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Abstract
For a chordal SLE, (k € (0,8)) curve in a domain D, the n-point Green’s function
valued at distinct points z1,..., 2, € D is defined to be
n
G(z1,...,2n) = lim 0 r,‘f_QIP’[dist(%zk) <71, 1 <k <n],
T1y.-5Tn
k=1

provided that the limit converges. In this paper, we will show that such Green’s
functions exist for any finite number of points. Along the way we provide the rate of
convergence and modulus of continuity for Green’s functions as well. Finally, we give
up-to-constant bounds for them.
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1 Introduction

The Schramm-Loewner evolution (SLE) is a measure on the space of curves which was defined
in the groundbreaking work of Schramm [19]. It is the main universal object emerging as
the scaling limit of many models from statistical physics. Since then the geometry of SLE
curves has been studied extensively. See [17, [§] for definition and properties of SLE.

One of the most important functions associated to SLE (in general any random process)
is the Green’s function. Roughly, it can be defined as the normalized probability that SLE
curve hits a set of n > 1 given points in its domain. See equation for precise definition.
For n = 1, the existence of Green’s function for chordal SLE was given in [9] where conformal
radius was used instead of Euclidean distance. For n = 2, the existence was proved in [15]
(again for conformal radius instead of Euclidean distance) following a method initiated by
Beffara [4]. Finally in [12] the authors showed that Green’s function as defined here (using
Euclidean distance) exists for n = 1,2 by modifying proofs in the above mentioned papers.
To the best of our knowledge, existence of Green’s function for n > 2 has not been proved
so far. Our main goal in this paper is to show that Green’s function exists for all n > 2. In
addition we find convergence rate and modulus of continuity of the Green’s function, and
provide sharp bounds for it.

Chordal SLE, (k > 0) in a simply connected domain D is a probability measure on
curves in D from one marked boundary point (or prime end) a to another marked boundary
point (or prime end) b. It is first defined in the upper half plane H = {z € C : Imz > 0}
using chordal Loewner equation, and then extended to other domains by conformal maps.
For k > 8, the curve is space filling ([17]), i.e., it visits every point in the domain. In this
paper we only consider SLE, for x € (0,8) and fix x throughout. It is known ([4]) that SLE,
has Hausdorff dimension d = 1+ ¢. Let 21,...,2, € D be n distinct points. The n-point
Green’s function for SLE, (in D from a to b) at z1, ..., 2, is defined by

n

G(D;a,b) (Zb R Zn) = lim Tg ? P[ ﬂ{dISt “k> Y < Tk}]7 (11)

T1yee5Tnd0 k=1

provided the limit exists. By conformal invariance of SLE, we easily see that the Green’s
function satisfies conformal covariance. That is, if G m.0,00) exists, then G(p,q.p) exists for any



triple (D;a,b), and if g is a conformal map from (D;a,b) onto (H;0, 00), then

G (21, 2) = [T 19/ () PG o) (9(21), -, 9(z0)-
k=1

Thus, it suffices to prove the existence of G(m0,), Which we write as G. As we mentioned
above, the one-point Green’s function G(z) has a closed-form formula:

G(z) = é(Im 2)* 24|z~ (1.2)

where a0 = % — 1 is the boundary exponent, and ¢ is a positive constant.
Now we can state the main result of the paper.

Theorem 1.1. For any n € N, G(z1,...,z,) exists and is locally Hélder continuous. Also
there is an explicit function F(zy, ..., z,) (defined in (2.5)) such that for any distinct points
Z21yeeeyzn €H, G(21,. .., 20) X F(21,...,2,), where the constant depends only on k and n.

We prove stronger results than Theorem Specifically we provide a rate of convergence
in the limit (L.I). See Theorem [4.1] The function F(z1,...,z,) appeared implicitly in [I8]
and we define it explicitly here. The upper bound for Green’s function (assuming existence
of G)) was proved in [I8, Theorem 1.1] but the lower bound is new.

Our result will shed light on the study of some random lattice paths, e.g., loop-erased
random walk (LERW), which are known to converge to SLE ([14, 21]). More specifically,
combining the convergence rate of LERW to SLE, ([5]) with our convergence rate of the
rescaled visiting probability to Green’s function for SLE, one may get a good estimate on
the probability that a number of small discs be visited by LERW.

We may also work on the Green’s function when some points lie on the boundary. In
order to have a non-trivial limit, the exponent d — 2 in the definition for these points
should be replaced by —a. For k = 8/3, the existence of boundary Green’s function for any
n follows from the restriction property ([6]). The existence and exact formulas of boundary
Green’s functions when n = 1,2 were provided in [I1]. In [7] the authors found closed-form
formulas of boundary Green’s functions of up to 4 points assuming their existence. Since our
upper bound (Proposition and lower bound (Theorem are about the probability that
SLE visits discs, where the centers are allowed to lie on the boundary, we immediately have
sharp bounds of the boundary or mixed type Green’s functions assuming their existence,
which may be proved using the main technique here.

It is also interesting to study the Green’s functions for other types of SLE such as radial
SLE, SLE,(p), or stopped SLE. In [3], the authors proved the existence of the conformal
radius version of one-point Green’s function for radial SLE.

The rest of the paper is organized as the following. In section[2]we go over basic definitions
and tools that we need from complex analysis and SLE theory. Then in section [3| we describe
the main estimates that we need to show convergence, continuity and lower bound. One of
them is a generalization of the main result in [I8] which quantifies the probability that SLE
can go back and forth between a set of points. We prove this estimate in the Appendix. In



section |4 we state our main results in the form that we prove them. After that in section 5| we
use estimates provided in section |3 to show existence and continuity of the Green’s function
following a method initiated in [I5]. We prove these two theorems together by induction on
the number of the points. Finally in section [6] we prove the sharp lower bound for Green’s
function given in Theorem [4.3]

Acknowledgment. The authors acknowledge Gregory Lawler, Brent Werness and Julien
Dubédat for helpful discussions. Dapeng Zhan’s work is partially supported by a grant from
NSF (DMS-1056840) and a grant from the Simons Foundation (#396973).

2 Preliminaries

2.1 Notation and Definitions

We fix k € (0,8) and set (Hausdorff dimension and boundary exponent)

8
dzl—i—ﬁ, a=——1
8 K

Note that d € (0,2) and a > 2 — d. Throughout, a constant (such as d or «) depends only
on £ and a variable n € N (number of points), unless otherwise specified. We write X <Y
or Y 2 X if there is a constant C' > 0 such that X < CY. We write X <Y if X <Y and
X 2 Y. We write X = O(Y) if there are two constants 0, C' > 0 such that if |Y| < 0, then
| X| < C|Y]. Note that this is slightly weaker than |X| < Y.

For y > 0 define P, on [0, 00) by

(ZL‘) _ ya7(27d)x2—d, r <y
] 2, x>

we will frequently use the following lemmas without reference.

Lemma 2.1. For0 <z <o, 0<y; <1, 0 <, and 0 <y, we have
Pyl (Q:l) < Pyz(:m),

To Py(x2> x_2 sz(xQ)’
(ﬂ a—(2—d) < P, (x) <1
2 B Py2<£€) N

Proof. For the first formula, one may first prove that it holds in the following special cases:
y1 < yo € [0,21]; y1 < Yo € [21,22); and y; < yo € [22,00]. The formula in the general case
then easily follows. The second formula follows from the first by first setting y; = 0 and
yo = y and then y; = y and y, = x5 V y. The third formula can be proved by considering
the following cases one by one: z € (0,y1]; € [y1,y2); and = € [ya, 00). O
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Lemma 2.2. Let z1,..., 2, be distinct points in H. Let S be a nonempty set in C with
positive distance from {z1,...,2z,}. Then for any permutation o of {1,...,n},

T Pronz o (dist(zorys S U {2y 1 5 < k1) =< [ ] Pz (dist(z, SU{z; 15 < k}). (2.1)
k=1 k=1

Proof. 1t suffices to prove the lemma for o = (ko, ko + 1). In this case, the factors on the
LHS of for k # kg, ko + 1 agree with the corresponding factors on the RHS of . So
we only need to focus on the factors for k = ko, ko +1. Let wy = 2zp,, wa = 2,41, u; = Imwyj,
L; =dist(wj, SU{z : k < ko}), j = 1,2. Then it suffices to show that

Pu2 (LQ)Pul (Ll A |w1 - w2|) = Pul (Ll)Pu2 (LQ A |U)2 - U)1|) (22)

Let r = |w; — wsq|. Note that |uy — ugl|,|L1 — Lo| < r. We consider several cases. First,
suppose L1 < r. Then Ly < 2r, and we get Ly Ar = Ly and Ly/2 < Ly Ar < Ly. From
the above lemma, we immediately get . Second, suppose Lo < r. This case is similar
to the first case. Third, suppose L1, Ly > r. In this case, L1 Ar = Lo Ar =1, and Ly < Lo.
Now we consider subcases. First, suppose u; < r. Then uy < 2r. Since r < uy < 2r, from

Pu2(L2) — P,»(Lg) _ ﬁ o . Pul(Ll) o & o
the above lemma, we get o < B (%2)*. Since u; < r, we have Py = (=)

Since L1 < Lo, we get (2.2)) in the first subcase. Second, suppose s < r. This is similar to

the first subcase. Third, suppose uy, us > r. Then we get J((LT,)) = (Lrj)Q_d, J=1,2. Using
Ly < Lo, we get (2.2)) in the last subcase. O

For (ordered) set of distinct points zy,...,z, € H\ {0}, we let zy = 0 and define for
1<k <n,

lp= min {|zx — %}, dp= min {|zx — 2|}, ye=Imzy, Ry=diAyp. (2.3)

0<j<k—1 0<j<n,j£k
Also Set
() = max J2] > 1. (2.4)
1<k<n dj, —
Note that we have
R, < dk < lk

For ry,...,r, > 0, define




This is the function F' in Theorem [I.I} When it is clear from the context, we write F' for
F(z,...,2,). From Lemma [2.1| we see that

F(z1, o 0y2057T1, 0y T0) SF(zl,...,zn)Hr,z*d, ifry <lp,1 <k<n. (2.6)

Applying Lemma [2.2) with S = {0}, we see that for any permutation o of {1,...,n},

F(Zl, ey 2y Ty ,Tn) = F(Zg(l), Ce ,Zg(n);rg(l), Ce ,Tg(n)), (27)

and
F(Zl, Ce ,zn) = F(ZG(I), ey Zg(n)).
Let D be a simply connected domain with two distinct prime ends wy and ws,. We define

n

F(D;wo,woo)(zla ceey Zn) = H |9/(Zj)|2_d ) F(g(zl)v cee 79(Zn)>»

j=1

where ¢ is any conformal map from (D;wp, ws) onto (H;0,00). Although such ¢ is not
unique, the value of Fp.uw.) does not depend on the choice of g.

Throughout, we use vy to denote a (random) chordal Loewner curve, use (U;) to denote its
driving function, and (g;) and (K;) the chordal Loewner maps and hulls driven by U;). This
means that 7 is a continuous curve in H starting from a point on R; for each ¢, H, := H\ K, is
the unbounded component of H\ [0, ], whose boundary contains y(t); and g, is a conformal
map from (Hy;7(t),00) onto (H; 0, 00) that solves the chordal Loewner equation

g:(2) = go(2) = 2. (2.8)

g(z) = Uy
Let Z; = g, — U, denote the centered Loewner map, which is a conformal map from
(Hy;7(t), 00) onto (H;0,00). See [8] for more on Loewner curves.

When 7 is fixed, for any set S, 7 is used to denote the infimum of the times that v visits
S, and is set to be oo if such times do not exist. We write 7° for 7q,_.)<,}, and T}, for
75" = T{z}- S0 another way to say that dist(y, z) < ris 770 < o0.

Let P denote the law of a chordal SLE, curve in H from 0 to oo, and E the corresponding
expectation. Then P is a probability measure on the space of chordal Loewner curves such
that the driving function (U;) has the law of y/k times a standard Brownian motion. In fact,
chordal SLE, is defined by solving with U; = /kB;.

As we mentioned the upper bound in Theorem is not new. We now state [18, Theorem
1.1] using the notation just defined.

Proposition 2.3. Let 2, ..., 2, be distinct points in H \ {0}. Let d,,...,d, be defined by
(2.9). Letr; € (0,d;), 1 < j < n. Then we have

P[Tf;’ <00,1 <j<n|SF(z1,-03205T1, -+, Tn)-



2.2 Lemmas on H-hulls

We will need some results on H-hulls. A relatively closed bounded subset K of H is called
an H-hull if H \ K is simply connected. Given an H-hull K, we use gk to denote the unique
conformal map from H \ K onto H that satisfies gx(z) = z + O(|z]7') as 2 — oco. The
half-plane capacity of K is hcap(K) := lim, .. 2(9x(2) — 2). Let fx = g'. If K = 0,
then gx = fx = id, and hcap(K) = 0. Now suppose K # 0. Let ax = min(K NR) and
b = max(K NR). Let K9 = K U[ag,bx] U{Z : 2 € K}. By Schwarz reflection principle,
g extends to a conformal map from C\ K% onto C\ [ck, di] for some cx < di € R, and
satisfies gx(Z) = gx(z). In this paper, we write Sk for [ck, dk].

Examples

e For g € R and r > 0, let 5;07,” denote semi-disc {z € H : |z — x9| < r}, which is an
H-hull. Tt is straightforward to check that g5+ (2) =2+ r D
zq,r

heap(D, 0m)
Sg+ = [z — 21,20 + 21].

xq,T

=r?, and

z—xg’

e Each K} associated with a chordal Loewner curve 7 is an H-hull with hcap(K;) = 2t.
Since v(t) € 0K} and g:(v(t)) = Uy, we have U; € Sk, .

Lemma 2.4. For any nonempty H-hull K, there is a positive measure pug supported by S
with total mass |p| = hcap(K) such that,

zZ—XT

fK(z)—z:/ ! dug(x), ze€C\ Sk. (2.9)

Proof. This is [21, Formula (5.1)]. O

Lemma 2.5. If a nonempty H-hull K is contained in ﬁ:w for some xo € R and r > 0,
then heap(K) < r?, Sk C [rg — 21,z + 2r], and

lgr(2) — 2| <3r, z€C\ K%, (2.10)

Proof. From the monotone property of hcap ([§]), we have hcap(K) < hcap(ﬁio .) =72

From [21, Lemma 5.3], we know that S C S5+ = [w— 27, 29+ 2r]. Formula (2.10) follows
fL‘O T

from [8, Formula (3.12)] and that gx_,,(z — xoj = g (z) — x. O

Lemma 2.6. Let K be as in the above lemma. Then for any z € C with |z — xo| > br, we
have

r 2
<2z — ( ); 2.11

_ 2
| Im gk (2) Imz|§4< r >;

2.12
| Im z| |z — x| (2.12)



|9k (2) — 1] §5(|z_rx0|)2. (2.13)

Proof. Since gk _.,(z — zo) = gi(2) — zo, we may assume that xy = 0. From the above two
lemmas, we find that |ux| < r? and

fr(w) —w = / - dpg(w), weC\ [-2r2r]. (2.14)

QTZ—U}

Thus, if [w| > 2r, then |fx(w) — w| < —2—. So fx maps the circle {|z| = 4r} onto a

|w|—2r"
Jordan curve that lies within the circles {|z| = 3.5r} and {|z| = 4.5r}. Thus, if |z| > br,
2 . . .
then |gx(z)| > 4r, and |z — gk (2)| = |f(9x(2)) — g (2)| < o < r/2, which implies
|z] < |gr(2)] +7/2, and |gk(2) — 2| < |gK(’j|_2T < |Z|f22'5r < —‘;'jQ. So we get (2.11)).
Taking the imaginary part of (2.14]), we find that, if w € H and |w| > 2r, then | Im fr (w)—

Imw| < |Imw|m. Letting w = gk (z) with z € H and |z| > 5r, we find that

r <|Imz|r—2<|lmz|L
(lgx ()] = 2r)* = (2] =2.5r)* = (I=1/2)*"
which implies (2.12)). Here we used that |Im gx(2)| < |Im z| that can be seen from .
Differentiating (2.14) w.r.t. z, we find that, if |w| > 2r, then |fi(w) — 1| < (ST
Letting w = gk (z) with z € H and |z| > 5r, we find that

[Tm 2 — Tm g (2)] < [Tm g ()]

1/gh(=) — 1 - - -

g Z)— S S S 9

K (lgr(2)| —2r)2 = (|z] —2.57) = (]z]/2)?

which then implies ([2.13)). O

Lemma 2.7. Let K be a nonempty H-hull. Suppose z € H satisfies that dist(z, Sk) >
4diam(Sk). Then dist(fx(2), K) > 2diam(K).

