € (—oo,In(R/4)). Let T, = T —a > 0. Let 7 = F444,t = 0. Then T, is an
(Ff)i=0-stopping time. Let M, (t) = M(a +1),0 <t < T,. Then (M,(¢)) is (F;')-adapted.
From (5.13) or (5.14) we have

M, (t) = M(a)dy Ty (£(@) ™3y Juri (Ea + 1))*

K a1 (0,9, 75 (5 ()
X exp —50[(0[ — 1)/ m

a+t 92 a+
—fa[ i a)JS(S(s)) a/ ’atast(E(s)) ds ) (5.15)
2 a B}J;(E(S)) a ast(E(S))
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Let&,(t) = §(a+1)—&(a) and B, (1) = £,(1)//k,t € [0, 00). Then B, (¢) is an (F{*)-Brownian
motion. Using It6’s formula and the argument in Section 3.3 or Section 3.4, we conclude that
dyJare(E(a+1)),0 <t < T, satisfies the (F;')-adapted SDE:
~ ~ K ~
dayJa+t($(a + t)) = axayju+t(‘§(a + t))dfa(t) + 5838)’Ja+t($(a + t))dt
+ 0,0y Jats(E(a + 1))dt.

From It&’s formula, this then implies that

ddy Juse(Ea + )" _ a%zﬁxaa+n>é() K aaﬁﬁxaa+n>
ddy Ju+e(E(a +1)) 0T €@ty T2 ah“@w+o>

A G N S m%ﬁﬂ@w+n> i
O JarE@+n) 2 Oy Ja+1(Ea +1))

So from (5.15) we see that M, (t), 0 <t < T,, is a local martingale, and

dMa(t) zaaxay:]a-i-t(g(a+t))dga(t) )\.X( +t)dB (t)
Mq(t) 3y Javi(Ea+ 1)) Vie
From Lemma 5.1 and that lim;_, _o, M (¢) = 1 we conclude that for any p as in Lemma 5.1, we
have M (t), —oco < t < 7,, is a bounded martingale, and so E;,[M(7,)] = M(—00) = 1.

Define v by dv = M (1,)du. Then v is also a probability measure. Now suppose that the
distribution of (£(¢)) is v instead of . For —oo <t < T, let

(5.16)

1

o0 =60 - [ Xt (5.17)
—0o0

From Proposition 3.1, we see that n(t), —oco < t < T, are well defined. Moreover, it is clear

that (e"®) is (F;)-adapted. Fix a € (—oo0, In(R,/4)). Then we always have 7, > a. Define

na(t) =na+1t) —n(a) for0 <t < T,. Then (n,(?)) is (F;')-adapted. And we have

a+t
Na(t) = Kk Ba(t) — A/ X& (5)ds.

From (5.16) and Girsanov’s theorem, we conclude that, under the measure v, (r_)a )/, 0<t<
Tp—a) is astopped (F')-adapted Brownian motion, and so is independent of e —0o <t <a.
Since this hold s for any a € (—o00,In(R,/4)), so ") —00 < t < 7,) has the same

distribution as (eiBE&K)(t)) stopped at some stopping time. Thus, there is a integer valued random
variable m such that n.(t) := n(t) + 2nw, —00 < t < 1, has the same distribution as Bﬁg)(t)
stopped at some stopping time. From (5.17) we see that £,(t) = &(t) + 2nm, —00 < t < 7,
solves the integral equation

t
e =nw+ [ Xt
—0o0
Here we use the fact that X5 = X%. So the whole-plane Loewner chain driven by &.(?),
—00 < t < Tp,1is a (k, L) process stopped on hitting p. Thus, a («, A) process stopped on
hitting p has a distribution that is absolutely continuous w.r.t. the whole-plane SLE, process
stopped on hitting p, and the density function is M ().
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The locally absolutely continuity also holds if the target is not an interior point but a boundary
arc or a boundary point. In these cases, the process M (¢) is defined by (5.14) with G(D, z.; 0)
replaced by a harmonic measure function or a normalized Poisson kernel function valued at
0. Then M (z,) is still the density function between the (k, A) process and whole-plane SLE,
process before hitting p.

6. Scaling limits of discrete LERW
6.1. Discrete LERW in grid approximation

Let D be a finitely connected domain that contains 0. For § > 0, let 872 = {(j + ik)$ :
j.k € Z}) ¢ C. We also view 8Z? as a graph whose vertices are (j + ik)8, j, k € Z, and two
vertices are adjacent iff the distance between them is 6. We define a graph D? that approximates
D in 872 as follows. The vertex set V(DB) is the union of interior vertex set VI(D‘S) and
boundary vertex set Vj (D ), where V; (D‘S) = 87> N D, and V, (D‘S) is the set of ordered
pairs (z1, z2) such that z; € VI(D ), zo € 0D, and there is z3 € 877 that is adjacent to z;
in 872, such that [z], z2) C [z1,2z3) N D. Two vertices w; and wy in V(D‘S) are adjacent iff
either wy, wy € VI(D‘S) w1 and wy are adjacent in 8Z2, and [wy, wp] C D;orfor j = 1 or2,
w; € VI(D5) and w3_; = (wj, z3) € Vd(D‘S) for some z3 € 0D.

