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Abstract

For a chordal SLEκ (κ ∈ (0, 8)) curve in a domain D, the n-point Green’s function
valued at distinct points z1, . . . , zn ∈ D is defined to be

G(z1, . . . , zn) = lim
r1,...,rn↓0

n∏
k=1

rd−2
k P[dist(γ, zk) < rk, 1 ≤ k ≤ n],

provided that the limit converges. In this paper, we will show that such Green’s
functions exist for any finite number of points. Along the way we provide the rate of
convergence and modulus of continuity for Green’s functions as well. Finally, we give
up-to-constant bounds for them.
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1 Introduction

The Schramm-Loewner evolution (SLE) is a measure on the space of curves which was defined
in the groundbreaking work of Schramm [19]. It is the main universal object emerging as
the scaling limit of many models from statistical physics. Since then the geometry of SLE
curves has been studied extensively. See [17, 8] for definition and properties of SLE.

One of the most important functions associated to SLE (in general any random process)
is the Green’s function. Roughly, it can be defined as the normalized probability that SLE
curve hits a set of n ≥ 1 given points in its domain. See equation (1.1) for precise definition.
For n = 1, the existence of Green’s function for chordal SLE was given in [9] where conformal
radius was used instead of Euclidean distance. For n = 2, the existence was proved in [15]
(again for conformal radius instead of Euclidean distance) following a method initiated by
Beffara [4]. Finally in [12] the authors showed that Green’s function as defined here (using
Euclidean distance) exists for n = 1, 2 by modifying proofs in the above mentioned papers.
To the best of our knowledge, existence of Green’s function for n > 2 has not been proved
so far. Our main goal in this paper is to show that Green’s function exists for all n ≥ 2. In
addition we find convergence rate and modulus of continuity of the Green’s function, and
provide sharp bounds for it.

Chordal SLEκ (κ > 0) in a simply connected domain D is a probability measure on
curves in D from one marked boundary point (or prime end) a to another marked boundary
point (or prime end) b. It is first defined in the upper half plane H = {z ∈ C : Im z > 0}
using chordal Loewner equation, and then extended to other domains by conformal maps.
For κ ≥ 8, the curve is space filling ([17]), i.e., it visits every point in the domain. In this
paper we only consider SLEκ for κ ∈ (0, 8) and fix κ throughout. It is known ([4]) that SLEκ

has Hausdorff dimension d = 1 + κ
8
. Let z1, . . . , zn ∈ D be n distinct points. The n-point

Green’s function for SLEκ (in D from a to b) at z1, . . . , zn is defined by

G(D;a,b)(z1, . . . , zn) = lim
r1,...,rn↓0

n∏
k=1

rd−2
k P

[ n⋂
k=1

{dist(zk, γ) ≤ rk}
]
, (1.1)

provided the limit exists. By conformal invariance of SLE, we easily see that the Green’s
function satisfies conformal covariance. That is, if G(H;0,∞) exists, then G(D;a,b) exists for any
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triple (D; a, b), and if g is a conformal map from (D; a, b) onto (H; 0,∞), then

G(D;a,b)(z1, . . . , zn) =
n∏
k=1

|g′(zj)|2−dG(H;0,∞)(g(z1), . . . , g(zn)).

Thus, it suffices to prove the existence of G(H;0,∞), which we write as G. As we mentioned
above, the one-point Green’s function G(z) has a closed-form formula:

G(z) = ĉ(Im z)d−2+α|z|−α. (1.2)

where α = 8
κ
− 1 is the boundary exponent, and ĉ is a positive constant.

Now we can state the main result of the paper.

Theorem 1.1. For any n ∈ N, G(z1, . . . , zn) exists and is locally Hölder continuous. Also
there is an explicit function F (z1, . . . , zn) (defined in (2.5)) such that for any distinct points
z1, . . . , zn ∈ H, G(z1, . . . , zn) � F (z1, . . . , zn), where the constant depends only on κ and n.

We prove stronger results than Theorem 1.1. Specifically we provide a rate of convergence
in the limit (1.1). See Theorem 4.1. The function F (z1, . . . , zn) appeared implicitly in [18]
and we define it explicitly here. The upper bound for Green’s function (assuming existence
of G) was proved in [18, Theorem 1.1] but the lower bound is new.

Our result will shed light on the study of some random lattice paths, e.g., loop-erased
random walk (LERW), which are known to converge to SLE ([14, 21]). More specifically,
combining the convergence rate of LERW to SLE2 ([5]) with our convergence rate of the
rescaled visiting probability to Green’s function for SLE, one may get a good estimate on
the probability that a number of small discs be visited by LERW.