Proof. Let r = diam(Sk). Since gx maps C\ K% conformally onto C \ Sk, fixes oo, and
satisfies that gf(00) = 1, we see that K" and Sy have the same whole-plane capacity.
Thus, diam(K) < diam(K9%") < diam(Sg). Take any 2o € K NR. Then K C E;rw.
So |ux| = heap(K) < r?. Since dist(z, Sx) > 4r, from we get |fr(2) — 2| < r/4
From [2I, Lemma 5.2], we know xy € [ak,bx] C [ck,dk] = Sk. Thus, dist(fx(z), K) >
|fr(2) — x| =7 > |2 — x| — |fr(2) — 2| — r > dist(z, Sk) — 2r > 2r > 2diam(K). O

Lemma 2.8. Let K be an H-hull, and wy be a prime end of H \ K that sits on OK. Let
2o € H\ K and R = dist(zo, K) > 0. Let g be any conformal map from H \ K onto H that
fizes oo and sends wy to 0. Then for z; € H\ K, we have

o)
umgﬁ g—(zls?guon _ O<\ Im ?m_zim zo|> N O(@y”, (2.16)



Proof. By scaling invariance, we may assume that g = gx —x¢, where g = gx(wo) € [ck, dk].
From Koebe’s 1/4 theorem, we know that

19(20)| = |9x(20) — @o| = dist(gx (20), [cx, drc]) Z |9’ (20) | R.
Applying Koebe’s distortion theorem, we find that, if |21 — 29| < R/5, then

|Zl — Zo|
R
9"z =< 1g'(20)l,  lg(21) = g(20)| < 19'(20)[]21 — 20l (2.18)

Combining the second formula with the lower bound of |g(z)|, we get (2.15]).
To derive ([2.16]), we assume | Im 21 —Im zo|

19'(z1) = ¢'(20)] < 19 (20)] (2.17)

and ‘Zléz‘)' are sufficiently small, and consider

Im zg
several cases. First, assume that Imz, > g for some big constant C. From Koebe’s 1/4

theorem, we know that Im g(z9) 2 |¢'(20)|R. This together with the inequalities | Im g(z;) —
Im g(2)| < [g(z1) — g(20)| and (2.18) implies (2.16).

Now assume that Im zy < g. Note that zo —Zg = 2¢ Im zy and g(z0) — g(Z5) = 2¢ Im g(zo).
From Koebe’s distortion theorem, we see that when C'is big enough,

Im z
[T g(20) = ¢'(z0) T 201 S |9 (20) | Tm 202, (2.19)

which implies that
Im g(20) 2 9'(20)| Im 2. (2.20)

Now we assume that Im zy > \/R|z1 — 2|. Combining |D with (2.18]) and the inequalities
[ Tm g(z1) — Im g(20)] < |g9(21) — g(20)] and FZ2ol < (22112 e get (2.16).

Imzg —

Finally, we assume that Imzy < /R|z1 —29]. Let Ry = R — |z1 — 20| 2 R. Then
{l]z = 21| < R1} C {]z — 20| < R}. From Koebe’s distortion theorem and (2.17)), we get

Im 2z, Im 2y

| Im g(21) — ¢'(z1) Im 2| S |g'(21) [ Im 2, 7

S 19'(20)] Tm 2 (2.21)

1

Now we have

| Tm g(21) — Im g(20)] <|Im g(20) — ¢'(20) Im 20| + | Im g(21) — ¢'(21) Im 24 |
+19'(21) — ¢'(20)| Im 20 + |¢' (21)|| Im 21 — Tm 2.

Combining the above inequality with the inequalities (2.1712.21)) and 222 < ('ZLRZO‘)V 2 we

get ([2.16]) in the last case. ]

2.3 Lemma on extremal length

We use dqo(X,Y) to denote the extremal distance between X and Y in .



Lemma 2.9. Let S; and Sy be a disjoint pair of connected bounded closed subsets of H that
intersect R. Then

2
diam(S
A 1) < 144 m(51,52)
H (dlSt Sl, SQ) B ¢

J=1

Proof. For 7 = 1,2, let Sdoub be the union of S; and its reflection about R. By reflection
principle, dH(Sl,SQ) = 2d (Sfoub  Gdouby, Choose z; € 85, 7 = 1,2, such that |z — 2| =
ds := dist(S,52). Let r; = max,cgaow |2 — 2|, 7 = 1,2. From Teichmiiller Theorem and

conformal invariance of extremal distance ([I]), we find that
d(C(S?OHb7 Sgoub) < d(C([_Tla 0]7 [dS7 dS + TQ]) = d(C([_]-a 0]7 [Rv OO)) = A(R)7

where R > 0 satisfies that 7 = [T, =, and A(R) is the modulus of the Teichmiiller

J=1 ds+r;’
domain C\ ([-1,0], [R, 00)). From [I, Formula (4-21)] and the above computation, we get
—7mdy(S1,92) __ —27A(R)
e =e >
o 16 R + 1 H ds + T’j
Since diam(S;) < 2r; and 2” A1 < d?’:_’ the proof is now complete. O

2.4 Lemmas on two-sided radial SLE

For z € H, we use P} to denote the law of a two-sided radial SLE, curve through z. For
z € R\ {0}, we use P to denote the law of a two-sided chordal SLE, curve through z. Let
E? denote the corresponding expectation. In any case, we have Pi-a.s., T, < oo. See [15] [10]
for definitions and more details on these measures. For a random chordal Loewner curve ~,
we use (F;) to denote the filtration generated by ~.

Lemma 2.10. Let z € H and R € (0, |z]). Then P% is absolutely continuous w.r.t. P[-|7f, <
oo] on Frz N {7} < oo}, and the Radon-Nikodym derivative is uniformly bounded.

Proof. 1t is known ([I5, 16]) that PI is obtained by weighting P using M/?/G(z), where
M7 = |g,(2)|>"?G(Zi(2)) and G(z) is given by (1.2)). Since P[-|t5 < oo] is obtained by

weighting the restriction of P to {75 < oo} using 1/P[1; < o0, it suffices to prove that
% - P[T < o0 is uniformly bounded, where 7 = 75,

Let y = Imz. From [I8, Lemma 2.6] we have P[r < oo] < 55((|§)>~ Let z = g,(z) and

y = ImZz. It suffices to show that

|’5| fagaf(Qfd)

—_ 2-d., <1 2.22
gT z ~ ° °
oy 97 Fy(]2]) (222

10



Py(R)
RERS

We consider two cases.
(£)2(£)2=4. Applying Koebe’s 1/4 theorem, we get 4 = |¢’.(2)|R. Thus,

|=| Y

st 5 I e (e

|2 ey 2| El

So we get (2.22)) in the first case. Second, assume that y < R/10. Then we have y((|R|)) =
R

(:2)*. Applying Koebe’s distortion theorem, we get y =< |g¢.(2)|y. Applying Koebe’s 1/4

||

theorem, we get |z] 2 |g~-(2)|R. Thus,

(gr IR *(gr ()w)* =V oa (RN
LHS of (2.22) < PR 19.(2))| <m> .

So we get (2.22)) in the second case. The proof is now complete. O

Lemma 2.11. Let z € H and R € (0, |z|). Then for any w € H such that =2 is sufficiently
small, 7 and P, restricted to Frz are absolutely continuous w.r.t. each other and

Py, |7, —
log <dIP>;|;:) - O(|Z Rw|)'

Proof. Let G and M, be as in the above proof. Let 7 = 75. It suffices to show that

(ay/ cp) =0 7")

Since ||z — |w|| < |z — w| and |z| > R, we get log E M — o= w') Let 2 = g,(2) — U, and
w = g,(w) — U,. From Koebe’s 1/4 theorem and distortion theorem, we get |Z| 2 |g.(2)|R
and |z —w| < |g.(2)]|z — w|. So we get log || || = O('Z;Lw'). From Koebe’s distortion theorem,
we get log | lo; w))|| = 0= w') So it suffices to show that
Imw /Imz |z — w|
log (T /2 ) = 0. 2.23
®\Imw/ Im 2 R (2.23)

Now we consider two cases. First, suppose that Im z > R/8. Since | Imw—Im z| < |w—z|
we get log 122 — = o= “") Applying Koebe’s 1/4 theorem, we get Imz 2 |g.(2)|R. Since

| Tm w— Imz\ < ]w z| < |¢4(2)||z—w], from the above argument, we get log 122 = O(= w‘),
which implies (2.23)). Second, suppose that Imz < R/8. Then Imw < R/4 1f |z —w| < R/8.
Applying Koebe s dlstortlon theorem, we get log(m) log(M%) = 0(= w') which

w)|Imw

together with log ‘é* (Z))” = O(= w‘) imply (2.23) in the second case. O

Remark The above two lemmas still hold if z or w lies on R\ {0}, and the two-sided radial
measure is replaced by the two-sided chordal measure.
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3 Main Estimates

Theorem 3.1. Let 21, ..., 2, be distinct points in H \ {0}, where n > 2. Let r; € (0,d;/8),
1 <j<n. Letkye{2,...,n} and sg, € (Tky, |2k — 21| N |2k|). Then we have > 0 such
that

Sk, B
Plr7t < --- < 77" inrady 511 (ko) < Skol S F (21,05 20571, - - ,rn)<|ZkO — Z1T/\ |Zk0|> )

The proof of this theorem is long and similar to that of [I8, Theorem 1.1], but is quite
different from other proofs of this paper. So we postpone the proof to the Appendix.

Lemma 3.2. Let 2 € H and 0 < r < n < R. Further suppose r < Imz;. Let & be a
connected component of H -1 N {|z — z1| = R}. Then

(i) Plylry 771N &§ # 0|77 < oo] S (F)/*.

(it) P T g # 0] < ().

Proof. (i) From [12, Theorem 2.3], we know that there are constants C,d > 0 such that, if
r < §Im zy, then P[r7 < oo] > CG(2)r?*~% Thus, for any r < Im 2y,

Pl < o] > C6*2G(21)r* ™ 2 F(21)r* ™% = F(z1;7). (3.1)

We will show that
; i a/d
P, 7] M€ # 0,77 < 00] S F(21; )(}—z) , (3.2)
which together with (3.1]) implies (i).
To prove (3.2), using Lemma we may assume that » = ne™ for some n € N. Let
re =ne *, 0 <k <n. Let E denote the event in (3.2). Then E = J;_, E), where

{7[7’077—1’?]: l]mg (D’Y[T’k 17 T}c]mg%w <OO}
Let y; = Im z;. From [I8, Lemma 2.6] we know that

Pyl(rk_l)_ Py1(rn)

Plrt  <oo] S ——— Pl <oo|Fa,7 <oo] S . 3.3
T <SRy o <lfp Gy Y
Suppose 771 < oo and y[772, 77l ]NE = 0. Let p be a connected component of {|z — 2| =

\/rk_lR}ﬂHTz; that separates z; from & in HTin . Since p is a crosscut of HTzkl K it divides
Th—1 Th—1 Th_

Hrf; . into a bounded domain and a unbounded domain. A crosscut in a domain D is an
open simple curve in D whose two ends approach to two boundary points of D. Let Ej, (resp.

12



E,) denote the events that £ lies in the bounded (resp. unbounded) domain. For the event
Ey, we apply [I8, Lemma 2.5] to the crosscuts p and £ to get

P[W[Tfkl 1? T'k]ﬂf%@EbLF 117 T‘k1<oo,7|: T ? ’I’k 1:|ﬂ§ Q)]
< mamdc(pf) < <_7"’f—1)a/ g
~ ~ R

Combining this estimate with (3.3)) and Lemma [2.1] we get

PLE N B § Flasr) () () (3.4)

If E, happens, then p separates z; from oo in HT;ILI. Let T, denote the first time
after 771 that v visits p, and let p (resp. J) be a connected component of p N Hy, (resp.
{lz = 21| = rr—1} N Hy, that separates z; from oo in Hy,. Applying [I8, Lemma 2.5] to p
and J, we get
@)a/ !

Blry) < 00t B,|F,. T, < oc] S 0D < (P

Y

Combining this estimate with (3.3) and Lemma [2.1] we get

P[E;, N B, < F(z;7) (TL];)Q/4<%)Q. (3.5)

Since E = |J;_, E), using and ( ., we get

PIE] S F(21; )(iy Z (Tk—Rl>M4 = F(a;7) (%)Mﬁ-

Tk—1

From this we get (3.2)) and finish the proof of (i).
(ii) From Lemma and (i), we get P; [y[r2, 7] N & # 0] S (%)*/* for any r > 0

T o Tr
smaller than n and Im 2z;. We then complete the proof by sending r — 0. [

Corollary 3.3. Let z1,20 € H and 0 < r < n < R be such that R —n,n—r > 2|z; — 29| and
r<Imz. Let { be a connected component of H s N{|z — z1| = R}. Then

(i) Plylry 7ol N & # Blr° < oo] S (F)/*.
(it) Prylr T 0 € # 0] < ().
Proof. (i) Let ' =n+[21 — 20| and R = R — [21 — 20[. Then 7,7 < 7,1, and {|z — 29| = R'}

disconnects zi, zo from {|z — 21| = R}. So there is a connected component &' of {|z — zo| =
R'} N H_= that disconnects 21, zp from ¢ in H_=. Thus, by Lemma
n’ o

I\ af af
Pyl 7] 1€ # 0l < oo <Bhlt 2] ng #00m < ool 5 (1) 5 (1)

(ii) This follows from Lemma and (i) by sending r — 0. O

13



The next lemma will be frequently used.

Lemma 3.4. Let z1,..., 2, be distinct points in H, where n > 2. Let K be an H-hull such
that 0 € K and H\ K contains zy, ..., z,. Let wy be a prime end of H\ K that sits on 0K.
Suppose that dist(zx, K) > sg, 2 < k < n, where s € (0,|zx| A |z — 21]). Then

F(Zl)F(H\K;wo,oo)(Z2> BRI Zn)

n

SF(z,. ) [ (‘Z’f| Al — Z1|>a21<r1]3£1n ( dist(gx (2k), Sk) ’>‘"

Pl Sk |9 (2r) — g (wo)
n /\ o o

SF<Zla---72n>H<‘2k| ‘Zk Zl|> ‘
k=2 Sk

Proof. Since wy € 0K, we get gx(wg) € Sk. So the first inequality immediately implies the
second. Let yj, and Iy, 1 < k < n, be defined by (2.3)). Let g = gx — gx(wo). Let Z, = g(z),
2 < k < n; and define y;, and I using for the n — 1 points: z;, 2 < k < n. In particular,
Iy = |Zo|. Let S = Sk — gx(wp) 3 0. Define for 2 < k < n,

19 =dist(Z, SU{Z: 2<j < k}), IE=dist(z, KU{z:2<j<k}).

From Koebe’s 1/4 theorem, we get |¢'(2;) |5 = Zf We claim that when ¢ is small,

By (lg'(z)le) _ Py (e)

— = ,if e < dist(z, K). (3.6)
P, (%) Py, (%)

We consider two cases. If y;, < dist(zy, K)/10, applying Koebe’s distortion theorem, we get

Uk =< |¢'(z1)|yk. Then we have 1} because ;:’5((5;)) = 55((;)). If yp > dist(zx, K)/10, then

yr = 1. Applying Koebe’s 1/4 theorem, we get 5, 2> |g'(z1)] dist(zz, K) = flv,f Thus, when
e < dist(z, K), we have 1D because both sides of it are comparable to (& )* .
k
Recall that

1 d—2 ) T
P =g,y Mlovom) = e

n(d—2) - Pyk(f)'
— k(lk’)

Since ¢ is a conformal map from D onto H that fixes co and takes wqy to 0, we have

<0

k=1

FD;w ,00 2y ey lp) = | | g/ 2k 2—d lim 5(n_1)(d_2) | | k /-
oo ) k=2 7 e07 s P ()

From (3.6)), we get

5/ P
F(21)F(Duwo,00) (22, - -, 2) X H ( Yk



Since Iff = dist(zx, K) Adist(zr, = {z; : 2 < j < k}) > s Adist(zg = {2 : 2 < j < k}),
Lo = |z| Az — 21| Adist(zg {2512 < j < k}), and |zx| A |2 — 21| > sp, we get

P, (Iy) < (|zk| Az — 21| Adist(z s {z;:2<j < k’}))a < (|Zk| N |z —zl|)a'

P, (IF) — sp ANdist(z, s {z;:2 <j <k}) Sk

AU) 5, (5) Py (dist(%2,5)  /dist(%2,9) \a
Note that —i\:) Pyk(lk) <1,2<k<n, and (12) = p ) — ( B )*. From Lemma [2.2]

we get [[r_, 2 ((l ; < ming<g<n <M

|z |

) . Then the proof is completed. O

The next two lemmas are useful when we want to prove the lower bound.