Every interior vertex of D? has exactly 4 adjacent vertices, and every boundary vertex
w = (21, 22) has exactly one adjacent vertex, which is the interior vertex zy. If (z1,z2) is a
boundary vertex, then it determines a boundary point, which is z7, and a prime end of D, which
is the limit in D, the conformal closure of D (cf. [1,12]), as z — z» along [z1, 22).

Let D°® be the connected component of D? that contains 0. Let V(D?) be the set of vertices
of D?. Let V;(D?) := V(D% N V;(D?) and Vy(D?®) := V(D%) N Vy(D?) be the sets of interior
vertices and boundary vertices, respectively, of D?.

Fix z, € D\ {0, 0o}. Let w‘g be an interior vertex of D? that is closest to z,. Then |w§ —Z¢| <8
if 8 is small. Let (g5(0), ..., gs(xs)) be the LERW on D? started from 0 conditioned to hit wg
before V3 (D?). Such LERW is obtained by the following process. First, run a simple random
walk on D? from 0, stop it on hitting w‘g or V3(D?). Second, condition the stopped walk on the
event that it hits w? instead of V,(D?%). Finally, erase the loops on the path of this walk, in the
order they are created (cf. [2]). Then the obtained simple lattice path is called the LERW on D°
started from O conditioned to hit wi before Vy(D?). So ¢5(0) = 0 and g5(xs) = wﬁ.

Let E_y = Vy(D%), F = {wl},and Ex = E_1U{q; : 0 < j <k} for0 <k < x5 — 1. For
each0 < k < xs — 1, let gx be defined as in Lemma 2.1 in [12] with A = F, B = Ex_1 and
x = gqs(k). This means that g is a function defined on V (D?), which vanishes on Ej \ {gs(k)},
is discrete harmonic on V;(D?) \{g5(0), ..., gs(k)}, and gk(w‘g) = 1. The following is a special
case of Proposition 2.1 in [12].

Proposition 6.1. For any vo € V(D®), (gx(vo)) is a martingale up to the first time that
qs(k) ~ wé or Ey disconnects vy from w‘g

Define g5 on [0, x;] to be the linear interpolation of gs(k), 0 < k < ys. Then g5 is a simple
curve in D that connects 0 and wg. For0 <k < xs—1,let Dy = D\ gs5([0, k]). When § is small,
the function g approximates the generalized Poisson kernel P, in Dy with the pole at gs(k),
normalized by Pi(z.) = 1. Note the resemblance of the discrete martingales preserved by this
(discrete) LERW given by Proposition 6.1 and the local martingales preserved by the continuous
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LERW given by Theorem 3.4. Suppose (1), —oo < t < Tp, is an LERW(D; 0 — z,) curve.
We will prove the following theorem about the convergence.

Theorem 6.1. For any ¢ > 0, there is 69 > 0 such that, if § < 8¢, then there are a coupling of
gs and vy, and a continuous increasing function u that maps (0, xs) onto (—oo, Ty) such that

Plsup{lgs (@' (1)) — o) : —co <t < To} <] > 1 —¢.

6.2. Some estimates

For a non-degenerate interior hull K C D \ {z.}, let ¢k, ¢k, and ¥k be as in the
last subsection. So if K = K,E is a whole-plane Loewner hull at time ¢ driven by some
& € C((—o0,T)) with T > t, then 7% and ng agree with the whole-plane Loewner map

and inverted whole plane Loewner map: go, and wt , respectlvely Let 2% = Ry o px (D \ K),
Qk = (&)~ N, PK = Ry o ¢k (z0), and px = ()~'(pk). So (% is a subdomain of D
containing pg, and .QK is a periodic subdomain of H. If K = Kf, then QKg, QKE, Pt and p Pt

t t t t

agree with Qf , f)f, pf, and ﬁf, respectively, defined in Section 3.2.

Let « be a Jordan curve in C such that 0 € U(«) and H(«) C D \ {z.}. Let F be a compact
subset of D\ (H («) U{o0}). Fix b € R. Throughout this subsection, a constant is called uniform
if it depends only on D, z., , F, b. We will frequently apply Lemma 2.3 to H”(«) to obtain
some uniform constants. We illustrate the idea in the following example. Note that for every
H e ’Hb(a), @ (F) is a compact subset of {|z| > 1}, so there is rg > 0 such that |py (z)| > e'#
for every z € F. From Lemma 2.3, there is a uniform constant h > 0 such that [¢pg (z)| > eh for
any H € H?(x) and z € F. Let Fr = Rp(F). Then |y (z)] < e ™ forany H € Hb(oz) and
z € Fg. Suppose Ké C H (). Then for any ¢ e [b, a] we have KS € Hb(oz) SO |1//, (z) <eh
for any z € Fg. Let FR (e) L(Fg). Since I/ft oel = ¢l 01,[11 , solmw, (z) = hforany z € FR
andt € [b, a].