We may also work on the Green’s function when some points lie on the boundary. In
order to have a non-trivial limit, the exponent d − 2 in the definition (1.1) for these points
should be replaced by −α. For κ = 8/3, the existence of boundary Green’s function for any
n follows from the restriction property ([6]). The existence and exact formulas of boundary
Green’s functions when n = 1, 2 were provided in [11]. In [7] the authors found closed-form
formulas of boundary Green’s functions of up to 4 points assuming their existence. Since our
upper bound (Proposition 2.3) and lower bound (Theorem 4.3) are about the probability that
SLE visits discs, where the centers are allowed to lie on the boundary, we immediately have
sharp bounds of the boundary or mixed type Green’s functions assuming their existence,
which may be proved using the main technique here.

It is also interesting to study the Green’s functions for other types of SLE such as radial
SLE, SLEκ(ρ), or stopped SLE. In [3], the authors proved the existence of the conformal
radius version of one-point Green’s function for radial SLE.

The rest of the paper is organized as the following. In section 2 we go over basic definitions
and tools that we need from complex analysis and SLE theory. Then in section 3 we describe
the main estimates that we need to show convergence, continuity and lower bound. One of
them is a generalization of the main result in [18] which quantifies the probability that SLE
can go back and forth between a set of points. We prove this estimate in the Appendix. In
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section 4 we state our main results in the form that we prove them. After that in section 5 we
use estimates provided in section 3 to show existence and continuity of the Green’s function
following a method initiated in [15]. We prove these two theorems together by induction on
the number of the points. Finally in section 6 we prove the sharp lower bound for Green’s
function given in Theorem 4.3.

Acknowledgment. The authors acknowledge Gregory Lawler, Brent Werness and Julien
Dubédat for helpful discussions. Dapeng Zhan’s work is partially supported by a grant from
NSF (DMS-1056840) and a grant from the Simons Foundation (#396973).

2 Preliminaries

2.1 Notation and Definitions

We fix κ ∈ (0, 8) and set (Hausdorff dimension and boundary exponent)

d = 1 +
κ

8
, α =

8

κ
− 1.

Note that d ∈ (0, 2) and α > 2 − d. Throughout, a constant (such as d or α) depends only
on κ and a variable n ∈ N (number of points), unless otherwise specified. We write X . Y
or Y & X if there is a constant C > 0 such that X ≤ CY . We write X � Y if X . Y and
X & Y . We write X = O(Y ) if there are two constants δ, C > 0 such that if |Y | < δ, then
|X| ≤ C|Y |. Note that this is slightly weaker than |X| . |Y |.

For y ≥ 0 define Py on [0,∞) by

Py(x) =

{
yα−(2−d)x2−d, x ≤ y;
xα, x ≥ y.

we will frequently use the following lemmas without reference.

Lemma 2.1. For 0 ≤ x1 < x2, 0 ≤ y1 ≤ y2, 0 < x, and 0 ≤ y, we have

Py1(x1)

Py1(x2)
≤ Py2(x1)

Py2(x2)
;

(x1

x2

)α
≤ Py(x1)

Py(x2)
≤
(x1

x2

)2−d
=
Px2(x1)

Px2(x2)
;(y1

y2

)α−(2−d)

≤ Py1(x)

Py2(x)
≤ 1.

Proof. For the first formula, one may first prove that it holds in the following special cases:
y1 ≤ y2 ∈ [0, x1]; y1 ≤ y2 ∈ [x1, x2]; and y1 ≤ y2 ∈ [x2,∞]. The formula in the general case
then easily follows. The second formula follows from the first by first setting y1 = 0 and
y2 = y and then y1 = y and y2 = x2 ∨ y. The third formula can be proved by considering
the following cases one by one: x ∈ (0, y1]; x ∈ [y1, y2]; and x ∈ [y2,∞).
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Lemma 2.2. Let z1, . . . , zn be distinct points in H. Let S be a nonempty set in C with
positive distance from {z1, . . . , zn}. Then for any permutation σ of {1, . . . , n},

n∏
k=1

PIm zσ(k)
(dist(zσ(k), S ∪ {zσ(j) : j < k})) �

n∏
k=1

PIm zk(dist(zk, S ∪ {zj : j < k})). (2.1)

Proof. It suffices to prove the lemma for σ = (k0, k0 + 1). In this case, the factors on the
LHS of (2.1) for k 6= k0, k0 + 1 agree with the corresponding factors on the RHS of (2.1). So
we only need to focus on the factors for k = k0, k0 +1. Let w1 = zk0 , w2 = zk0+1, uj = Imwj,
Lj = dist(wj, S ∪ {zk : k < k0}), j = 1, 2. Then it suffices to show that