Lemma 3.5. Let 2y, ..., 2, be distinct points in H \ {0}. Let r; € (0,d;), 1 < j < n, where

d;’s are given by (.) Let K be an H-hull such that 0 € K, and let Uy € Sk. Suppose that
2 & K and

ist(grc () S) = 5] = loxe() — Uol, 1< <. (37)
Suppose I = {1 = j; <--- < g} C{1,...,n} satisfies that r; < dist(z;, K'). Then we have

F(Zl;diSt('Zl? K)) : F(%l? s 7%\1\; |g/K(Zj1>|Tj1a s ’g;((ijMij)
ZF (21,20, oy 20371, T2y oo oy T).

The implicit constant in the conclusion depends on the implicit constants in the assumption.

Proof. By reordering the points and usmg , we may assume that I = {1,...,m}. Let y

and [, 1 < k < n, be defined by (|2 Also take yr and lk be the correspondmg quantities
for zj,, 1 <k <m. Let S = SK—UOBO. For 1 < k < m define.

19 = dist(Z, S U {Zi:1<j<k}), [f =dist(z, KU{z:1<5<k}).

It is clear that [ < ;. By Koebe’s 1/4 theorem we have |gh (z)|IE = lS From (3.7) we
know that l;j = lk Since 1 < dist(zg, K), 1 < k < m, the argument of 1’ gives us

Py (195 (i) lre) _ By (ri)
Py, (Ix) Py (If)

1<k<m. (3.8)

Since [ < I, we have

By gk (z0)lre) < By (re)

Multiplying 1} for k =1, 1) for 2 < k < m, the equality F(z;;dist(z, K)) = ];i,ll((ll{j))v

and the inequalities 1 > ];y’“((

1<k<m. (3.9)

k)) for m +1 < k <n, we get the desired inequality. O
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Lemma 3.6. Suppose we have set of distinct points zy,...,z, in H. Let l;, 1 < j < n,
be defined by (2.3). Let m € {1,...,n —1}. Take w; = 2pyy, 1 < j < n—m. Letly,
1 <j <n—m, be the corresponding quantity for w;’s. Suppose ly; <15, 1 < j <n—m.
Then

F(z1, oo zmim1y oo s T F (Zoaty ooy 20 Tty - -+, 7o) X F (21,000 20571, 00y T)-
The implicit constant in the result depends on the implicit constants in the assumption.

Proof. Just write the definition of F' and note that Py, ; (Imij) < Pimw; (I§). O

4 Main Theorems

Following the approach in [I5], we will prove the existence of ordered Green’s function, i.e.,
the limit

n
lim rd Pl << T < o)
715,00 "
j=1
It is clear that if the ordered Green’s function exists, then the (unordered) Green’s function
also exists.

For that purpose we define functions @(zl, ..., Z,) by induction on n. For n = 1, let
G(z) = G(z) given by (1.2). Suppose n > 2 and G has been defined for n — 1 points. Now
we define G for distinct n points z1,..., 2, € H. Given a chordal Loewner curve v, for any

t>0,if z9,...,2, € H;, we define

Gi(z2,...,2 H 9 ()G (Zu(2s), -, Zalz));

otherwise define at(ZQ, ...,2n) = 0. Recall that Z; = g, — U, is the centered Loewner map
at time t. Now we define G(zy,. .., z,) by

~

G2, 20) = G(21)EL (G, (20, - ., 20)].

Recall that E7 is the expectation w.r.t. the two-sided radial SLE, curve through 2;.

The authors of [15] proved that the two-point (conformal radius version) Green’s function
exists and agrees with the G(z1, 23) defined above (up to a constant). Their proof used the
closed-form formula of one-point Green’s function . We will show their result is also
true for arbitrary number of points. The difficulty is that there is no closed-form formula
known for two-point Green’s function. We find a way to prove the above statement without
knowing the exact formula of the Green’s functions. Below is our first main theorem

16



Theorem 4.1. There are finite constants C,, B, > 0 and (,,5, € (0,1) depending only
on k and n such that the following holds. Let z,...,z, be distinct points in H. Let R;,

1<j<n,Q and F be defined by . Then for any r1,...,r, > 0 that satisfy

QBW% <4, 1<j<n, (4.1)
J

we have
n
‘ T?*QIP)[T;«'II < e & Tf: < OO] — G(Zl7 R Zn)

j=1

J

< (J,ﬂiji1 (@™ 72) T @)

As an immediate consequence, the G(z1,...,z,) defined by (1.1 exists and is equal to
Y0 G(Zo(1)s - - -+ Zo(n)), where the summation is over all permutations of {1,...,n}.

Proving the convergence of n-point Green’s function requires certain modulus of conti-
nuity of (n — 1)-point Green’s functions, which is given by the following theorem.

Theorem 4.2. There are finite constants Cy,, B, > 0 and 3,9, € (0,1) depending only on
and n such that the following holds. Let 2y, ..., 2z, be distinct points in H. Letd;, 1 < j <n,

Q and F be defined by If 2 2 € H satisfy that

Imz. —Im z;
9 J

QBn |Z; - Zj|

ns <On, 1<7<mn, 4.3
d; Im z; J=n (4.3)

Clehe. o) = Clenne oz < o 3 (@ Bly (s ZImaly

et j Im Zj

Moreover, the same inequality holds true (with bigger C.,) zf@ 1s replaced by G.

The sharp lower bound for the Green’s function is provided in the theorem below. The
reader may compare it with Proposition [2.3]

Theorem 4.3. Then there are finite constants Cy, R, > 0 such that for any distinct points
21y, 2n € H\ {0} and any r; € (0,d;), 1 < j <n, we have

PIr7 < Temra(sr, by L ST <n] 2 CoF (21,00 20571, 7). (4.5)
We have a local martingale related with the Green’s function.

Corollary 4.4. For fized distinct zq,...,z, € H, M, := @t(zl, ..oy 2Zn) 18 a local martingale
up to the first time any z;, 1 < j < n, is swallowed by .
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Proof. Tt suffices to prove the following. Let K be any H-hull such that 0 € K and
Z1y...,2, € HH\ K. Let 7 = inf{t > 0 : 4[0,t] ¢ K}. Then M;,, is a martingale. To
prove this, we pick a small » > 0, and consider the martingale

M = DR << .

By the convergence theorem and Koebe’s distortion theorem, we have Mt(r) — Mipr asr — 0.

In order to have the desired result, we need uniform convergence. This can be done using the
the convergence rate in Theorem [4.1]and a compactness result from [21]. Let 2, = g,(2;)—Uy;
let Q; and Rj; be the @ and R; for 21y, ..., zny; let Fy = [[}_, |9h ) P (21 - v vy 20t
It suffices to show that |g)(z;)|, Q¢, Rj¢, F1, 1 < j < n, 0 <t < 7, are all bounded from
both above and below by a finite positive constant depending only on x, K, and z1,..., z,.
The existence of these bounds all follow directly or indirectly from [21I, Lemma 5.4]. For
example, to prove that F;, 0 <t < 7, are bounded above, we need to prove that |z;; — 2k,
Jj # k,and |zj,], 0 <t < 7, are all bounded below. It suffices to show that |gr(z;) — gr(2k),
J # k, and dist(gr(z;), Sp) for all L in H(K), the set of H-hulls L with L C K, are bounded
below. Suppose |g1(2;) — gr(2zk)|, j # k, L € H(K), are not bounded below by a constant.
Then there are z; # 2, and a sequence (L,,) C H(K) such that |g.,(2;) — gL, (2x)] = 0.
Since H(K) is a compact metric space ([2I, Lemma 5.4]), by passing to a subsequence,
we may assume that L, — Lo € H(K). This then implies that g.,(z;) = limgz, (2;) =
limgy, (2x) = gr,(2x), which contradicts that gr, is injective on H \ K. To prove that
dist(gr(z),5.) , 1 < j < n, L € H(K), are bounded from below, one may choose a
pair of disjoint Jordan curve Ji,Jy in H \ K, both of which disconnects K from all of
z;’s. Then dist(g(2;), S1) > dist(gr(J/1), g(J2)), and the same argument above shows that
dist(gr(J1),95(J2)), L € H(K), are bounded from below by a positive constant. O

Remark We may write M; = [[}_, 194(2)) |7 9G(gi(z1) = Uy, . .. ,gt(zn) Uy). If we know
that G is smooth, then usmg It6’s formula and Loewner’s equation ([2.8)), one can easily get

a second order PDE for G. More specifically, if we view G asa functlon on 2n real variables:
T1,Y1,- -+ Tn, Yn, then it satisfies

Finmn VA, S A 20 x~o oA 2 L —2(a? — ?)
= 0., ) G+ 0..G - I+ 0y,G- 55+ 2—-d)G- ——L 1 =
2(; J> ; T+l 2.0 x5 +y ( ) Z (23 +y3)?

j=1 j=1

Since the PDE does not depend on the order of points, it is also satisfied by the unordered
Green’s function G. R

We expect that the smoothness of GG can be proved by Hormander’s theorem because the
differential operator in the above displayed formula satisfies Hormander’s condition.

5 Proof of Theorems 4.1 and 4.2

At the beginning, we know that Theorems and hold for n = 1 with ; = 1/2 thanks
to [12, Theorem 2.3] and the explicit formulas for F(z) and G(z). We will prove Theorems
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and [£.2] together using induction. Let n > 2. Suppose that Theorems [£.1] and [4.2] hold
for n— 1 points. We now prove that they also hold for n points. We will frequently apply the
Domain Markov Property (DMP) of SLE (c.f. [8]) without reference, i.e., if 7 is a chordal
SLE, curve in H from 0 to oo, and 7 is a finite stopping time, then Z,(y(7 + -)) has the
same law as 7, and is independent of F,.

Fix distinct points z1,...,2, € H. Let l;, d;, R;, y;, 1 < j <n, @, and F be as defined
in . Throughout this section, a variable is a real number that depends on x,n and
21, ..., 2. From the induction hypothesis, Proposition , and , we see that G < F
holds for (n — 1) points. We write F; for Fig,,y(),00). Then Lemma holds with K = K,

G(z) in place of F(z1), and G, in place of Fla\ K ;wo,00)- We will use the following lemma.

Lemma 5.1. Let ky € {2,...,n} and sk, € (Tky, |20y — 21| A |2ky|). Then there is some
constant 8 > 0 such that

o~ . Sk IB
G E* G e Zn 1 d < < F. < 0 ) .
(1) Zl[ T, (29 zp)1{inra Hr,, (Zko) < Skot] S 200 — 21 A |28 |

Proof. This lemma essentially follows from the induction hypothesis, Theorem , and (2.5)).
Below are the details. Let r; € (0, R;/8), 1 < j < n. From Theorem [3.1] there is a constant
£ > 0 such that

P77l < o0] -IE[1~{ilr11fadHT§11 (2ko) < s Pl <-or <700 < 00| Fran, 77 < od]

S B
SJF(Zl,...,zn;rl,...,rn)<IZk —Z]:T/\|Zk |> :
0 0

By the convergence of (n — 1) point Green’s function, we know that

n

r27..1.i,£1,}—>0 riPlr < < Tf:|fT:11 , Tl < oo = @Tfll (29, 2n).
Applying Fatou’s lemma with ro,...,r, — 0, we get
Pl < ool - Eft{inrady _, (24,) < sk} Gzt (22, 2a) |77 < o]
n s 5
< Tg,..l.‘l,Irryll%OUQTgQF(Zh ey Zny Ty ,rn)<‘2k0 — 21(|)/\ |Zk0|> :
which together with Lemma [2.10f implies that
P77t < oo] - EZ, [l{imradHTf11 (2gy) < Sko}@,rﬁll (29, ..., 2n)]
n s 5
< rzwl.‘{g%llrg*}?(zh S ST ,rn)<|2ko — 21(|)/\ |Zk0|> .
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By the continuity two-sided radial SLE at its end point and the continuity of (n — 1) point
Green’s function, we see that, under the law P7 , as 7 — 0, inrady ., (2¢,) — inradp,, (zk)
Trq z

Z1

and G =1 (29,...,2,) — CAJT21 (22,...,2n). Since lim,, or{ °P[r? < oo] = G(z), applying

Fatou’s lemma with r1 — 0, we get the conclusion. [

5.1 Convergence of Green’s functions

In this subsection, we work on the inductive step for Theorem Let 0 < r; < R;/S,
1 < j <n. Consider the event {77} < --- < 77" < 00}.

Fix §= (s9,...,5,) with s; € (r},|2; — 21| A\ |2;|) being variables to be determined later.
We define events

n
E,.;= ﬂ{dist(zj, K =) > s}, r>0. (5.1)
j=2
Now we decompose the main event according to £, .z, and write
Plr <o <1 < ool =Pt < - <7 <00y B8] + €]

By Theorem and ([2.5)), the term e] satisfies that, for some 8 > 0,

n n
S B
PR |l S (e —
' kl—[l : jZQ 25| A |25 — 2
We express

Plrit < - - <71/ < 00; Epyi
=P[r;} <oo]-E[lp, [Pl < - <7ir< oo|]:TTzll;Erl;§]\7'fll < o).

From Proposition [2.3| and Koebe’s distortion theorem, we see that, if

Tk
<=, 2<k<n, 5.2
sp N\ Ry, 6 =R=n ( )
then :
Plr2 <. <1im < OO|F7_511;E7:1;§] < HTZ_dFlel (29, .+, 2n)- (5.3)
k=2

Since Theorem [£.1] holds for n = 1, we see that, if

then



Now we express

7138

Pl < ool -E[lg, P2 <---<7" < OO|foll;ET1;§]|Tfll < 0]

:r%_dG(zl)E[lErl;gIP’[Tf; << < ool Fom BTy < oo] + e

From Lemma [3.4) and (5.3) we see that, if (5.2) and (5.4) hold, then
o B (el ALz — sy
< T () T (sl

|€2| ~ grk Rl ;!;I; Sk

Define the events

Ero = {dist(g,51(2)). Sic.,) 2 0lg,5 () ~ Upn | 2<j<n}, r0>0.  (55)

Fix a variable 6 € (0,1) to be determined later. According to the occurrence of E, .4, we
express

PG (2B, PlrE < - <7 < 00| Fai Bl < o)

:rf_dG(zl)E[lErl;ngrl;OP[Tfj < <TM < OOlfoll;Erl;g‘ﬂ B, g]|T7 < 00] + e3.

From Lemma [3.4] and and (5.3)), we see that
0 < 6* < ﬁ,erFﬁ (|2k| A |Zk _ Zl')aea
B k=1 ' k=2 Sk ‘

Let Z = Zz and 3 = Z(%), 2 < k < n. Define dp, 2 < k < n, and Q, for the

(n — 1) points z, 2 < k < n, using (2.3) and (2.4). Since Theorem holds for (n — 1)
points, using Koebe’s distortion theorem, we conclude that, for some constants B, ; > 0

and ﬁn—la 671—1 € (07 1)7 if

/\Bn,1 T,] 57’1—1 .
. < 2< i< n
Q Sj A Rj 8 ’ =J ="
then
n
d—2 n . 8l
‘ Hrk Plry <o <7 <oolFras sl — Gra (22,5 2n)
k=2

n

o~ Ts /Bn—l
<E =1 (29,...,% < Bn-1__J ) )

=2
Suppose FE,, .o happens. Let S = Sk .,. Since UTzll € S, from Koebe’s 1/4 theorem, we get
Trq r
dr 2 9" (zx)|(di A dist(zg, v[0, 77']) and

’Iry

2| < dist(g,z (2¢), 9)/0 < |9 (2)| dist(z, [0, 771) /0,
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which together imply that

[l < dist (2, v[0, 771]) /0 _ 1<dist(zk,'y[0,rfll])/9 v 1) < 971@
1.~ dk A dist 2k 0, TTle dk - dk ’
dy, g

where the last inequality holds because dy,dist(zx,7[0,772]) < |2|. So for some constant
C>1,

Q. (5.6)
Thus, if E,,.» happens, and

T 93"_15n_1

anl
. < ,
Q S N Rj 8CBn-1

2<j<n, (5.7)
then

n
’ H?,.g—Q}P)[TrZ; << TTZ: < OO“FTTzll;ET1§5m ETI;O] - foll (Z27 ety Zn)
k=2

n

T Brn-1
SE =1 (29,...,2 <9_B”‘1 B”‘l—]> .
~ Trll( 2 n)]; Q 3]' /\R]

Now we express

T%idG(Zl)E[lE NE

71;5 7160

Plry2 <+ < 7n < 00| Foas Eryys N Epyl| 77 < 00

T2

n

:rf_dG(zl)E[lETl;ngrl;g H T’%_dGTfll (z2,.. ., Zn)|7':11 < 00| + €.
k=2

Using Lemma , we see that, when ((5.7]) holds,

n

‘ *‘ <ﬁ QdFﬁ(|Zk|/\|Zk_Zl|)a <973 1QB 1 Ty >Bn1
e r T :
e k=1 * k=2 s ; sj N\ R;

k s

Next, we express

n

1 'G(2)ElL, om0 | | r,i—d@fll (22, -y 20)| 720 < 0]
k=2
n
= T,%_dG(zl)E[lErl;gGT;% (22,...,2n) |77} < 00] —ef.
k=1

The estimate on e} is the same as that on e} by Lemma [3.4]
To simplify the notation, we define for r > 0 and § € Ri_l,

B, —E[7? < o) Grs =15, Gon
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So far we have

n
Plrit <. - <710 < o00] = Hrz_dG(zl)E; (G322, ... 20)] + €] + €5+ e +e) —er
k=1

For R >r > s >0, define E, ;. to be the event

E, sr ={7[7*, 7] does not intersect any connected component of
{lz = 21| = R} N H_ = that separates z; from any z;,2 <k < n}. (5.8)

Fix variables 1y < 1 € (71, d;) to be determined later. According to whether E, . .., occurs,
we have the following decomposition:

G(2)ED [Cris(22,- - 20)] = G(2)ER 1g, . Grys(2, - - 20)] + 6.