The following lemmas are similar to the lemmas in Section 6.1 of [12].

Lemma 6.1. There are uniform constants Cy, C2 > 0 such that if Kaé C H(a), then for any
t1 <t €lb,a]land z € Fg,
V() = ¥, ()] < Cila = 11;

Vs (2) — s (2) — (02 — 11) cota (P (2) — £(11))]
< Clta—til(a — 1|+ sup {|E(0) — E@)).

telty,n]
Proof. Suppose Kg C H(x). Thenforany ¢ € [b,a]and z € FR, we have Im J,E (z) = h, which
implies that | cotz(%‘é (z) — &£(t))| < cothy(h). Since (/’ri (z) — go,él (z) = f[tf cotz(wf (z) —&())de,
50 Y7, (2) =95 (2)| < Cilta—t1| forany 11 < 1 € [b,al and z € Fg, where C1 = cothy (h) > 0.
Since | coty(w)| < 3 sinhy >(Imw) <  sinh,>(h) for w € C with Imw > h, and € = 1, so for
t1 <t elb,aland z € Fg,

| cota (2. (2) — £(12)) — cota (P (2) — E(1)))|

1
< 5 sinhy () (195, (2) — 97, ()] + [£(22) = £ 1))
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< % sinh32(h) (1> — 11| + 6(62) — E(1)).
Let C; :== S sinhy2(h) > 0. Then for 7y < 1> € [b,a] and z € Fg, we have
|65, (2) — 95, (2) — (82 — 11) cota (W, (2) — £(11))]
/n ? cota (¢ (2) — £(1)) — cota(f () — (1)) dr

<Gty —t|(|ta —t1| + sup {|E@) —E&@)|}). O

telt,n]

For x € R, let P(K, x,-) be the generalized Poisson kernel in {2x with the pole at el
normalized by P(K, x, px) = 1.Let P(K, x, ) = P(K, x, ~)oei. IfK = Kf,then P(Kf, X,-),
and P(K,s, x, -) agree with Pg(t, x,-) and Pg(t, x, ), respectively, defined in Section 3.4.

Lemma 6.2. For each n1 € {0, 1}, n2, n3 € Z=, there is a uniform constant C > 0 depending
on ny, na, n3, such that if Kj C H(w), then foranyt € [b,a), x € R, and 7 € Fg, we have

87" 952953 P (1, x, ¥ (2))] < C.

Proof. The case n; = 0 follows from Lemma 2.3 immediately because K,S e Hb(a) for
t € [b, a], and if (H,,) is a sequence in Hb(a), and H, l H, then
052053 P (Hy, x, ¥, (2)) — 05205 P(H, x, ¥ (2))

uniformly in x € Rand z € FR, for any ny, n3 € Zxo.

Now we consider the case n; = 1. First suppose that d D is analytic, i.e., d D is the disjoint
union of analytic Jordan curves. Let K € H? (). Then QK = Rropg (D\ K) also have analytic
boundary. Since P(K, x, ) vanishes on {2 except at ', so P(K, X, ) extends harmonically
across 9% \ {e™}. Thus, P(K X, -) extends harmomcally across B.QK \{x +2nm :n € Z}.
For x,y € R, let Q,(K, x, -) be a continuous function on 02k \ {e*} such that Oy(K,x,-) is

harmonic in {2k ; vanishes on T \ {x}; behaves like c Re ZT:Z + O(1) near e™* for some ¢ € R;
and

el

0,(K,x,2) = —2Re (83,ZP<K, x, 9255

f;) 2 € 02\ T) Uk (p).

Such Q,(K, x, ) exists uniquely. Let éy(l(,x, ) = 0y(K,x,-) o el. From (2.13) and the
values of PE(r,x,) at 325 \ T = ¢ (32) and p° = ¥ (p), it is easy to check that
01PE(1,x,7) = Qey(KF,x,2), and so aIFE(t x,2) = Oen)(K;,x,2). Using Lemma 2.3,
we can conclude that for any ny, n3 € Z>o, 8 3"* Qy(K X, Yk (2)) is uniformly bounded in
x,yeRandz e fR. So the proof in the case that n; = 1 and 9 D is analytic is finished.