From [I8, Lemma 2.1] we know that, for each 2 < k < n, there is a unique connected
component, say &, of {|z—z1| =m}NH,_ a1, which separates z; from z in H_ =1, and if there
is another & with this property, then & also separates z; from & in H_ SR ThlS means that,

if By, rmy does not occur, then y[771, 771] must intersect Up_; . By Lemma 2land Lemma
3.4, we have

ﬁ (|ZJ| A |z —21|> (n2)a/4

7j=2

Changing the time from 77! to 71, we get another error term e:

G(Zl)Ezl [1En1 r15M2 G\Tl, (227 e 7’Zn)] - G(ZI)EZi [1Er]1,r1;r2 a771§§'(Z27 Tt Z”)] + €7

To derive an estimate for e;, we use the following lemma, whose proof is postponed to
the end of this subsection.

Lemma 5.2. There exist constants B, > 0 and f.,d, € (0,1) such that the following holds.
Let 0 < a < b be such that zy € H,, dist(z1, K,) < |2; — 21| and dist(z;, Kp) > 55, 2 < j <n.
For2 < j <wn, let p; be the connected component of {|z — z1| = |z; — 21|} N H, that contains

zj; and let & be a crosscuts of H,, which is disjoint from p;, and disconnects p; from K\ K,
m Ha. Let d* = minggjgn dHa<pj7 gj) If

QB . e < 4§, (5.9)

then

=~ -~ ozl Az — 2\ @
G IGoliar - 20) — Culean. )| £ P[] (P2 o pamy

S
k=2 k
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We now apply Lemma with a = 771, b= 77, and & being a connected component of

{lz=2z1] =m}N H_: that separates 2z from z;. By comparison principle of extremal length,
we have

dp, (pr: &) = log(|zk — 21|/m2)/(2m) > log(dy/m2)/(2m), 2 <k <n.

Assume that

M2 + S < ]zk—zll, 2<k<n. (510)
Then E,, 1 N Erys = Epy vy N Eyy.s. Thus, for some constants B, > 0 and f,,d, € (0,1),
if
QB2 5, (5.11)
dy

and ((5.10)) holds, then

7zl Az — 2]\ @ M2\ P
Sk d1
k=2
Removing the restriction of the event £, ,. ..., we get another error term eg:
G(z)E7! [1}3771”1;,]2 Gois(22, ..., 20)] = G(21)ED [Gis(22, - - -, 20)] — €5

Here the estimate on eg is same as that on eg by Lemmas [3.2] and [3.4
Changing the probability measure from the conditional chordal E,, to the two-sided radial
E? , we get another error term eg:

G(2)E [Gos(22, - - 20)] = G(20)EE [Grus(za, - -, 20)] + €9

From [15, Proposition 2.13] and Lemma , we find that for some constant Gy > 0,

n
_ A « B
|€9|5FII<|2k Zl| ’Zk|> <ﬂ> E
k

Pl Ui

Let the event E,, o.,, be defined by (5.8). We now express

G(Zl)]E; [Gm;g(ZQ, e ,Zn)] = G(Zl)E; [1E @m;g(ZQ, e ,Zn>] —+ €10

11,05m2

Here the estimate on ejq is same as that on eg by Lemmas [3.2] and [3.4]
Changing the time from T;ll to 75" = T%,, we get another error term ej;:

G(ZI)E; [1E an1;§(227 R Zn)] = G('ZI)E; [1E @0;§’(ZQ7 R Zn)] + e11.

11,05m2 11,0;m2

If (5.10) holds, then E,, 0., N Eys = Ey o, N Eos. Apply Lemma with a = 71,
b=r1y" =T, and & being a connected component of {|z — z;| = n} N HTnzll that separates

zp from z;, we get an estimate on ej;, which is the same as that on e7, provided that ([5.11))
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holds. Note that the constants B,, (., . here may be different from those for e;. But by
taking the bigger B, and smaller 5, and ¢,, we may make both estimates hold for the same
set of constants.

Removing the restriction of the event £, o.,,, we get another error term es:

Gos(z2, - 2)] = G(20)EL [Gosl2a, - 20)] — ena.

Here the estimate on e} is same as that e by Lemmas [3.2] and [3.4]
Finally, note that Gos = lg, EGTz . Removing the restriction of the event Ej.z, we get
the last error term eqs:

G(Zl)]EZ [1E

11,05m2

~

G(21)EL [Gos(z2, - -, 20)] = G(2)EL [Gr, (22, -, 20)] — €13 = G215 - ., 20) + €13,

where by Lemma [5.1] the estimate on e;3 is the same as that on ej/[o_, 77~ d
At the end, we need to choose the variables so, ... s, and 1y, 10, 6, and constants C,, B, >

0 and 3,48, € (0,1), such that if (4.1]) holds, then (5.2 .!Fm all hold, r; < R;/8,

1 < j < n, and the upper bounds for |es| := |eX|/[[1_; 7% % 1 < s <5, and |es], 6 < s < 13,
are all bounded above by the RHS of (4 -

We take X € (0,1) to be determined, and suppose that
have

=X,2<j57<n We

\/\IZrZ I

T _( Rj) rj 1T ,
=1V~ =< X .= 2<7<n. 5.12
Sj/\Rj Sj Rj_ Rj’ =) =0 ( )

In the argument below, we assume that 5.11]) all hold so that we can freely

use the estimates we have obtained.
From the estimate on |e}|, we get

T5 Brn-1
|e4|<< }?62 n—1Bn— 1)(‘4u1 Bn— 10 Bn—1Bn-1 max (_i_) .
2<]<n }%

From the estimates on ej and ef, we get
les] S FX"0%, s e€{3,5}.
If we take @ such that % = §—Bn-18n-1 max2<j<n(%)6"—1, then we get
- J
r. afp 1
les| < FQPr—Pr1 X~ Bt max (—]> St 3<s <5,
2<j<n Rj

Choose n; and 1y such that % = L = #. Then we find that

2

9 =

71 ) 1(2AB«ABo)
d;

Since Ry < d;, combining with the estimate on e}, we get

|es‘ < FQB*B*X na(

L(SABABOIAB
“)“ U 5€12,6,7,8,9,10,11, 12}

) <F B*B* —noc(
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Combining this with the estimates on |es|, 3 < s < 5, we get

75\ B#
|€s| < FQBn 1Bn—14B«Bs y—na—fn-1 o (2L 2< <12,
1<j<n R ’
J

where By == 2($ A B A Bo) A B A A —2Bnt__ Since |ey|, |ers] < FXP, if we choose X such

a+Bn— lﬁn 1
that XB = X ne- Brn—1 max1<]<n( )5# then with ﬁn . % we get
N\ B
< Bn lﬁn 1+B B* </r'_-7) < <
les] S FQ max ) 1<s<13. (5.13)

NOW we Check Conditions (5.2)[5.4l[5.7 4|,-,| 10[5.11)) and r; < R;/8, 1 < j < n. Clearly,

7) implies (5 The LHS of (5.11) equals to QP+ (4+)'/* < QP+(#)'/%, and so it holds if
-'

Q3*;—11 < 6% Thus and both hold if Q3B* 7 < 63 Ady. Condition (5.10) holds
if 7y < 4 and s, < %|zk — 21| A\ |zx|, which are equivalent to 7+ < £ and X < 1, respectively,
which further follow from

B4na+pBy,_1

T 1\3+ B
J #
max — <
1<j<n Rj (2>

From ([5.12)) and the choices of X and 6, we see that ({5.7)) follows from

Bp— P Bp—1Bn-1
Br1 T X0P 16,4 On—1 T\ FFra+Bn_1 " atBpn_1Pn_1

Q max —- < = max | —- .

1<j<n R; 8C'Bn-1 8CPBr-1 1<j<n \ R;

Let Bg =1 — ﬂ+n§j—tﬁn4 — afg;f%i Since 4 < % we get g > 0. So || and
(5.7) hold if QP—1/% maxy <<, 7 < (53575)"/%. Thus, (5.2 .5 10]5.11) all hold if

Bp_1 T
Q3B*+ fe max — < 0y,
1<]<n ]
B+na+pBy,_1
34 et oy .
where 6, 1= 62 A6 A () TR A <so63—> <. Comblnmg this with (5.13]), we see that, if

we set B,, = SB*+B" L4 Bn- 15"5 1+ B , then whenever (4.1)) holds, UM5 10l5.11)) and
r; < R;/8,1 < j <mn, all hold, and the upper bounds for les], 1 < s < 13, are all bounded
above by the RHS of (4.2). It remains to prove Lemma E to finish this subsection.

5.1.1 Proof of Lemma [5.2]

Since K, C K}, we also have dist(z;, K,) > s;, 2 < j < n. Let K = g,(K, \ K,). Then
K is an H-hull, and g, = gx o go. Since g,(v(a)) = U,, we have U, € K NR. Since
g5(v(b)) = Uy, we have Uy, € Sk. Let rix =sup{|z — U,| : 2 € K}. From Lemma [2.5, we get
Sk C [Ua — 2rg, U, + 27"[(] Thus, ’Ub — Ua’ < 2rk.
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Define 2 = ga(2), pj = 6a(p;); & = 90(&), 5 = 00(2), P} = gs(ps); 2 < j < n. Then
p],p],ﬁa are crosscuts of H, 27 € pf, z € pj, and f“ disconnects K from pj. By conformal
invariance of extremal dlstance we get

du(ph, Sx) = du(p}, K) = du,(pj, Ko \ Ka) > dp,(p;, &) > d..

Applying Lemma [2.9[to p? and K, and to p? and Sk, respectively, we get
pplying P Pl

diam(pf) diam(K) ] .
— A1) —F—— A1) < 1dde™™, 2<5<n; 5.14
(dist(pg,K) ) (dist(pg,K) ) < ldde 7, SJ=n (5.14)

diam(p® diam(S
(# 1) (M M) S1e™ 2<j<n (5.15)
dist(p}, Sk) dist(p}, Sk)
Fix a variable ¢ € (0,1) to be determined later. Define the event E,.4 using (5.5)) but with
77 replaced by a (instead of 771). First, suppose E,.4 does not occur. Since dist(z;, K,) > s;,
2 < j <mn, from Lemma we get

Sk

G(21)Ga(2a, s 20) < Fﬁ ('Z‘“’ Al = Zl')“w. (5.16)

Fix some j € {2,...,n} for a while. Applying Koebe’s 1/4 theorem, we get
dist (2], Sk, ) < |g(2;)| dist(z, K) < |gp(25)] dist(z;, Ka)

= |9k (z)119a(2;)] dist(z;, Ka) =< |9 (27)] dist(2], Sk, )

and
]z;’ —Up| > dist(z?,SK) = g (25)] dist (25, K).
Now we consider two cases.

Case 1. diam(Sk) < dist(z}, Sk )/4. In this case, since 2§ = fi(2), applying Lemma.

we get dist(z%, K) > 2diam K , which implies that dist(z], K) =< |2§ — U,| since U, € K.
% J

. dist (2%, dist(2%,Sk,
From the above two displayed formulas, we get ljz(:inb) < ljz(fiUIT ).
, “—U,

Case 2. diam(Sk) > dist(2?, Sk)/4. From (5.15), we have

diam(p’
# < 576", (5.17)
dist(p}, Sk)
if
144e™ ™ < 1/4. (5.18)
Since dist (21, K,) < |2; —21], and p; C {|z— 21| = |2z; — 21|}, we see that either p; disconnects

Kb from oo, or p; touches K. The former case implies that diam(p5) > dist(pY, Sk) because
dlsconnects K from oo, which is impossible by ) if ( - holds In the latter case,
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0% = gs(p;) touches SKb, and so dist (2}, Sk,) < diam(p}). On the other hand, smce U, € Sk
and 2% € p we get |z — Uy > dlSt(p], Sk). Thus by (5 , we have dlst( Sk,) <
576 7|2t — Uy if (5.18) holds.

Comblmng Case 1 Wlth Case 2, we see that, if (5.18 - ) holds and E,.; does not occur, then
for some 2 < j < n, dist(2?, Sk,) < (¢+e ™% )|z — Uy|. This together with Lemmas 3.4 and
that dist(z;, &) > s, 2 § j < n, implies that

G(21)Ch(z0 . 2) S F]] (’Z“ Az = Zl')a(w 4 gmomd), (5.19)

Sk

Now suppose that E4 occurs. Since 2¢ € p4 and U, € K, we have |2¢ —U,| > dist(p4, K).
We claim that diam(p}) > dist(2], Sk, ). If this is not true, then the region bounded by pf in
H is disjoint from Sk, , which implies that p; = g, 1(p?) is also a crosscut of H, and the region
bounded by p; in H is disjoint from K,. Since p; is an arc on the circle {|z — 21| = |z; — 21|},
this would imply that dist(z1, K,) > |z; — 21|, which is a contradiction. So the claim is
proved. Thus, we have

c'ham(pj) > dist(zf, Sk,) > 6 (5.20)
dist(p$, K) 12§ — U|

From (5.14), (5.20), rx < diam(K) and z§ € pf, we see that

I 144 ,
T S D 5.21
dist(z0,K) = ¢ 0 C=d=T (5-21)

as long as the RHS is less than 1. Applying Lemma with zg = U, r = rk, and z = 27,
from 20 = gx(2}), we see that, if

— < 5.22
(b 57 ( )
then | , |

Imz? — Im 2¢ r 2
b_ el < ) D<) 5.23
5 =5 ST Im 2§ — \dist(2}, K) ’ ( )

TK 2

—1 (—) . 5.24
() =1 < 5o (5:20

Let %\;‘ = 29— U, and /Z\;} = zjb — Uy, 2 < j <mn. Since |U, — U,| < 2rg, from (5.23)), we find
that, if (5.22)) holds, then

2 - %)

< rK | Im 2} — Im 2¥ | ( T >2 (5.25)
28] 7 Cdist(zf, K)’ Im z¢ dist (24, K) '

J
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By definition, we have

a(J,(Z27 :H ga Z] ‘2 dG )

65(227 s >Zn) = H ‘gg(zj)Fid@(/’Z\ga e 7/Z\Z>

j=2
n n R

= [T19k GO T [ lga(=) PGS, - 20,
j=2 j=2

Define @a7b(22, czm) = [ |g;(zj)|2*d@(2§’, ..., 22). From ([5.24)) we see that there is a
constant ¢ € (0,1) (depending on n) such that, if

K
AP 5.26
dist (24, K) = (5:26)

then
2

Gap(22, .., 2n). (5.27)

K

~ _ A < (——r
|Gb(22, R ,Zn) Ga,b<227 R ,Zn>| ~ (diSt(Z;L, K))

Define Jk, 2 <k <n,and @ using {) and 1} for the (n — 1) points z5,...,z% Since
Theorem holds for (n — 1) points, from (5.25)) we see that, for some constants B,,_; > 0
and ﬁn—l; 671—1 € (07 1)7 if

b 2a b 2a

~ Z? -z Imz? — Im?Z2®

QBn*l . —| - ]‘ < Op_1, ’ I] = ]l < Op_1,
J J

then

|CA¥ab(ZQ,...,zn) ~ G, (22, s 20)|/Fa(22y - -y 2n)
. 1|Z Aa| Pn-1 |Imz — Im 27|\ Ao
<Z(QB ) +< e ) )

Since E,., occurs, (5.6) holds here with ¢ in place of # by the same argument. Let By =
B,,_1 + 1. Then, for some constant C' > 1, if

OB 2 — 21| ¢Bo§n71 | Im 20 — Tm 29| _ (5.28)
|Z | C'Bo ) Im?? n—1; .
then
Gan(zo,. ... 2 )—@a(ZQ,...,zn)y/Fa(z2,...,zn)
L %\a’ Brn—1 ‘Im%\b — IHl/Z\a‘ Bn—1
—Bo BO J J J . 529
~ 2 (¢ 5l ) Im 27 )") (5:29)
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From 1} we see that the RHS of 1.} is bounded above by a constant. Since G, < F,
by induction hypothesis, we get Gab < F, as well. From (| .27 and 1} we see that if

(5.26)) and (5.28| ) both hold, then

Go(za, - 2n) — Gal2 .-, 20) | Fa(2a, - ., 2)

22\~ Iy s
(aem) +Z(( ) mZImz.mz ")

<¢ e —27d +<¢ BO 1QBO€ Wd*)ﬁn 1 +(¢ 2 *27Td*)/8n 1 < ((b Bo— 1QBOe*ﬂ'd*)/Bn 1

where the second last inequality follows from (5.21)), (5.25), and that |z; — 21| > dy, and the
last inequality holds provided that

¢ 2e I < 1. (5.30)
Since dist(z;, K,) > s;, 2 < j <n, from Lemma , we get

AR

G(20)|Gilz2, - 2) = Calza o 2) S T (

k=2

& —Bo—1)Bo ,—mds\Bn_1
) (6
Combining the above with (5.16}5.19)), which holds when E.,; does not occur, we find that,

as long as Conditions ([5.18)[5.22/[5.26[/5.28)[5.30) all hold, no matter whether E,.;, happens,
we have

G(2)|Gy(22, ., 20) — Gal22, - ., 20)]|

- 2l N2 — 21|\ @
SFH (| k| | k 1|> [6—a7rd* +¢a + (¢—Bo—1QBOe—7rd*)Bn,1]‘
k=2

Sk

Finally, we may find constants b, B, > 0 and $,,d, € (0,1), such that, with ¢ = ¢=27d
if holds, then (5.18}/5.22]/5.26]|5.28|}5.30)) all hold, and the quantity in the square bracket
of the above displayed formula is bounded above by a constant times (QP*e~74+)%< This is
analogous to the argument after the estimate on e;3 and before this proof.