Now we consider the case that n; = 1 but 9D may not be analytic. We may find V that
maps D conformally onto Do with analytic boundary, such that V (0) = 0. Moreover, suppose
Fy .= V(F), ap := V(a), and V(H («)) do not contain oo, and zg := V(z.) # o0. Then « is
a Jordan curve in C such that 0 € U (), H(ag) = V(H(a)) C Do \ {z0}, and Fy is a compact
subset of Do \ (H (ap) U{oo}). Let W = Rro VoW, {2 = Rr(Do), and po = Rr(z0). Then W
maps {2 conformally onto (2. Let .Qo = (e")~1(£2). Choose W that maps 17, conformally onto
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f)o such that W o ¢! = el o W. There is bo € R such that if A is an interior hull in D with0 € H
and cap(H) > b, then cap(V (H)) > by.

Suppose KaS C H(x). Using the argument in Section 3.3, we conclude that there are ap € R,
& € C((—o00, apl), and a continuous increasing function u that maps (—oo, a] onto (—o0, ap]
such that V(Kf) = Kzf?t) for —00 < ¢ < a. Then we have K € H(ap) for —oo < s < ag, and
u(b) > by. Let

u

W=y oWo W)™, W=y oWo@,) ', —c<t=<a ©.1)

Using the argument in Section 3.3, we can conclude that W; o el =elo W, u'(t) = ﬁ/t’(é(t))z,
E(u()) = Wi(&(1)), and for any w € (2,

3 Wi (w) = W/ (£(1))? cota(W, (w) — Wi (£(1))) — W/ (w) cota(w — £(1)).
So we have that for any z € (2,

Wi D) + W) e +e
- - W (@)=
Wi (e$®) — Wi (2) elf® —z

(Wi (2) = |W/ ()W, (z) (6.2)

For —o0 < t < ag and x € R, let Pgo(t,x, -) be the generalized Poisson kernel in

fO(Qo \ Lfo) with the pole at e, normalized by P§° (t, x, wfo (po)) = 1; and let Fgo (t, x,-)=
Péo(t, x, ) o el. Then we have

PE(t, x,2) = B (u(t), Wy (x), W, (z)), —oo <t <a. (6.3)

Let I?o,R = ()"!(RT(Fp)). Since Dy has analytic boundary, so for any n; € {0, 1}, no,n3 €
Z>o, ~there is a uniform constant C depending on n1, ny, and n3 such that for r € [bg, ap] and
z € Fo.g,

|87 352052 By (1. x, Y1 (2))] < C.

From (6.3) and that u([b, a]) C [bg, ap] and u'(t) = VT/;(E(I))Z, we suffice to prove that for any
ny € {0, 1} and ny € Z>¢ withnj+ny > 1, there is a uniform constant C depending on 1 and n2
such that |31 8"2W, (z)] < C forany € [b,a] and z € RU " (Fg). Since el o W; = W; o él, so
we suffice to prove that there is a uniform constant §9 > 0 such that |W;(z)| > &o for ¢ € [b, a]
and z € TU wf(FR); and for any n; € {0,1} and ny € Zso with n; +np > 1, there is a
uniform constant Cy depending on n1 and n, such that [9;"' 3.2 W, (z)| < Co for any t € [b, a]
and z € TU ¥ (Fg).

For the existence of 8g, we consider two cases. The first case is z € T. This is trivial because
|[W;(z)] = 1 on T. The second case is z € W,S(FR). From (6.1) and that W,SO = Rt o gof o R,
the inequality in this case is equivalent to that |¢i?l)(z)| < 1/6¢p for any ¢ € [a,b] and z € Fp.

This can be proved by applying Lemma 2.3 to H” () and using the facts that 905(21) =¢ Kg(()),
u(t
K;j'(gt) € H" (ag) for t € [b, a), and oo & @ (Fo) for every H € H™ (ag).

Next we consider the existence of Co. We first consider the case n; = 0. For any ny € Zsy,
the uniform boundedness of 3,2 W; (z) on wf (Fg) follows immediately from Lemma 2.3 applied
to H’ (@) and H? (o). Using Lemma 2.3 we may also obtain uniform numbers r € (0, 1) and
M € (0,00) such that for t € [b,al], we have {r < |z] < 1} C Q,E, and |W;(z)| < M on
{lz] = r}. Then the uniform boundedness of 3? 2W,(z) on T follows from Cauchy’s integral
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formula. A similar argument together with (6.2) proves the case n; = 1. The two fractions in
(6.2) do not cause any problem because they are uniformly bounded as long as z and W;(z) are

uniformly bounded away from T, which are true for z € 1/flE (Fr)andz e {|z| =r}. O
Lemma 6.3. There is a uniform constant C > 0 such that if Kg C H(w), then for any
1,1 €[b,al, IX* ()] < Cand |X5(1) = X5 ()| < C(lr = ' +1§(1) = §()D.

Proof. Suppose K5 C H(a). Write J¢(t,x) for J°(x). Note that X5(r) = 03 ,/9.)

JE (t, £(1)). So it suffices to prove that Lhere is a uniform constant C > 0 such that for any
t €[b,alandx € R, [97'9;2(35 ./02..)J% (1, x)| < C forny, ny € {0, 1}. We need to show that

|82,ZJ~E (¢, x)| is bounded from below by a positive uniform constant, and |8?1 3;’2;1 JE (t,x)| is
bounded from above by a positive uniform constant. The proof is similar to that of the above
lemma. O

Lemma 6.4. There is a uniform constant C > 0 such that if Kg C H(w), then for any
ty <t €[b,al and z € Fg, we have

101 P5 (12, £(12), ¥ (2)) — 81 PE (11, E(11), Wy ()| < C(lta — t1] + [E(12) — EGD)]).
Proof. This follows from Lemma 3.1, and the above three lemmas. [

Lemma 6.5. There is a uniform constant di > 0 such that, if Kg C H(w), then for any 7 € I?R,
and any t; < ty € |b, a] that satisfy |t» — 11| < di, we have
P (1, £(02), ¥, (2)) — PE(11, £, ¥s (2))
= 02 PE (11, £(1). Wy, (2) - [(E(2) — £(11) — (2 — 1) X7, ]
1 5~ ~

+ 33 P (0.6, U () - [ (1) = £0)° = 202 — 1))

+0(A%) + O(AB) + O(AB*) + O(B?),
where A = |t —t1|, B = sup; ,¢py, 1,115 () —§ (D)}, and O(X) is some number whose absolute
value is bounded by C|X| for some uniform constant C > 0.

Proof. We may choose a compact subset F "of D\ H(p) such that F' is contained in the interior
of F/.Let Fp = Ry(F) and F = (e)™! (Fg). So Fg and Fp are contained in the interiors of Fj,
and F »» Tespectively. Applying Lemma 2.3 to H" («), we obtain a uniform constant dy > 0 such
that for any K € H? (a), we have dist(yYx (FR), MfK(FI’Q)) > dp. So there is a uniform constant

;fo such that dist(xZK(FR), 817/1( (fl/e)) > 570 for any K € Hb(oz). Suppose Kg C H(a). From
Lemma 6.1 and the existence of dpy, we get a uniform constant d; > 0 such that if s, ¢ € [b, a]
satisfy |s — ¢| < d then for any z € Fp, [Iﬂf(z), lﬁf(z)] - %E(Fl/e)~

Fixz € Frand 1y < 1o € [0,a] with |» — 1] < dy. Let P, = PE(1a, £(12), ¥ (2)),
Py = P5(11, (). ¥y, (2)), Py = PE(11,£(11). Wy, (2)). Ps = PE(11,£(11). ¥y (2)). Then

PE(2, £(0), ¥y, (2)) — PE (11, £(11), ¥s (2)) = (Pi — P2) + (Py — P3) + (Ps — Py). (64)
Now P} — P, = ttlz 01 Pt (t, E(n), 1]72 (z))dt. Fix any ¢ € [t1, t2]. Applying Lemmas 6.1 and
6.2 to F and using [; (2), Ve, (2)] C s (F), we have

01 PE(1,6(12), ¥y, (2)) — 31 PE (1, £1), ¥ (2)) = O(A) + O(B).
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Applying Lemma 6.4 to Fg, we have

P, £(0). UF (2)) — 1 PE (11, 6(11). Wy, (2) = O(A) + O(B).

So we get
Py — Py = 01 P5 (11, (1), 5, (2)) (12 — 11) + O(A?) + O(AB).
Applying Lemma 6.2 to F, since J,i (2) € Jfl (fl/?)’ so we have
Py— Py = 5P (11, £(11), ¥, () (6 (12) — £(11))

l 2 pk 7E _ 2 3
+ 232P (11, &), Y7, (2)) () — §(11))” + O(B”).
Applying Lemmas 6.1 and 6.2 to Fl,, since [Jfl (2), Iz,i (@)1 C JE (I::I/e)’ so we have

8 PE(11, £(11), ¥y, (2)) — 33 PE (11, £(n), ¥, (2) = O(A),
for j =1, 2. Thus

Py — Py = HP5 (11, (), ¥y, () (E(12) — E(11))
1 ~ ~
+ 5agzof(n,ssm), Ui (2)(E(R) — E(0)* + O(AB) + O(AB?) + O(B>).

Applying Lemmas 6.1 and 6.2 to F! , since [17/?1 (2), 1;,52 ()] C 1;;’%1 (Fl/i’)’ so we have

Ps — Py = 2Re(83 . P (11, (1), s, (2) (s, (2) — ¥ (2))) + O(A?)
= 2Re (83, PE (11, £(11), Vs, (2)) (12 — 1) cota (P, (2) — (1))
+ O(AB) 4+ 0(A?).