5.2 Continuity of Green’s functions

We work on the inductive step for Theorem in this subsection. Suppose z/,...,z/ are
distinct points in H such that z§ is close to z;, 1 < 7 < mn. Let T =T, = 7;' and

=T, = o ', The main part of this subsection is composed of two lemmas.
Lemma 5.3. With the induction hypothesis, Theorem holds if 21 = 2.

Lemma 5.4. With the induction hypothesis, Theorem holds if z;, = 2, 2 < k < mn.
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Before proving these lemmas, we first show how they can be used to prove the inductive
step for Theorem [4.2] from n — 1 to n. We have

IG(2), 2, ..., ) — Glz1, 29,y 2]
<|G €

<|G(2, 2, ... ) = G2, zay . 2) | + |G (2L 20y 20) — Glz1, 22, 2)| = L + Do

By Lemma for some constants B > 0 and ﬁ,(f), s e (0,1), Iy is bounded by the RHS
of when holds for j = 1. We need to use Lemma to estimate I; with the
assumption that 2] is close to z; but may not equal to z;. Define dj, and [}, 1 <k <n, Q'
and F’ using and for the n points 21, 21, ..., 2,. From Lemma we know that,
for some constants B/, > 0 and /!, 6! € (0,1), I; is bounded by the RHS of when
holds for 2 < j <n, with d}, Q" and F" in place of d;, @ and F, respectively. Suppose

|2} — 2z1] < di/2, Tmz] =< Imz. (5.31)

Then we have |z1| < |21 and |z — 21| < |2k — 21|, 2 < k < n, which imply that d}, < dj and
lj, < Iy, 1 <k <mn, which in turn 1mply that Q' < @ and F' < F.

Thus, there are constants B >0 and Bnl), s e (0,1), such that I; is bounded by the
RHS of when holds for 2 < j < n. Finally, taking B,, = BT(LD\/B,(TQ)7 Bn = 7(L1)/\ﬁ(2)
and 9, = s AP AT /8, we then finish the inductive step for Theorem from n —1 to n.

Proof of Lemma- Deﬁne Ey.z and Eyg usmg and (| . ) for z1, z9,..., 2z,; and define

Ep.z and E, using (5.1)) and ( . ) for zl,zz,..., ’.

Fix 5= (S2,-..,5n Wlth sj € (125 — 2,125 — z1| A |z;]) and 0 € (0, 1) being variables to
be determined later. From Koebe’s 1/4 theorem and distortion theorem, we see that there
is a constant 0 € (0,1/10) such that, if

|25 — 2] ‘
ST o5 2< i<, (5.32)
S

and Ey,z occurs, then
4gr(2}) — gr(2)] < dist(gr(2;), Skr) < lgr(z) —Ur|, 2<j <n,

which implies that
Eo;gﬂ E(/);QQ C E();g N Eo;@ C E();g N E(/);Q/Q. (533)

Since 0 < 1/2, (5.32)) clearly implies that
E6;2§’ C E0;§ C E(l);g/Q. (534)
Suppose (5.32)) holds. First, we express

a(2’/17 2y .- 7Zn) = G(Zl)E; [GT(Z% R zn)] = G(Zl)Ezl[lEo ﬂGT(Z% s 7ZTL)] + e1;
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rn rn

Using Lemma and ((5.34)), we find that there is a constant § > 0 such that

Glo1, 2y, 2h) = G(2)EL [Gr(2h, ... 20)] = G(20)EL (1, .Gr(2h, ..., 20)] + €.

S

n ) 38
D<o S P (Y.
! JZQ 2| A |25 = 2|
Second, we express
G(2)EL 1y .Gr(2o, - -+, 20)] = G(20)EL [Liy s Gr (20, - -, 20)] + €33

G(20)ES, [, .Gr(z, -, )] = G(21)EL, [Lay my Gr (2, - 20)] + €.
From Lemma m, 5.33@, and that G < F holds for (n — 1) points, we get

Flj <]zj\ A |Z] Zl’) 0°

Now suppose Eyz and Epg both occur. Let Z = Zr, 2; = Z(z;) and 2 = Z(z}),
2 < j < n. By definition, we have

~

Gr(za, .. z) = [[ 190 () PG (3, . Z0);

I
=

<.
|
N

Gp (I G- 2.

—.

||
N

éT(Zé,... Z,) =

’n

J

Define G/p(2),...,2.) = T, ()7 %G (3}, ..., 7). From Koebe’s distortion theorem,

’rn n

there is a constant ¢’ € (0, 1) such that, if

|2 — 2]

<d, 2<j5<n, (5.35)
5j

then

Gr(zh, ..., 2) — G2y 2| S

rn

G, ). (5.36)

’n

Define c?k, 2 <k < n, and @ using 1} and l} for the (n — 1) points Zy,...,2,.
Since Theorem holds for (n — 1) points, we see that, for some constants B, _; > 0 and

671—17577,—1 € (0, 1), lf

—Zi | Tm 27 — Tm Z}|
R R T e PR
J
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then
G(Z. . 2= GG, 2/ F G 50)

n

- (- J%:%\)ﬂn ' <!Im2;—1m2jy)an1>.
j=2 dj Iij

If Eo.p occurs,(5.6) holds here by the same argument. Let By = B,,_1 + 1. Then, for some
constant C' > 1, if

Z-3 05, |mZ-Im3

.= - 5.37
- e e nt (5.37)
then
Glp(Zy -1 2) = Gz, 2) |/ Fr(za - 2)
n ~ ~
< ((9 BOQBO|Z Z]|>Bn - (|Imzj —AImzj|>6n1>' (5:38)
j=2 ]‘ ImZJ

From we see that the RHS of (5.38) is bounded above by a constant. Since
GT < FT, we get Glh(2h, ... 2) < Fr(z,...,2,). From (5.36) and (5.38), we see that, if

~J

and (5.37) both hold, then
|@T(z;, o 2 = Grlza, 2|/ Frlze, . 2)

— Z; | |/Z\/ —_ /2?| /Bn—l | Im? - Im/Z\| Bn—l
< J <0—Bo Bo '7J J ) < J J ) ) 5.39
Z ( == ) " (s (5.39)

Applying Lemma to K = Ky and using Z = g7 — Ur and Ur € Sk,., we find that, if
(5.32) holds, then for 2 < j < mn,

|2 — Zj] < |2 — 2| [ImZ) — Im Z} |Imz§~—1mzj| <|z;-—zj|>1/2 (5.40)
1z~ s Im Z; S Im z; S; '
Thus, there is a constant Cy > 0, such that if
P . 125 = %l < 0%z |Imz —Imz| 4, (5.41)
S Co Im z; Co’

then (5.37) holds.

Now we express
G(Zl)E; [1Eo;gﬂE0;0@T(Zév R Z;L)] = G(zl)]E; [1E0;§WE0;9@T(Z27 sy zn)] + es.
From (5.395.40) and Lemma [3.4] we find that, if (5.32)5.35][5.41)) all hold, then
- A2 — 21\ @ |25 — 2j|\ Bn-1/2 | Im 2/, — Im z;|\ Bn—1
ST () (e )T () )
lesl 5 j[[z 5; Z @ S; * Im z;
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At the end, we follow the argument after the estimate on e;3 in Section [5.1. First
suppose that m =X, 2<j <n, for some X € (0,1) to be determined. Then we
25—

have —/—- < X1. M, 2 < j < n. Then we may set
s d;

J

|25 — 2]\ @ |25 — 2]\ | Im 2} — Im zj|\ e
6 = max <—> , X = max <—> \/max( )
2<j<n \ d 2<j<n \ d 2<j<n Im z;

J

for some suitable constants a,b,c¢ > 0. It is easy to find those a,b,c and some constants
B, > 0 and f,,0, € (0,1) such that the upper bounds for |e;], |€]], |ez|, |€5], |es| are all

bounded by the RHS of (4.4) with 2 = z1, and if (4.3)) holds, then (5.32}f5.35}5.41f) all hold.
[

The proof is now complete.

Proof of Lemmal[5.4 Fix s; € (|21 —z1|,|z;— 21N %)), 2 < j <n,and gy > n > |2 — 2| de-
pending on k,n, 21, 21, 22, . . ., 2z, to be determined later. Define Ey.z, E,, .5, and E;, .y, using

, , and 1} respectively, for 2y, 2a, . . ., 2,. Define Ej ; using for 21, 20, ..., 2n,

let B = Ej5 and define

B} o, =17[71, T2 ] does not intersect any connected component of

{lz = 21| = m} N H, = that separates 2y from any 21,2 < k < n}.

First, we express

o~

G(Zl, ST ,Zn) = G<21)E:1[1E0;56T21 (ZQ, Ce ,Zn)] + €1,

G2, 29, ... 2) = G(zi)EZi[lE&s_@Tz,l (22, ...y 2n)] + €].

Now suppose ([5.31) holds. Recall that we have |z; — 21| < |2; — z1], 2 < j <n, Q' < @ and
F" < F. By Lemma 5.1} we see that there is a constant § > 0 such that

n

S B
S S| R I
o ]Z:; 2| A |25 = 2|

Second, we express
G(21)EL 15, .Gr., (22, - 2)] = G(21)EL [Liysn,, 05G1, (2, -, 20)] + €3]

G(zi)EZ [1E6;;GTZI1 (29,...,20)] = G(zi)EZ [lE(/];ng/ GTZ,1 (29, ..., 2n)] + €.

11,0;8

From Lemma 3.2 Corollary 3.3} Lemma and that |z; — 21| < |z; — z1] and F' < F, we

get
0<eney SF]] <—‘Zﬂ" Az _Zl‘>“<ﬂ>“/4
— ) -2~ N
2 Sj 72
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Third, we change the times in the two expressions from T}, and T, respectively, to the
same time 7!, and express
G(Zl)Ezl [1E0 sNEn 0, qGT21 (22, . ,Zn)] = G(Zl)EZI [].Enl sNE,,, OSG (22, . ,Zn)] + €3,

~

G(Zi)]EZ [1E(l);§nE;;1,o;§GTz’ (22, ceey Zn)] = G(Zi)E [1E’ _nEm 0:5 G7—711 (22, ce 7Zn)] + 6%.
Now suppose (5.10) holds. Then E, o.,, N Eys = Ep oy, N Eog and B} 0in2 N E7I71 z =
B o N Bz Applying Lemma with a = 771, b =T, or b = T, and using Q' < Q,

F' =< F and |z; — 21| < |2; — 21|, we find that, for some constants B, > 0 and f,, 9, € (0,1),

if (5.11)) holds, then
T (12l A 12 = 2 2
esl. [el] < F (Izgl ) )(g)
lel, Jes] ]HQ o Q™ g

Note that the proof of Lemma uses Theorem for n — 1 points so we can use it

here by induction hypothesis. Removing the restriction of the events E, o.,, and E77 O WE

express

G(21)EL [1p,, G (22, 2)] = G(Zl)]E;[lE,,l;géfjll (22,5 20)] — €43

n1;8" n1,0;8

G(21)EL [1E’ LB s

Goa(2,. 0 2)] = G(2)EL g Goalz ..z - €.

The estimates on ey, €} are the same as that on e, €5 by Lemma [3.2] Corollary 3.3] Lemma
3.4 and that F' < F' and |z; — 2| < |2; — 1.
Changing G(z]) to G(z1) on the RHS of the second displayed formula, we express

G<21)Ezi[1E,l71;géTsll (22, 20)] = G(21)EL [1py j@ﬁ’;’ll (22, .., 2n)] + e5.

From ((1.2)) and Lemma |3.4] we see that there is a constant § > 0 such that, if

|21 — 21| | Tm 2] — Tm 2|

< 0,

| 21| Im z;

<4, (5.42)

then

les] <FH<’Zk’/\’Zk_Zl‘) (\zl — 2| N | Im 2] —Imzl\>‘

Pl Sk ’Zl| IHIZl

Finally, we express

G<21)Ezi[1E;71§GT;11 (ZQ, ceey Zn)] = G(Zl)]E; [1E,71 SG (ZQ, Ce ,Zn>] + €g.-
Since E = I, .5, the random variables in the two square brackets are the same, which is

F. - measurable By Lemmas |2 - and |3 H we see that there is a constant § such that, if

|21 — 21
Ui

< 0, (5.43)
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then

o] < Fﬁ (\zk| Al —21\>a<\21 - z1|>‘
oo Sk n
At the end, we follow the argument after the estimate on ej3 in Section [5.1] Suppose
that ——2— = X, 2 < j < n, for some X € (0,1) to be determined. Pick 7;,7, such that

zj|N\|zj—2z1
|21 —|zll|)n1 :I N1 /M2 = n2/dy. It is easy to find constants a, B,, > 0 and £, 4, € (0,1) such
that with X = (Eizha holds for j = 1, then Conditions (5.31][5.10]5.11l5.425.43
all hold, and the upper bounds for |e;|, 1 < j <6, and [€}], 1 < j <4, are all bounded by
the RHS of . The proof is now complete. O

6 Proof of Theorem 4.3

In this section we want to show the desired lower bound for the multi-point Green’s function.
The method of the proof is based on the generalization of the method used in [16] and [13]
to show the lower bound. We find the best point (almost means the nearest point but we
make it precise) to go near first and we consider the event to go near that point before going
near other points (as much as possible). This can be done by staying in a L-shape as defined
in [16]. It is possible that we can not go all the way to a specific given point since couple
of points are very near each other. In this case we can stop in an earlier time and separate
points by a conformal map. We will go through the details about this general strategy in
this section. Following Lawler and Zhou in [16], we define for z € H and p € (0, 1),

L, =10,Rez]U[Rez,z|,
and B
L,,={2 € H|dist(z, L,) < plz|}.
A simple geometry argument shows that, for any z, € H \ {0} and p € (0,1),

L,,Nn{z¢€ H : 12| > |20l} C {|z — 20] < /2p|20]} (6.1)

Now we state a lemma which shows what happens to points which are not in the L-shape
when we flatten the domain.

Lemma 6.1. Suppose 0 < p < %1. Then there exists ¢ < oo such that the following holds.
Suppose z € H, 21,20 € H\ L, 5,, and v(t), 0 <t < T, is a chordal Loewner curve such that
v(0) =0, v(T) = 2z, and 7[0,T] C L, ,. Let Z = Zr be the centered Loewner map at time
T. Then we have the followings.

|Z'(z1)] =< 1.

Im(Z(z)) < Im(z).
1Z(z1)] = [z1].
| Z(21) = Z(22)] S |21 — 2.
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Finally if 21, 2, . .., 2, are distinct points in H\ L., and r1,...,7, > 0 we have
F(Z(z1),. ., Z(z0); | 2" (20)|r1s - 12 (20)|rm) 2 F(215 -0y 20Ty ooy )
The implicit constants depend only on k and p.