The conclusion then follows from (6.4) and Lemma 3.1. [
6.3. Convergence of driving functions

We may choose mutually disjoint Jordan curves «;, j = 0, 1,2, in C such that 0 € U (ap) C
U(x1) C U(ap) and H(og) C D \ {z.}. Fix b € R such that b < In(dp/4) — 1, where
do = dist(0, ap). So any H € Ho with cap(H) < b must satisfy H C U (ap). Let F be a
compact subset of D \ H («p) whose interior is not empty. From now on, a uniform constant is
a number that depends only on D, z,, g, a1, a2, F, b, and some other variables we will specify.
Let O(X) denote some number whose absolute value is bounded by C|X| for some uniform
constant C > 0.

Let L% denote the set of simple lattice paths X = (X(0),..., X(s)),s € N, on D?, such
that X(0) = 0, X(k) € D for0 < k < s, and [J;_o(X(k — 1), X (k)] C H(ay). Let
Set(X) = {X(0), ..., X ()}, Tip(X) = X(s), Hx = Uy [X(k—1), X(k)], and Dx = D\ Hy.
Let Px be the generalized Poisson kernel in Dy with the pole at Tip(X), normalized by
Px(ze) = 1, and gx be defined on V(D?) such that gx = 0 on V,(D?%) U Set(X) \ {Tip(X)},
Apsgx = 0 on V;(D%) \ Set(X), and gx(w?) = 1. Let L) be the set of X € L? such that
cap(Hy) > b. Then we have the following proposition about the convergence of gx to Py.
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Proposition 6.2. For any ¢ > 0, there is a uniform constant 8y > 0 depending on & such
that, if 0 < 8 < 8, then for any X € L%, and any w € V(D?) N (D \ H(a)), we have
lgx (w) — Px(w)| < e.

Sketch of the Proof. This proposition is similar to Proposition 6.1 in [12]. So we only give
a sketch of the proof. Suppose that the proposition is not true. Then there are &g > 0, a
sequence 8, — 07, a sequence of lattice paths X, € L, and a sequence of lattice points
w, € V(D>)N(D \ H(a2)), such that |gx, (w,) — Px, (w,)| > &o. By passing to a subsequence,

Cara . .
one may assume that w, — wo, and Dy, —> Dy. Then Py, tends to a generalized Poisson

kernel function in Dy. Using linear interpolation to extend each gy, to a continuous function
defined in the unions of lattice squares inside Dy,. Since each gx, is a positive harmonic
function, so from Harnack’s inequality, we can conclude that the extended {gx,} is uniform
Lipschitz on any compact subset of Dy. Applying Arzela—Ascoli theorem, by passing to a
subsequence, we conclude that gx, — go locally uniformly in Dg. Then one can check that
go is a positive harmonic function. With a little more work, one can prove that go is also a
generalized Poisson kernel, and in fact, go = Pp. So if wg = limw, € Dy, we immediately
get a contradiction. If wg ¢ Do, then wy € 9D. From w, — 9D we get gx,(w,) — 0 and
Px, (w,) — 0, which also gives a contradiction. [J

Let the LERW curve gs on [0, xs] be defined as in Section 6.1. For 0 < ¢t < xs, let
vs(t) = cap(qs([0, 7])), and Ts = vs(xs). Then vs is an increasing function, and maps [0, xs]
onto [—oo, Ts]. Let Bs(t) = qg(v(;](t)), —00 < t < Ts. From Proposition 2.3, there is
some & € C((—o0, Ts]) such that Bs([—o0,t]) = K,‘§5 for —o0 < t < Ts. Let ny be
the first n such that (gs(n — 1), gs(n)] intersects og. We may choose § < dist(xp, a1). Then
g5([0, noo]) C Ularp). Let To‘fo = v5(noso). Let ng be the first n such that vs(n) > b. Pick any
d > 0. Define a sequence (n;) by the following. For j > 1, let ;41 be the first n > n; such
that n = neo, or vs(n) — vs(n;) > d?, or |Es(n) — &5(nj)| > d, whichever comes first. Let (F;,)
be the filtration generated by (gs(n)). Let F ; = Fn;» 0 < j < oo. Then we may derive the
following proposition, which is similar to Proposition 6.2 in [12]. Since the proofs of these two
propositions are almost identical, so we omit the proof here.

Proposition 6.3. There are a uniform constant dy > 0 and a uniform constant 5o(d) > 0 that
depends only on d such that, if d < dy and 6 < 6o(d), then for all j > 0,

vs(nj4+1)

E [(Ea(vs(n 1)) — Es(0s(n)) — f Xf‘*dtlf}} = 0%

5(nj)

E[(&5(vs(nj41) — & s (1)) — 2(vs(njy1) — v5( )| Fi] = O(d).
Let &y(t), —oo < t < Tp, be the maximal solution to

t
(1) = B (1) +2 / X3ds,

o0
where Bﬂg) (1), t € R, is defined in Section 3.2. Let By(¢), —oo < t < Tp, be the whole-plane
Loewner curve driven by &y. Then B is a continuous LERW(D; 0 — z,) curve.

If @ is a Jordan curve in C with 0 € U («), and B defined on [—oo, T) is a curve in C with
B(—o0) = 0, let T, (B) be the first ¢ such that 8(¢) € «, if such ¢ exists; otherwise let T, (8) = T'.
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Since ¢s([0, Tofo]) intersects o, S0 Ty (gs) < Tofo. Using the above proposition, we are able to
derive the following theorem, which is similar to Theorem 6.2 in [12]. The proof uses Skorokhod
Embedding Theorem, the method in the proof of Theorem 3.7 in [5], and the Markov property
of (ei(BIg ) (1))). Again, we omit the proof here.

Theorem 6.2. Suppose « is a Jordan curve in C with 0 € U («), and H(a) C D\ {z.}. For every
b € Rand e > 0, there is 59 > 0 such that if § < &o then there is a coupling of the processes

(&5(1)) and (&y(t)) such that
Plsup{le (£5(1)) — e (Eo ()] : 1 € [b, Tu(Bs) v Tu (B} < €] > 1 —e.
Here if &s or & is not defined on [b, Ty (Bs) V Ty (Bo)], we set the value of sup to be +o0.

6.4. Convergence of the curves

So far, we have derived the convergence of the driving functions. Using the above theorem,
Lemma 2.3, and the regularity of discrete LERW path (cf. Lemma 3.4 in [10] and Lemma 7.2
in [12]), we may derive the following theorem, which is similar to Theorem 7.1 in [12]. It is
about the local convergence of the curves. Here we omit its proof.

Theorem 6.3. Let o be as in the above theorem. For every ¢ > 0, there is 59 > 0 such that if
8 < 8¢ then there is a coupling of the processes (Bs(t)) and (By(t)) such that

Plsup{|Bs(1) — Bo()| : 1 € [-00, Tu(Bs) V Tu(Po)]} < €] > 1 —&.

Finally, we may lift the local convergence to the global convergence, and so finish the proof of
Theorem 6.1. The argument used here is almost identical to that in Section 7.2 of [12]. A slight
difference is that now A is the set of Jordan curves « such that 0 € U («) and H(«@) C D \ {z.};
and B is the set of continuous curves 8 : [—o0, T) — D for some T € R, with 8(—o0) = 0.

6.5. Other kinds of targets

Let D be a finitely connected domain that contains 0. Suppose w, is a prime end of D that
satisfies w, € 8,72 for some 8, > 0, and 8 D is flat near w,, which means that there is r > 0 such
that DN{zeC:lz—we| <r}=(we+aH)N{z € C:|z—we| <r}forsomea e {£1, +i}.
For § > 0, let wg = W, + 1aé.

Let M be the set of § > 0 such that w, € 872 1f § € M is small enough, then (wf, W)
is a boundary vertex of D?, which determines the boundary point and prime end w,, and there
is a lattice path on D? that connects 0 with w, without passing through any other boundary
vertex. Here we do not distinguish w, from the boundary vertex (wﬁ, we). Let F = {w,},
E_y = Va(D®) \ F,and Ex = E_;U{q; : 0 < j < k}forO0 < k < xs — L. Let
(gs(0),...,gs5(xs)) be the LERW on D? started from O conditioned to hit F before E_;. So
¢5(0) = 0 and g5(xs) = w.. Extend g; to be defined on [0, ;] such that g; is linear on [k — 1, k]
foreach 1 < k < xs. Then g5 is a simple curve in D U {w,} that connects 0 and w,.

ForeachO < k < ys—1,let hy be defined asin Lemma 2.1 in[12]with A = F, B = E;_; and
x = gs(k). This means that &, is a function defined on V (D?), which vanishes on FUE\{gs(k)},
is discrete harmonic on V;(D?) \ {gs(0), ..., gs(k)}, and hk(wﬁ) — hx(w,) = 1. Then for any
fixed vertex vg on D%, (hy(vo)) is a martingale up to the time when gs (k) = w‘g or E} disconnects
vo from w,. Let Dy = D \ gs([—1, k]). Then gs(k) is a prime end of Dy. Note that h; vanishes
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on gs5(0),...,gs(k — 1) and all boundary vertices of D?, is discrete harmonic at all interior
vertices of D? except gs(0), ..., gs(k), and hk(wf) = 1. So when § is small, § - /i is close to the
generalized Poisson kernel Py in Dy with the pole at gs (k) normalized by o, P (w,.) = 1. Suppose
Bo(), 0 <t < §,is an LERW(D; 04 — w,) curve. Then we can prove that Theorem 6.1 still
holds for gs and By defined here if we replace “§ < 80" by “6 € M and § < §¢”.

Now suppose I, is a side arc of D that is bounded away from 0. Let L‘S be the set of boundary
vertices of D® which determine prime ends that lie on I,. If § is small enough, I, ea is nonempty,
and there is a lattice path on D? that connecting § with I f without passing through any boundary
vertex not in 13. Then we let F = 13, E_| = Va(D‘S) \F,and Ex = E_1U{q; : 0 < j <k} for
0 <k < ys— 1. Let (g5(0), ..., gs(xs)) be the LERW on D? started from & conditioned to hit
F before E_1. So g5(0) = 0 and gs(xs) € I..