Proof. The proofs for first 3 equations above are in [16, Proposition 3.2]. For the second to
last one, suppose 7 is a curve in H \ L, 5, which connects z; and 2z and has length at most
c1|z1 — #2|. If the closed line [ passing through z; and z; does not pass through L, 5, then
it works otherwise we go on the [ until we hit L, 5, then we go up on L., to modify pass
such that it does not pass through L.,,. Then the length of the image of n under Z is at
most ¢z|z; — 22| by derivative estimate. The last statement is a result of the definition of F’
and the previous equations. O

Remark We expect that |Z(z1) — Z(22)| < |21 — 22| holds in the statement of the lemma.
We do not try to prove it since it is not needed.

The same proof gives us the following modification of Lemma [6.1] Suppose the chordal
Loewner curve v satisfies that v[0,7] C {|z| < R}. Suppose z1,..., 2, € {|z| < 2R}. Then
all the results of the Lemma holds for zq,...,z, as well. These results also follow from
21, Lemma 5.4]. See, e.g., the proof of Corollary [4.4]

Now we strengthen [16, Proposition 3.1]. We quantify the chance that we stay in the
L-shape and at the same time the tip of the curve behaves nicely.

Proposition 6.2. There are uniform constants Co,C1 > 0,N > 2,0y > 1 > by > 0 such
that for every 0 < 6 < 1, there is Cs > 0 such that for every zp € H\ {0} and 0 < r < %
there exists stopping time 1o = 73(20,7) such that the event E,, defined by 7o < oo and

(i) dist(zo,v[0,70]) € (b1, bor),

(i) 7[0,70] C Lz,
(i) dist(gr,(20), Sk.,) = Colgr(20) — Ury| = Co|Zry(20)],
(iv) |Zry(20)| < C1v/Tl20],

satisfies that

]P)zg [E‘Fo] > C&; (62)
P[E,,] > CsF(zo;7). (6.3)
Proof. By scaling we may assume max{|zo|,y0} = 1, where g = Rezy and yo = Im z.

Then |z| < 1. We first prove (6.2)), and consider two different cases to prove this. First we
consider the interior case when r is smaller or comparable to 1y, and then we consider the
boundary case when r is bigger or comparable to yy. Also throughout the proof we consider
N as a fixed number (greater than 2) which we will determine at the end.
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Interior Case: Suppose for this case that r < 10yy. Define the stopping time 7 by

7= inf{t : dist(y(t), z0) = % Arl.

By [16}, Proposition 3.1], we know that there is u > 0 depending only on x and % such that
for every zy € H, P} [v[0,T,] C LZO%] > u. By this we know that

PL, 10,7 C Ly 5] > u.

Let E denote the event v[0,7] € L, 5. Now define 75 by

Z07%
. Yo r
it T(z) = 22 A L
7o = inf{t : Ty(z0) = 755 A 5

where Y4(zp) is the conformal radius of zy in H;.

Now we want to show P} [E,,|E] > ug for some constant ug > 0. Since P -a.s. Tr, < oo,
we have [P} [7y < oo] = 1. By Koebe’s 1/4 theorem, we immediately have Property (i).

For Property (ii) let E} denote the event that after time 7, v stays in L., 5 till 7. Since
dist(v(7), 20) < r < £, there exists at least one connected component of {|z —z| = )} N H,
that disconnects v(7) from oo in H,. After 7, in order for y to reach 0L, s, it must intersect
that arc. By Lemma n we have [P} [Ei()@] > 1— CN~° for some constants C,c > 0 .

For Property (iii) we use [16, Lemma 2.2]. By Koebe’s 1/4 theorem we know that
log(Y,,) — log(Y,) < —1. By [16, Lemma 2.2], for any p < 1 we have #, > 0 such that

P2, [im Zz,(20) /|27 (20)] = 6ol =] = p.

Call the event Im Z; (20)/|Z+,(20)| = 0o as EZ. If E2 occurs then Property (iii) is satisfied
(with the constant depending on ) because dist(gr,(20), Sk,,) > Im Z,(20).
If we choose p € (0,1) and N > 2 such that ug = p — C N~ > 0 then we have

P: [EL NEZ|E] > P [EL|E|+ P [EZ|E]—1>p—CN °=uy>0.

So P; [E} N E2] > uuy > 0. We have seen that Properties (i)-(iii) are satisfied on the
event E! N E2. For Property (iv), set Z = Z,, and let II = {z € H : Im(z) = 10}. Then
Im Z(z) < Imz = 10 for z € II. Consider the event that Brownian motion starting at z hits
IT before hitting [0, 7o] UR. By Property (i) and Beurling estimate it has chance less than
c+/r for some fixed constant c. After map Z, the chance that Brownian motion starting at
Z(zp) hits Z(II) before hitting R is at least Im(Z(z0))/10 by gambler’s ruin estimate which
has the same order as |Z(zy)| when EZ? happens. So we have Property (iv) on the event
El NEZ. Thus, E} NE2 C E,,. This finishes the proof of in the interior case.

Boundary Case: For this case assume that 1 > r > 10y,. Without loss of generality we
assume xg = 1. Then zy = 1 4 1yg. We follow the steps as in the interior case just we have
to modify some definitions for the boundary case. First, following [I1] we consider

ry=inf{zx >0: T, >t}, Dy=H,U{Z:z¢€ H} U (x;,00),
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Xy = Zt<1) = gt(l) - Ut, O, = gt(llft) - Ut;
X;— 0O X; — O
Jy = : t; Tt(1> = tX tgft(l)-
t

Note that T; is 1/4 times the conformal radius of 1 in D;. So we have

}ldist(l, 0D,) < T.(1) < dist(1,0D,). (6.4)

Take
7 = inf{t : dist(y(¢), 1) = 100r}.

By [16l Proposition 3.1], we know that there is u > 0 depending on s and % such that
Pi[y[0,T1] C Ll,%] > u. Let E denote the event that [0, 7] C Ly s. Then Py [E] > u. Now

take 19 as
= inf{t : T4(1) = 8r}.

Since Pi-a.s. Ty < oo, we have Pj[ry < oo] = 1. By (6.4)), we immediately have Property
(). Let ET° denote the event that after 7, the curve stays in Ly s till 77. Using Lemma
as in the interior case, we get P} [EHE] > 1— CN~¢ for some constants C,c > 0. If E}
happens, since Ly 5 C L,, 5, we have Property (ii).

By Koebe’s 1/4 theorem we know that log(Y,,) — log(Y,) < —1. By [L1l, Section 4] we
have that for any p < 1 there is 6y > 0 such that

]P)T[JTO > QOifT] > p-

Call the event J;, > 6 as E2 . Since |29 — 1| = yo and dist(zo, K+,) > 2r > 20y, by Koebe’s
1/4 theorem and distortion theorem we get |gr,(20) — gTO( )| < 2dist(gr,(20), Sk,, ). Thus,
by triangle inequality, dist(gr,(20), Sk,,) < dist(gr(1), Sk, ). Since U, € Sk, , we have
|gTo(ZO) gTo( )| < 9|gTo(20> UT0| SO we also get |gTo(ZO) U | |g7'o( ) UTo|' It EZO
happens then the Property (iii) is satisfied at the point 1 with Cy = 6, and so is also satisfied
at the point zy with a bigger constant by the above estimates.

If we choose p € (0,1) and N > 2 such that ug = p — CN~¢ > 0 then we have Pj[E} N
B2 |E] > ug. So P{[EL N E2] > uug > 0. Since dist(29,7[0,70]) > 2r, until time 7 the two
probability measures [P and P} are comparable by a universal constant ¢ by [16, Proposition

2.9]. So we get P% [E] A E2] > uug/c > 0.

We have seen that Properties (i)-(iii) are satisfied on the event E! N EZ. For Property
(iv), similar to the interior case, we use Beurling estimate. Take D = D,,. Brownian motion
starting at 1 has chance less than c¢y/r to hit II = {Imz = 10} before exiting D. By
conformal invariance of Brownian motion, this implies that distance between (—o0, O,,) and
Z7,(1) which is X — Oy, is not more than ¢/r, which then implies g, (1) % because

~Y

1, <. Since Jry > 0o, we have |Z, (1)] < +/r. By Koebe’s distortion theorem we get

| Z7(20) = Zry(1)| S g, (D)2 — 1] S /7. So we get |Z,,(20)] S v/, as desired. So we get
E! NE2 C ET0 This finishes the proof of (6.2) in the boundary case.
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Finally, we prove (6.3). From [I5, 16] we know that P is absolutely continuous with
respect to P on Fr, N {7y < oo}, and the Radon-Nikodym derivative is

| Z 7 (20)|* Im(Zr (20)) 2~ c H:
—dl e, 2—d)—a 20 )
192, (20) P20l g

Zrn (20)|¢
‘\g;‘()(_fo()ﬁ)?LOW 2 € R\ {0}.
Recall that in both of the above two cases, we defined events £ and EZ such that E} NEZ C
E., and P} [E} NEZ] 2 1. So it suffices to show that R < F(z;7) on E2.
In the interior case, suppose E2 happens. Then Im Z; (z0) < |Z;(20)|. They are also
comparable to dist(gr,(20), Sk,,) because Im Z (20) < dist(gr,(20), Sk.,) < [Zr(20)]- By
Koebe’s 1/4 theorem we get

dist(gr, (20), Sk, ) __ dist(zo, K,)* r2—d

= = = = F(zo;7).
—d)—« —d)—« !
|95, (20) 2= 20|y~ 20|y

—

|z0]oy S

|Zrg (20)]
19 (z0) [~ 0]

E2 happens. Then |Z;(2)| < dist(gr,(20), Sk, ). By Koebe’s 1/4 theorem we get

In the boundary case, by Koebe’s distortion theorem, we get R =< Suppose

_ dist(gr,(20), Sk, )™ dist(z, Kr)* _ r®

= = = = F(zo;7).
EACHERIE I T
So we get R < F(zo;7) on E2 in both cases. The proof is now complete. ]

Remark. Note that we expect that F'(zo;7) is comparable to the probability that SLE goes
to distance r of z5. So We showed that there is a good chance to go to distance r of zy in a
”good way 7. Once we have this we can prove Theorem

Proof of Theorem[{.3 We prove the theorem by induction on n. For n =1 it is a corollary
of Proposition [6.2] Suppose that n > 2 and the theorem is true for 1,...,n— 1 and we want
to prove it for n. We consider different cases.

Case A: There exist R > 2(maxi<j<,—1 R;)r > 0 and 1 < m < n — 1 such that |z;| < r,
1 <j<m and |z| >R m+1<j<n Letr=Vr7r and ' = R/2. From the
induction hypothesis, we have P[rg < Ty2j=r}] 2 F(21,--.,2m;71,...,Tm). Let £ denote
the event 7o < 7y.1=}. Let 5(t) = Z;(v(70 + 1)), 2; = Zr(2;), and 75 = |Z] (2;)|r;/4,
m+1 <7 <n. By DMP of SLE, conditionally on F,,, 7 has the same law as . Let 7¢ and
77 be the stopping times that correspond to 7. By induction hypothesis, we have

5~ . ~ o~ ~
P[TF; < T{el=Rnm Sy 15 M T 1 <G < 1| Frgs Ergl 2 F(Zinaty -« s Zn; Tt ds - -5 T )-

Suppose E,, happens. Then K, C {|z|] < r'}. By Lemma and that U, € Sk, we
have |Z,,(z) — z| < 5 for any z € K,,. Let E denote the event on the LHS of the above
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displayed formula. By Koebe’s 1/4 theorem, we see that E, N E C N {7 < T(z=rmy }s
where 7" = 61" + Ry, Y541 (|25] +577). Since 7" < R < |z,[, we can find a constant R,
such that r” < R, > "7 | |z]. Thus,

Plr7 < T(e)=ra 50, 1251) = PlER N E] = E[E, ] - E[P[E|Fry, B, ]]

Jj=1

ZF(z1y oy z2mi Ty oy Tm)  EBIF (Zots - o5 205 Tt 1y -« 5 Tn) | Frg s g -
ZF(z1, o zmi e Tm)  F(Zmats oy 205 Tty -+ -5 T
SF (21, oy 2n5 Ty ooy T

where the second last estimate follows from the remark after Lemmal6.1], and the last estimate
follows from Lemma [3.6| because dist(zj, {z1,...,2m}) < |2;|, m +1 < j < n. The proof of
Case A is now complete.

We will reduce other cases to Case A or the case of fewer points. By (2.7) we may assume
that z; has the smallest norm among z;, 1 < j < n. Fix constants p; > --- > p, € (0,1/2)
to be determined later.
Case B: {z1,...,2,} \ L., ,, # 0. By pigeonhole principle, Case B is a union of subcases:
Case B.k, 1 < k < n — 1, where Case B.k denotes the case that Case B happens and
{Zlv R Zn} N (Lzlvpk \ Lzlvpk+1) = @
Case B.k: In this case we have {21,...,2,} \ Lo p, 0, {21, 20} N (Lzy gy \ Ly pryy) =
0, and {z1,...,2,} N L., p,., # 0 because 2z, € L., ., By (2.7) we may assume that
2,000 2m € Ly and zpgn, .., 20 € Ly, where 1 <m <n — 1.

We will apply Proposition . Let N, by, Cy be the constants there. Let § = %\/kaﬂ,

0z

and r = S, Let 19 = 79(21,7) and E;, be given by Proposition . For 1 < j < m, since

zj € L, ., and |zj] > |z1], by (6.1), we have |z; — z1| < /2pgr1|21| < BE. Suppose E,
happens. By Koebe’s 1/4 theorem, we have

g, (2| < |gp, (21)| dist (21, K7y) < 4dist(gr,(21), Sk.,) < 427, (21)] < 4C1/ 7|21

For 1 < j < m, since dist(zy, K,
have
| Z(25) — Zny(21)| < 2|95, (21)|125 — 21| < | (20)|bar < 4C1V/ 7|21 .

Since |Z,,(z1)] < C1\/7|z1], we get

| Zo ()| < B5Ci/T|z], 1< <m.

) > bir > 2|z; — 21|, by Koebe’s distortion theorem, we

Suppose that
6 < pr/2. (6.5)

Since Ky, C Lz, 5, and 2; & Lz, ,, m+1 < j < n, by Lemma 6.1} we see that | (z;)| > C,,,
where C,, > 0 depends only on  and pj. By Koebe’s 1/4 theorem, we get

| Za(2)] = dist(gr,(2)), Sk, ) 2 |97, (2) [ dist(z), K7) /4 > Cpprlal/8, m+1<j<n.
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Suppose now that

Coupil21|/8 2 2( e B))5CH /] (6:5)

Then we see that Z,,(z1), ..., Z.(2,) satisfy the condition in Case A.

We will apply Lemma 3.5 with K = K, and Uy = U,,. Let I = {1} U{l1 < j < n:
r; < dist(z;, K,)}. We check the conditions of that lemma when E. happens. By the
definition of I, we have r; < dist(z;, K,,) for j € I\ {1}. For j = 1, since dist(zy, K;,) >
bir 2 |z and r; < dy < |z, we have r; < dist(z1, K,,). We have to check Condition
(3.7). First, holds for j = 1 by Property (iii) of E,,. Second, for 2 < j < m, since
|z; — 21| < %dist(zl, K.,), by Koebe’s 1/4 theorem and distortion theorem, also holds
for these j. Third, for m +1 < j < n, by Lemma and Koebe’s 1/4 theorem, we have
dist(gr,(25), Sk,,) Z dist(zj, L., 5). On the other hand, since K, C L., 5 C {|z| < r'}, where
7' = 2|z1|, we have |Z,,(2) — z| < 5" = 10|z| for any z € H\ K, by Lemma Thus,
1 Z(2)] < |7]- Since py > 26, it is clear that |z| < dist(z, L., 5) for any 2 € H\ L So
we see that also holds for m+1 < j < n.

Let 7, z;, 7j, Ts and 77 be as defined in Case A. Then z; = Z, (2;), 1 < j < n, satisfy
the condition in Case A. By the result of Case A (if |I| = n) or the induction hypothesis (if
|I| < n), we see that

2Pk *

~Zj ~ . ~ ~ ~ ~
P[T;j] < T{zl=R Y cr |71} ] S I|FT07 ETO] Z F(ZjN s B T e e 7Tj|1|)7

where R is the maximum of R;, 1 < j <n—1, and the R, in Case A. Let E denote the event
on the LHS of the above displayed formula. Since |Z; —z;| < 5, by Koebe’s 1/4 theorem, we

see that B, NE C Vi {7 < Tzj=mry ), Where 7 = 61"+ RY . (|2 +5r) < Ry D7 2]
for some constant R,, > 0. Thus,

"1z 2 P[Er N E] = E[Ey ] - E[PIE|Fr,, Er]]

ZE(zr) E[F(Z, 0 2,3 s T W ey Bl 2 F (21,00, 203115+, T),

P77 < Ts1=r. 5

where the last inequality follows from Lemma and that dist(zq, K;,) < ber. We remark
that the implicit constant in the above estimate depends on p; and pgiq. This does not
matter because p, and pp., are constants once they are determined. Now we have finished

the proof of Case B.k assuming Conditions ((6.56.6]).

Case C: zy,...,2, € L, ,,. This case is the complement of Case B, and we will reduce it
to Case B. Let

en = max |z — 21].

From (§6.1) we know that e, < v/2p1|21].

We apply Proposition' with 29 = 21, 0 = %,/pl and r = Qb% Let 7 =1(2,7) and
E., given by that proposition. Suppose E., happens. By Properties (i,iii) and Koebe’s 1/4
theorem, we have

. , . 8by | |
| Z(21)] < dist(gr,(21), Sk, )/ Co < 4]g;, (21)] dist(z1, Kr,)/Co < blg |97, (21) |en.
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By Koebe’s distortion theorem, we have

2
max |Z7'0(Zj) - Z’T'O(Zl)| > §|g;-0(21)|€n'

1<j<n

Thus, if Z;,(2s) has the smallest norm among Z, (z;), 1 < j <n, then

b, C,
e |Zo(2) = Zoy ()| 2 212 (2]
If p; satisfies that
bCy
201 < ——— 6.7
P1 72b2 ; ( )

then from we see that not all Z;(2;), 1 < j < n, are contained in Lz, (.,),,. After
reordering the points, we see that Z, (z;), 1 < j < n, satisfy the condition in Case B.

We will apply Lemma with K = K, and Uy = U,. Let I = {1,...,n}. We
check the conditions of that lemma when FE. happens. Since r; < |z — 2] < e, and
dist(z1, Kr,) > 2e;, we have r; < dist(z1, K,). For 2 < j <n, since r; < d; < |z, — z1] < e,
and dist(z1, Kr,) > 2e,, we see that r; < dist(z;, K,,). So I satisfies the property there. We

0

have to check Condition . First, holds for j = 1 by Property (iii) of E,,. Second,
for 2 < j < n, since |z; — 2| < %dist(zl,KTo), by Koebe’s 1/4 theorem and distortion
theorem, also holds for these j.

Let 7, zj, 7;, Ts and 77 be as defined in Case A. By the result of Case B we see that

IP)[?;JJ < :F{|Z‘:R21§j§n 11} 1<5< TL|.FTO, ETO] Z F(gl, ey 2Ty ,77”),

where R is the R, in Case B. Let 7’ = 2|z1|. Then K., C {|z| <r'}. So |Z,,(z) — z| < 5r' for
z € H\ K,,. Let E denote the event on the LHS of the above displayed formula. By Koebe’s
1/4 theorem, we see that B, N E C Mo {7 < T{jzj=r }, where 7" = 61" + R0 (|2] +
5r') < R, 375, |z] for some constant 12, > 0. Thus,

Plr7 < 7e)=r, 5o, 15513 = P[ER N E] = E[EL ] - E[P[E|F, Er]]
ZF(z151) - E[F(Z1, .oy 2051y oy To) | Frgs Brg] 2 F (2050003 20371, ooy T),

~

where the last inequality follows from Lemma and that dist(z1, K,,) < ber. Now we have
finished the proof of Case B.k assuming Condition (6.7)).

In the end, we need to find p, ..., p, such that Conditions all hold. To do

this, we may first use (6.7)) to choose p;. Once py, is chosen, we may use (6.56.6) to choose
pr+1 because these two inequalities are satisfied when py; is sufficiently small given p,. O
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Appendices

A Proof of Theorem

In order to prove Theorem [3.1, we need some lemmas. The proof of Theorem [3.1] will be
given after the proof of Lemma[A.4] We still let v be a chordal SLE, curve in H from 0 to
oo. Throughout the appendix, we use C' (without subscript) to denote a positive constant
depending only on x, and use C, to denote a positive constant depending only on x and
some variable x. The value of a constant may vary between occurrences.

First, let’s recall the one-point estimate and the boundary estimate for chordal SLE,.
(see Lemma 2.6 and Lemma 2.5 in [I8, Lemma 2.6, Lemma 2.5]).

Lemma A.1 (One-point Estimate). Let T be a stopping time for v. Let zp € H, yo =
Imzy >0, and R>r > 0. Then

. Py (r)
P[r7° Krp) > R < 0222
[770 < ool Fr, dist(zo, K1) > R] < CPyO(R)

Lemma A.2 (Boundary Estimate). Let T be a stopping time. Let & and & be a disjoint
pair of crosscuts of Hr such that

1. either & disconnects y(T) from & in Hr, or ~v(T) is an end point of &;;

2. among the three bounded components of Hr \ (& U &), the boundary of the unbounded
component does not contain &s.

Then
]P)[T& < OO|~FT] < Oe—onrdHT(gl,&)‘

The lemma below is similar to and stronger than [I8, Theorem 3.1]. The symbols z;, R;, 7;
in this lemma are not related with the symbols with the same names in Theorem [3.1] or main
theorems of this paper.

Lemma A.3. Let m € N, z; € H, y; = Imz;, and |2| > R; > r; > 0,1 < j < m. Let
D; ={|z — z;| <r;} and lA)j ={lz— 2| <R;j}, 1 <j<m. Let o, Jo, J}, be three mutually
disjoint Jordan curves in C, which bound Jordan domains 130, Dy, Dy, respectively. Suppose
that D}y C 90 - 130, and 0 & FO'A Let A= 130 \ Dy be the doubly connected domain bounded

by Jo and Jy. Suppose that AND; =0, 1< j<m, and there is some ng € {1,...,m} such
that DoyN Dy, = 0. Let & = 0D, NH, & =0D; NH, 0 < j <m, and {§§ = 0D{ NH. Let
E={rg <7y <7 < <7 <, <Tg <00}
Then
]P)[E|f7'§0] < Cme—omde(Jo,Jo) /2 H

Jj=1
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Figure 1: The two pictures above illustrate (/]\tp and U/, respectively. The red curve is v up
to time ¢, the big circle is p, and the small circle is &. The connected components of p N H;
that disconnects & from oo are labeled as py, p;, py, where p; is closest to &) in H;. The grey
region on the left picture is [7[’ ; and the grey region on the right picture is U/.

Proof. We write 10 = 7¢,, 7; = T, and 7; = 7¢,, 1 < j <m, and 7,41 = Tg.
From the one-point estimate, we have

P, (r;)
Plrj < ool Fz] < O, 1< j<m. (A1)
! Pyj (Rj)
Thus, P[E|F,] < C™ ][]}, %. Now we need to derive the factor e=@mdc(Jo.Jo)/2,

By mapping A conformally onto an annulus, we see that there is a Jordan curve p in A
that disconnects Jy from Jy, such that

de(p, Jo) = dc(p, Jo) = de(J, Jo) /2. (A2)

Let T = inf{t > 0 : & ¢ H;}. Let t € [r,T). Each connected component n of
p N Hy is a crosscut of Hy, and H, \ n is the disjoint union of a bounded domain and an
unbounded domain. We use H; (1) to denote the bounded domain. First, consider the
connected components 1 of p N H; such that & C H;(n). If such 7 is unique, we denote it
by p;. Otherwise, applying [I8, Lemma 2.1], we may find the unique component 7, such
that H; (1) is the smallest among all of these H; (n). Again we use p; to denote this 7. Let
Ur = H;(p:). Then &, C U?. Next, consider the connected components 7 of p N H, such
that H;(n) C Uf \ €. Let the union of H;(n) for these n be denoted by Uf. Then we have
Ul c U and U N ¢, = 0.

Now we define a family of events.

e Let A1) be the event that 70 <73 AT and Dy NH C UZ,.

e For 1 <j <mny—1,let A, be the event that 7;_; < 7; <7, and D; NH ¢ Ufjfl, but
D;nHCUE.
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o For 1 <j <mng—1,let Aj i1y be the event that 7; < 7,1 AT, and D;NH ¢ UE, but
DjNHC UL,

e For ng < j < m, let A ;) be the event that 7,_; < 7; < T, and D; NH ¢ (77’_;__1, but
D;NnHCUE.

e For ng < j <m —1, let A ;1) be the event that 7; < 7,1 AT, and D;NH ¢ (77’_’3,,
but D NH C U2,

e Let A(yme1) be the event that 7, < 7,00 AT and D,,, NH ¢ ﬁf_’m.

Let I ={(j,7+1):0<j<m}U{(j,j) : 1 <j<m}. Weclaim that £ C |J,; 4.
To see this, note that, if none of the events A1), 0 < j < ng—1,and A, 1 < j <
no — 1, happens, then D, NH ¢ Ufno. Since D, is disjoint from Dy, we can conclude that
D, ,NH ¢ Ufno. In fact, if D,,,NH C (77’?”0, then from D, NDy = 0,pC ZADO, and p surrounds
£o, we may find a connected component n of p N H, ~that disconnects D,, N H from & in
H, . Since D,, NH,¢| C (/]\f , we have n C ﬁf . From the definitions of p,, and (7[; :

no nQ nQ . 0
we see that 7 does not disconnect & from oo in Hr, . Thus, D,, NH C HZ (n) C UL ,
and & N Hy (n) = (). This shows that D,, NH C U? . which is a contradiction. Since
D, NH ¢ (7{.’”0, one of the events A(; ;) and Ag 11y, no < j < m, must happen. So the
claim is proved. We will finish the proof by showing that

P[E N A,|F,,] < Cmeomdelo.o)/2 ﬁ B, 1)
© T Pyj (R])

j=1

Lel. (A.3)

Case 1. Suppose A1) occurs. Then at time 79, there is a connected component, denoted
by pr,, of pN H,,, that disconnects 81 from both &) and oo in H,,. Since {, C Dy NH C H,,
and v(79) € 0Dy, we see that p,, disconnects & also from v(70) in H,,. Since & is disjoint
from A, it is contained in either Dy or C \ Do. If & is contained in D, (resp. C\ l/jo), then
JoN H,, (resp. JoN H.,,) contains a connected component, denoted by 7,,, which disconnects
é\l from p,, and oo in H,,. Using the boundary estimate and , we get

P[?l < OO’FToaA(O,l)] < Cefaﬂ'de(ﬁrom-rO) < Ce*aﬂdc(njo,jo)/Q’

which together with (A.1)) implies that (A.3]) holds for « = (0, 1).
Case 2. Suppose for some 1 < j < ng — 1, A j41) occurs. Then at time 7;, there is a

connected component, denoted by p,,, of pN H,, that disconnects ng from both &; and oo
in H.,. Since 7(7;) € &;, we see that ETJ' disconnects &;11 also from ~(7;) in H,. According
to whether ;. belongs to Dy or C\ Dy, we may find a connected component 7., of Jo N H
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or :TI) N H,, that disconnects EjH from p;, and oo in H,,. Using the boundary estimate and
(A.2)), we get

~ ~ —andg, (7r; _ 7.
P[7j41 < 00| Fyy, Ay Ty < Tjpa] < Ce ™7 (ri ) < Cemomdeldo-o)/2,

which together with (A.1)) implies that (A.3) holds for ¢t = (5,7 + 1), 1 <j <ng— 1.
Case 3. Suppose for some ng < j < m, A 1) occurs. We write &1 = &§). Then p,,

disconnects ng from 7(7;) and oo in H,,. According to whether {;,; belongs to Dy or

C\ 130, we may find a connected component 7,; of Jo N H;, or jo N H,, that disconnects @H
from p,, and oo in H.,. Using the boundary estimate and (A.2)), we get

Y

- ~ —ardu, (pr; e, _ 7
P71 < 00|Fry Aen)s 7y < Tja] < Ce T i) < emamdelo-do)/2

which together with (A.1)) implies that (A.3]) holds for ¢ = (4,7 + 1), no < j < m.
Case 4. Suppose for some ng < j < m — 1, A(; ;) occurs. Define a stopping time

oj=inf{t>7m_1:D;NHC Ury.
Then 7;_; < 0; < 7. From [I8, Lemma 2.2], we know that
® 7(0;) is an endpoint of p,,;
o D;NHCUL.

The second property implies that 7;_; < 0; < 7;. Now we define two events. Let F. =
{oj <7} and F> = {7; < 0; < 7;}. Then A(; ;) C FL UF>.

Case 4.1. Suppose F> occurs. Let N = [log(R;/r;)] € N. Let ¢, ={z e H: |z — zj| =
(RY=Frk)N} 0 < k < N. Note that ¢y = & and Cy = &. Then Fs C Uy, Fi, where

Fpi={rg, <05 <7 <00}, 1<k<N

If F} occurs, then (, C (7(’,’]_. Since (x—1 N H,, has a connected component ¢’ |, which
disconnects (i from p,; in H,,, by the boundary estimate, we get

Plrg, < ool Fq;, Fi] < Ce ™o (Pr; 67 0)

According to whether (; belongs to Dqy or lA?O, we may find a connected component 7, of

Jo N Hy; or jg N H,, that disconnects C,:il from p,, and co in H,;. Moreover, we may find
a connected component (;’ of (, N H,, that disconnects 7,, from ¢;” ;. From (A.2) we get

o o o 1 ~ k—1 R;
dHJj (Paw Ck]—1) > dHUj (pajaﬁaj) + ngj (o ij_1) > éd(C(J(b Jo) + o N log (T_j)

Thus, we get
~ o\ ak-—1
P[TCk < OO|FUj7 F] < Ce—omdc(Jo,Jo)/2 <;_J) 2N
J
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From the one-point estimate, we get

((RYF+1ph )N
Pyj (RJ) ,
P, (r;)

Plr; < oo|Fy B3] < C 2 d :
e P, () 7)

The above three displayed formulas together imply that

P[Fk|f7'jf177-j*1 < 7/:]] <C <

P[r; < o0, Fy|F.

Ti—1)

a k—1
~ 7 NS w1\ "N Py (1))
T < 7_,] < Ce—aﬂdc(JoaJo)/Q(_J> (_J> j )
! ’ R; R; Py, (R;)

Since F% C Uivzl F}., by summing up the above inequality over k, we get

— (Tiye/2
~ (TJ) —o/N 1 =(3)
Plr; < oo, Fs | Fr |, Tjo1 < 7] < Cemomde(JoJo)/ < > —_—
J 2 -1 "7 J y](Rj) 1_(R_Jj)a/(2N)
;)
S Ce—OﬂrdC J(),J() yJ( J , (A4)
Pyj(Ry)
where the second inequality holds because the quantity inside the square bracket is bounded
above by —%7. To see this, consider the cases R;/r; < e and R;/r; > e separately.

Case 4.2. Suppose F_ occurs. Then ﬁj - U[,’j. According to whether {A] belongs to Dg or

130, we may find a connected component 7, of JoN H,, or jo N H,, that disconnects EJ from
po; and oo in H,,. By the boundary estimate, we get

P[F) < 00l Fy,, Fe] < G 0esn) < Cgmomietio /2,

which together with (A.1)) implies that

—Qm To P]'(T‘)
P[Tj < OO’F<|‘FTJ',1] < Ce dC(JO’JO)/Z%. (A5)

Combining (A.4)) and (A.5)), we get

Pyj (rj)

71 < 7] < Ceomdco-)/2 |
j J Pyj (Rj)

Plrj < o0, Al F

Ti—-1)

which together with (A.1)) implies that (A.3]) holds for ¢ = (4,7), no < j < m.
Case 5. Suppose for some 1 < j < ng — 1, Aj ;) occurs. Define a stopping time

:inf{tZTj_l . DJHHC Utp}

To derive properties of o;, we claim that the following are true.
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(i) If D;NH C Hy, \ U, then there is e > 0 such that D;NH C H,\ Uf for tg <t < to+e;

(ii) If D; NH C U, and if 7(t) is not an endpoint of a connected component of p N Hy,
that disconnects D; NH from oo in Hy,, then there is ¢ > 0 such that D, NH C U for
to—e <t<to.

To see that (i) holds, we consider two cases. Case 1. D; NH C Hy, \ (7[; From [I8]
Lemma 2.2|, there is ¢ > 0 such that for ¢y <t < to +e, D;NH C H; \ (A]tp, which implies
that D; "NH C H, \ U{. Case 2. D; NH C Ut’; \ Uf. Then there is a curve ¢ in Hy,, which
connects &, with D;, and does not intersect p. In thls case, there is € > 0 such that for
to <t<ty+e, (C H and D; "H C H;, which imply that D; "H C H; \ U/.

Now we consider (ii). Since D; NH C U, there is a connected component ¢ of p N
H,,, which is contained in Uto, and disconnects D; N H from & and oo in H;,. From the
assumption, (o) is not an end point of (. By the continuity of v, there is £; > 0 such that
Y[to — e1,to) N ¢ = (. This implies that, for ¢, — e, < t < to, ¢ is also a crosscut of H,.
Since H; is simply connected, ¢ also disconnects D; NH from & and oo in H;. Since py, is a
connected component of p N Hy, that disconnects [7[; D U{ D D;NH from oo, 7(to) is also
not an endpoint of p,. Since ¢ C [/jt’z, from [I8, Lemma 2.2], there is ¢ € (0,&;) such that
fortg —e <t <ty, ( C ﬁtp, which implies that D; NH C U/.