Foreach0 < k < xs5—1, let h; be defined asin Lemma2.1in[12]withA = F, B = E_1 and
x = g5 (k). This means that 4 is a function defined on V (D?%), which vanishes on FUE}, \{gs (&)},
is discrete harmonic on V;(D%) \ {gs(0), . .., gs(k)}, and

S w) — he(wp) = 1.

w~wp,wp €l

When § is small, the function /; seems to be close to the generalized Poisson kernel Py in Dy
with the pole at gs(k) normalized by fle onPr(2)ds(z) = 1. Let By be an LERW(D; 0 — 1)
curve.

If 1, is a whole side of D, then we can prove that Theorem 6.1 still holds for ¢s and B¢ defined
here. If I, is not a whole side, for the purpose of convergence, we may need some additional
boundary conditions. Suppose the two ends of I, correspond to w;, wf € dD, near which 9D is
flat, and w;, wf € 8,72 for some 8, > 0. Let M be the set of § > 0 such that w;, wg € 872
Then Theorem 6.1 still holds for gs and y defined here if we replace “6 < 8¢ by “6 € M and
8§ < 8o”.

6.6. Restriction and reversibility

Using Theorem 6.1 and the properties of the discrete LERW, we may derive the restriction
and reversibility properties of the continuous LERW defined in this paper.

Corollary 6.1. Let D be a finitely connected domain, zo € D, and I, is a side arc of D. Let
é(t), 0<t<T,bean LERW(D; zo — 1.) curve. Then a.s. limtis\ﬂ(t), the limit of B(t) in
D, ast — T, exists and lies on 1,. Moreover, the distribution of lim;_, gB(t) is proportional
to the harmonic measure in D viewed from zq restricted to I,. If J, Clis another side arc
of D, then after a time-change, B(t) conditioned on the event that lim;_,sB(t) € J, has the
same distribution as an LERW(D; zog — J,) curve. This is still true when J, shrinks to a single
boundary point, say z., in which case, the conditioned curve B(t) has the same distribution as
an LERW(D; zo — z.) curve, after a time-change.

As pointed out by [10,5], LERW is closely related with UST (uniform spanning tree) by
Wilson’s algorithm. This is also true for the LERW we considered here. The LERW started
from an interior vertex wo of D® conditioned to exit D at the given boundary point w, can be
reconstructed as follows. Let 7 be an UST with wired boundary condition, i.e., all boundary
vertices of D are identified as a single vertex. In that case, there is only one lattice path that
connects wq with 3D, Now we condition that this path ends 8 D% at w,. Then this path is the
above LERW. In fact, the reversal of such a path is the LERW started from w, conditioned to hit
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wo before exiting D, as considered in [12]. The LERW from one interior vertex wg to another
interior vertex w, could be constructed as follows. Divide 3 D? into two sets: So and S,. Identify
So U {wo} as a single vertex: wg; identify S, U {w,} as another single vertex: w}. Let T be the
UST on this quotient graph conditioned on the event that the two end points of the lattice path on
T connecting wg and w; are wo and w,. Then the lattice path on 7' connecting w( and w} is the
LERW from wy to w,. Here the distribution of 7" does not depend on the choice of Sy and S,.
So it is clear that the reversal of this LERW is the LERW from w, to wg. From Theorem 6.1, we
have the following two corollaries.

Corollary 6.2. Let D be a finitely connected domain, and 71 # zp € D. Let 8(t), 0 <t < T,
be an LERW(D; z1 — z2) curve. Then after a time-change, the reversal of B has the same
distribution as an LERW(D; zo — z1) curve. Especially, if B(t), —oo < t < oo, is a whole-
plane SLE, curve, then (W (B(—t))) has the same distribution as (B(t)), where W(z) = 1/Z. So
we get the reversibility of the whole-plane SLE; curve.

Corollary 6.3. Let D be a finitely connected domain, zo € D, and wyq is a prime end of D.
Let B(t), 0 <t < T, be an interior LERW(D; zo — wq) curve. Then after a time-change,
the reversal of B has the same distribution as a boundary LERW (D; wg — zo) curve, which is
defined in [12].

Remarks.

(1) Using the stochastic coupling technique in [13] and the partition function given in Section 5,
we may give analytic proofs of Corollaries 6.2, 6.3 and 6.1 without using the approximation
of discrete LERW.

(ii) For the discrete LERW connecting two interior points, one may let 7 be the UST on the
discrete approximation with free boundary condition, and let LERW be the only curve on
this UST connecting wg; and w;. This discrete LERW converges to the continuous LERW
with free boundary condition. It is defined similarly as the continuous LERW defined here,
except that in (1.1) we must use a Green function with Neumann boundary condition on 9 D.
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