From (i) and (ii) we conclude that

e 7(0;) is an endpoint of a connected component of pN H,, that disconnects D; NH from
oo in Hy,. Let this crosscut be denoted by py, .

[ ] D(Zj,?”j) ﬂH - U!T)j‘

Following the proof in Case 4 with p,, and U/ 7 in place of p,; and U 7., respectively, we
conclude that (A.3)) holds for ¢ = (j,j), 1 < j < no — 1. The proof is now complete. O

Let = be a family of mutually disjoint circles with center in H, each of which does not
pass through or enclose 0. Define a partial order on = such that & < & if & is enclosed
by &;. One should keep in mind that a smaller element in = has bigger radius, but will be
visited earlier (if it happens) by a curve started from 0.

Suppose that = has a partition {Z,}.ce with the following properties:

e For each e € £, the elements in =, are concentric circles with radii forming a geometric
sequence with common ratio 1/4. We denote the common center z., the biggest radius
R., and the smallest radius r., and let y. = Im z,.

o Let A, = {r. < |z — 20| < R.} be the closed annulus associated with Z., which is a
single circle if R, = re, i.e., |=.| = 1. Then the annuli A,, e € £, are mutually disjoint.

Note that every Z, is a totally ordered set w.r.t. the partial order on =.
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Lemma A.4. Suppose that J; and Jo are disjoint Jordan curves in C, which are disjoint
from all £ € =Z. Suppose that 0 is not contained in or enclosed by Jy, Jy is enclosed by Jo, and
that every & € = that lies in the doubly connected domain bounded by J, and Jy disconnects
J1 from Jy. Suppose &, < & € = are both enclosed by Jy, and . € = neither encloses Js, or
is enclosed by Jo. Let E denote the event that 7 < oo for all § € Z, and ¢, < Te, < Tg,.
Then

P, (re)
PE] < Cigle — g7 mde(J1,72) Ye ’
| ‘ GEHE Pye (RE)

where Cig| € (0,00) depends only on k and |E|.

Discussion. From [I8, Theorem 3.2], we know that P[re < 00,& € Z] < Cig[] P (re)

e€€ Py, (Re)"
—amdc(J1,J2)/2

Now we need to derive the additional factor e using the condition 7¢, < 7¢, < 7g,.

Proof. We write N,, for {k € N: k < n}. Let S denote the set of bijections o : Ng| = =
such that & < & implies that 071(&) < 071(&), and 071(&,) < o7 1(&) < 071(&). Let

E° = {Tg(l) < To) < < To(g) < OO}, oges.

Then we have

E=|JE" (A.6)

We will derive an upper bound of P[E?] in (A.11)).

Fix 0 € S. For e € &, if there is no { € = such that {§ > maxZ,, then we say that e
is a maximal element in E. In this case, we define =, = =, and ¢ = maxZ=,. If e is not a
maximal element in F, let £ denote the first £ > max =, that is visited by 7 on the event
E? and define §e = Z.U¢. This definition certainly depends on o. Label the elements of
Ee by & < .- < €5, =&, where N, = |Z,| — 1.

For e € E, define

Jo={1<n<N,:0 (&) >0 (& )+ 1}

Roughly speaking, n € J. means that between 7¢e and 7, 7y visits other element in = that
it has not visited before on the event E,.

Order the elements of J, U {0} by 0 = s.(0) < --- < s.(M.), where M, = |J.|. Set
Se(M, +1) = N, + 1. Every Ee can be partitioned into M, + 1 subsets:

By =€ si) <n<s(+1)—1}, 0<j<M,.

The meaning of the partition is that after ~ visits the first element in :(e ), which must be
&< LG it then visits all elements in _(e j) without visiting any other circles in = that it has

not visited before. Let I = {(e,5) : e € £,0 < j < M.}. Then {Z, : « € I} is a cover of E.
Note that every o= (Z,), ¢ € I, is a connected subset of Z.
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For « € I, let € ¢ denote the first coordinate of ¢, 2z, = 2., and y, = Im z,. Define P, for

each v € I. If maxZ=, € Z,,, define P, = Py (Binaxz,)

P G where we use R¢ to denote the radius
Y

mingL) ’
of 5 If max =, ¢ =,,, which means max Z, = ¢, > maxZ,, then we consider two subcases.
If =, contains only one element (i.e., &) or two elements (i.e., £ and maxZ,, ), then let

P, = 1; otherwise let P, = PolFmax=e)  From the one-point estimate, we get

Py (R nz,)
Pl7 s, <0 Funs ] <CP, 1€l (A7)
Let P, = %, e € £. From Lemma we get
M.
[[Pes <4°™P., ecé. (A.8)
=

We have [I| = > .¢(Mc+1). Considering the order that v visits =, € I, we get a bijec-
tion map o7 : Ny — I such that n; < ny implies that max ail(éal(nl)) < min 071@01(”2))
and ny = ny — 1 implies that min o= (Z,, () — Max o~ (Zg;my) € {0,1}. The difference
may take value 0 if max gol(m £ & 2 for e = e5,(n,)- We may express £ as

ECT

= LB = = 2 < = = .
{Tmm:(,[(l) — Tmax:(,[(l) — TmlnngQ) — — Tmln:c,](m) < Tmax:c,ﬂm) < OO}

Fix eg € €. Let nj = o7 ((€0,])), 0 < j < M. Then njyy >y +2,0 < j < M, — 1.
Fix0<j<M,—1 Let m=n;;; —n;—1. If max _Ul(n +k) and min ugl(n +k) are concentric

=

for 1 < k < m, applylng Lemma [A.3 with JO = min =, JO = MaxZ(e,,j) = MaXZg,(n)),

J{ = min H(EO,JH) = minZ,,(n,,,), {|z = zx| = Rx} = min Zor(n;+k) and {lz = zx| = re} =

max Zg, (n; +k), 1 < k < m, we get

njp1—1
o m g—a/4(se, (j+1)—1) H
]P)[E[maxé ,minZ ] Fmax- ] < ¢4 0 P"'I(n)’ (Ag)
or(nj)» or(njt1) or(nj)
n=n;+1
where £ - is the event
[maXHO'I(n )7m1n~‘0'1(nj+1)]
T .= T . =& T .= o< T = T . =& < 0o0yf.
{ MaxZg (n;) — MINE; (niq1) = TMAXEg (ni41) = = maxEs (nj4m) — MINEs (n;, ) }

Because of the definition of F,, ¢ € I, the above estimate still holds in the general case, i.e.,
there may be some 1 < k < n such that max=,, ;1) = £ € =, Where € = €op(n;+k)-

We say that v makes a (Ji, J) jump during [max Eor(ng)s m1n HUI(n]H y] if min = is en-
closed by Ji, and there is at least one kg € N,, such that min _gl(nﬁko) is not enclosed by
Jo. In this case, applying Lemma with Jy = J; and Jy = Jo, we get

n]+1 1
PE° . ) F, | < cmerem B T Py,
= in= !
[maxu(,[(nj),mlnugl(n]_,_l)] max“ol(nj) or
n=n;+1
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Combining this with (A.9)), we get

R nj+1—1
PES - - Fr < Cme it gm S e U0 T Py (ALL0
[ [max:Ul(nj),mlnzal(nj+1>}| maxEUI(nj)] - € o 1(n) ( )
n=n;

Letting j vary between 0 and M., — 1 and using and (| - we get

P[E’] < C\I|4*a/42 { (seo(3)— HP

el

Using (A.8) and |I| = > (M. + 1), we find that

P[E°] < OO cee Mey=% 2?4:610 seq (7) HPE'

ec&

Since 071(&,) < 071(&) < 07H&), &4 < & are enclosed by Jp, and &, is not enclosed by
Jo, there must exist some ¢y € € and some j € [0, M, — 1] such that v makes a (Jy, J2) jump
during [maxggl( Y mmual(n,ﬂ)]. In that case, using (A.7), (A.9), and (A.10]), we get

]P)[ ] C«‘S|OZE€5 Me 7Td(c(J1 J2)4 5 Z] h 850 HP

ecf

Taking a geometric average of the above upper bounds for P[E?] over e € £, we get

P[Ea] < Cr|£|61266g Meefﬁﬂdc(ah,j;)llfﬁ 2eee Z:J‘]Viel se(7) H P.. (A.ll)

eel

So far we have omitted the o on I, M., s.(j) and etc; we will put o on the superscript if
we want to emphasize the dependence on o. From (A.6) and (A.11]), we get

]P)[E] S O‘5| Z ‘S(Me Se(] |C¢Ze€g Mee 4‘g|7TdC(J1 J2)4_ﬁ Zees Zﬁi Se(j) H P67

(M€§(5€(j));‘v[:e())e€8 ecf
(A.12)

where
S(Mﬁ’(se(j))) = {O_ € S : MU Me? Se( ) - 86(j>70 S .7 S Mea ec M}a

and the first summation in (A.12) is over all possible (M,; (Se(j))j\/‘lo)eeg, namely, M, > 0
and 0 = 5.(0) < s.(1) < ---5.(M,) < N, for every e € £. It now suffices to show that

Z ‘S(Me (se (7)) ‘C’EeegMe4 8\5\ Zeeszg € se(j < C\g| (A.13)

(Mes(se()M) )eee

for some Cje| < oo depending only on |€] and &.
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We now bound the size of S(a, (s.(j)))- Note that when M7 and s7(j), 0 < j < M?,
e € &, are given, o is then determined by o; : Njjo — I, which is in turn determined by
€orn), 1 < < |17 = Zeeg(MU +1). Since each e, () has at most |€| possibilities, we have
1S sy | < |E]2=eeeMetD) - Thus, the left-hand side of (A.13) is bounded by

EHE 3 H(Cyg‘)Mezl—ﬁ 55 se ()

(M6§(56(j))jM:60)e€£ €

Ne
=[] S (clep™ 3 st T e ()

ec€ M.=0 0—se(O)< <se(Me)<Ne
<|g|ISIHZ (ClENM Z Z 45T it 50)
e€E M=0 s(1)=1 s(M)=
00 M oo
<A > cen”II > 4+
ec& M=0 J=1s(j)=j

> C|€| M M(M+1) “
£ 4~ Tl MMAL
[||Z<1—48|5) ]

The conclusion now follows since the summation inside the square bracket equals to a finite
number depending only on x and |&|. O

Proof of Theorem[3.1. By (2.7)), we may change the order of the points z1,. .., 2,. Thus, it
suffices to show that

n
P, S1 Som?
]P’Z7<ool<j<n7z1<7z2<721§0” b ( )" A.14
[ ) '8 nJ:1 Pyj ‘21_22’/\|21| ’ ( )

for any distinct points z, . .., z, € H\{0},7; € (0,d;), 1 < j < n,and s; € (r1, |21—22|A|21|),
where y;,[;,d; are defined by .

We want to deduce the theorem from Lemmal[A.4] so we want to construct a family = of
mutually disjoint circles and Jordan curves Jp, Js.

Suppose 4"hir; < 1; < 4h +17" for some h; € N, 1 < j <n. By increasing the value of s,

we may assume that s; = 4 r1, where hl € N and hl > hy. Define
E={lz—zl=4""r}, 1<j<n, 1<s<hy

The family {fj :1<j<n, 1<s<h;} may not be mutually disjoint. So we can not

define = to be this family. To solve this issue, we will remove some circles as follows. For

1<j<k<mn,let Dy ={|z — 2| <l/4}, which contains every &, 1 <r < hy, and

L =18 1 <5 < hj, & N Dy # 0} (A.15)
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Then=:= {7 : 1 <j <n,1 <s<hi\U cjope, Lk is mutually disjoint. If dist(y, z;) <y,
then ~ intersects every &7, 1 < s < h;. So we get

Pldist(y,%) < 15,1 <j <n] <P[[) Nirne # 0} <P[{rne#0}.  (A10)

j=1s=1 (€=

Next, we construct a partition {Z. : e € £} of Z. We introduce some notation: if e is
a family of circles centered at z, € H with biggest radius R and smallest radius r, then we

define A, = {r < |z — 29| < R} and P. = glmzo((;)).
mZO

First, = has a natural partition Z;, 1 < 57 < n, such that =; is composed of circles centered
at z;. For each j, we construct a graph G, whose vertex set is Z;, and § # & € Z; are
connected by an edge iff the bigger radius is 4 times the smaller one, and the open annulus
between them does not contain any other circle in =. Let &; denote the set of connected
components of G;. Then we partition =; into =, e € &;, such that every =, is the vertex set
of e € &. Then the circles in every =, are concentric circles with radii forming a geometric
sequence with common ratio 1/4, and the closed annuli A, associated with =, e € &;, are
mutually disjoint. From the construction we also see that for any j < k, and e € &;, A, does
not intersect Dy, which contains every A, with e € &.. Let £ = U?:1 &;. Then A, e € &,
are mutually disjoint. Thus, {Z. : e € £} is a partition of = that satisfies the properties
before Lemma [A.4]

We observe that for j < k, Uéegkﬁ' C Dy, can be covered by an annulus centered at z;
with ratio less than 4 because

max,ep, {|z — 2|} < |z; — 2| + /4 e+ 1k /4 <4
min.ep, {1z — 2|} 7 |z — 2| — /4 ~ L — /4

Thus, every [;; defined in (A.15]) contains at most one element. We also see that, for j < k,
Ueez, € C Dy intersects at most 2 annuli from {4%7r; < |z — 25| <4h™5H} 2 <5 < hy.
If 7 > k., by construction, UgeEk ¢ is disjoint from the annuli {4"~5r; < |z —z;| < 4h=st1p}
2 < s < hj, which are contained in D;.

From [18, Theorem 1.1], we have P[r;’ < 00,1 < j < n] < C, | %. So we may

5 \bj

assume that |2y — 21| A |z1] > 4%"*1s. Since for k > 2, ez, € C Dy can be covered by an
annulus centered at z; with ratio less than 4, by pigeon hole principle, we can find a closed
annulus centered at z; with two radii 7 < R satisfying s1 < r < R < |29—21|A|21]| and R/r <
(%)1/% that is disjoint from all (J.ez, € C Dy, k > 2. Moreover, we may choose R
and r such that the boundary circles are disjoint from every ¢ € Z. Applying Lemma
with Ji = {|z — 1| =71}, h={lz— | =R}, & ={lz — 2| = s1}, & = {lz — x| =},
& ={|z— 2| =r}, and {=Z. : e € £}, we find that

a n
) . S T6n[E]
Plri <oo, 1 <j<mry <772 <7]] <C <|21 — z21| A |Z1|> e H H P.. (A17)
j=1lec&;
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Here we set [[ e Fe = 1if &5 = (). We will finish the proof by proving that |€| < 2n and

P, (r
HeEE’P <C yj](lj)

We now bound €] = 77 |&;]. For 1 < m < n, we use E;m), 1 < j < m, to denote
the set of connected components of the graph Gg-m) obtained by removing the circles in [;,
j <k < m, from ;. Let &M = U;nzlgj(m). Then £ = €™, For 2 < m < n, and
1 <j <m—1, we may define a map f,, : U;n:_ll Sjgm) — £~ gsuch that for every e € E;m),
1 <j<m-—1, fn(e) is the unique element in E;mfl) that contains e. Then each e € £(m—1)
has at most 2 preimages, and e € £™~1) has exactly 2 preimages iff D,, is contained in the
interior of A.. Since the annuli A,, e € £~V are mutually disjoint, at most one of them
has two preimages. Since " contains only one element, we find that |EM)| < |&Mm=D| 42,
From |EM| =1 and £ = €M, we get |E] < 2n — 1.

To estimate [].. Pe, we introduce S; to be the family of pairs of circles {{|z — z;| =
4513, {7z — 2| = 4°71r;}}, s € N. Let Sj(.m) denote the set of ¢ € S; such that Ao C

Ueeg](m) A,. Then Heeej(.’”) P. = He’ES](.m) P... Note that, for m > j, Au, € € S](.m) can be

obtained from A., e € S ;m_l), by removing the annuli in the latter group that intersects D,,.
Since D,,, can be covered by an annulus centered at z; with ratio less than 4, it can intersect at

most two of Ao/, ¢’ € S;. Using Lemma , we find that [ es(™ P, < 4%« H eg(m P.. Since

Pyj (rj Puj (r5) ) i\ Pu] (r5)

I; < 4+ we get Heeg;j) P, = < 40788 Thus, [ ot P, < 4o(2n=2j+1

Py;("iry) = 7 Py ) Py, (1)
which implies that
P ( ) 2 L P (’I“)
Pe P < 4a (2n—2j+1) " Yj — gon Yi\'J )
H H H H P, (1) H P, (1)
ec&n) j= leeg(n) Y\ j=1 " Yi\J
The proof is now complete. O
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