Pu2(L2)Pu1(L1 ∧ |w1 − w2|) � Pu1(L1)Pu2(L2 ∧ |w2 − w1|). (2.2)

Let r = |w1 − w2|. Note that |u1 − u2|, |L1 − L2| ≤ r. We consider several cases. First,
suppose L1 ≤ r. Then L2 ≤ 2r, and we get L1 ∧ r = L1 and L2/2 ≤ L2 ∧ r ≤ L2. From
the above lemma, we immediately get (2.2). Second, suppose L2 ≤ r. This case is similar
to the first case. Third, suppose L1, L2 ≥ r. In this case, L1 ∧ r = L2 ∧ r = r, and L1 � L2.
Now we consider subcases. First, suppose u1 ≤ r. Then u2 ≤ 2r. Since r ≤ u2 ≤ 2r, from

the above lemma, we get
Pu2 (L2)

Pu2 (r)
� Pr(L2)

Pr(r)
= (L2

r
)α. Since u1 ≤ r, we have

Pu1 (L1)

Pu1 (r)
= (L1

r
)α.

Since L1 � L2, we get (2.2) in the first subcase. Second, suppose u2 ≤ r. This is similar to

the first subcase. Third, suppose u1, u2 ≥ r. Then we get
Puj (Lj)

Puj (r)
= (

Lj
r

)2−d, j = 1, 2. Using

L1 � L2, we get (2.2) in the last subcase.

For (ordered) set of distinct points z1, . . . , zn ∈ H \ {0}, we let z0 = 0 and define for
1 ≤ k ≤ n,

lk = min
0≤j≤k−1

{|zk − zj|}, dk = min
0≤j≤n,j 6=k

{|zk − zj|}, yk = Im zk, Rk = dk ∧ yk. (2.3)

Also Set

Q = max
1≤k≤n

|zk|
dk
≥ 1. (2.4)

Note that we have
Rk ≤ dk ≤ lk.

For r1, . . . , rn > 0, define

F (z1, . . . , zn; r1, . . . , rn) =
n∏
k=1

Pyk(rk)

Pyk(lk)
;

F (z1, . . . , zn) = lim
r1,...,rn→0+

n∏
k=1

rd−2
k F (z1, . . . , zn; r1, . . . , rn) =

n∏
k=1

y
α−(2−d)
k

Pyk(lk)
. (2.5)
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This is the function F in Theorem 1.1. When it is clear from the context, we write F for
F (z1, . . . , zn). From Lemma 2.1 we see that

F (z1, . . . , zn; r1, . . . , rn) ≤ F (z1, . . . , zn)
n∏
k=1

r2−d
k , if rk ≤ lk, 1 ≤ k ≤ n. (2.6)

Applying Lemma 2.2 with S = {0}, we see that for any permutation σ of {1, . . . , n},

F (z1, . . . , zn; r1, . . . , rn) � F (zσ(1), . . . , zσ(n); rσ(1), . . . , rσ(n)), (2.7)

and
F (z1, . . . , zn) � F (zσ(1), . . . , zσ(n)).

Let D be a simply connected domain with two distinct prime ends w0 and w∞. We define

F(D;w0,w∞)(z1, . . . , zn) =
n∏
j=1

|g′(zj)|2−d · F (g(z1), . . . , g(zn)),

where g is any conformal map from (D;w0, w∞) onto (H; 0,∞). Although such g is not
unique, the value of F(D;w0,w∞) does not depend on the choice of g.

Throughout, we use γ to denote a (random) chordal Loewner curve, use (Ut) to denote its
driving function, and (gt) and (Kt) the chordal Loewner maps and hulls driven by Ut). This
means that γ is a continuous curve in H starting from a point on R; for each t, Ht := H\Kt is
the unbounded component of H\γ[0, t], whose boundary contains γ(t); and gt is a conformal
map from (Ht; γ(t),∞) onto (H; 0,∞) that solves the chordal Loewner equation

∂tgt(z) =
2

gt(z)− Ut
, g0(z) = z. (2.8)

Let Zt = gt − Ut denote the centered Loewner map, which is a conformal map from
(Ht; γ(t),∞) onto (H; 0,∞). See [8] for more on Loewner curves.

When γ is fixed, for any set S, τS is used to denote the infimum of the times that γ visits
S, and is set to be ∞ if such times do not exist. We write τ z0r for τ{|z−z0|≤r}, and Tz0 for
τ z00 = τ{z0}. So another way to say that dist(γ, z0) ≤ r is τ z0r <∞.

Let P denote the law of a chordal SLEκ curve in H from 0 to∞, and E the corresponding
expectation. Then P is a probability measure on the space of chordal Loewner curves such
that the driving function (Ut) has the law of

√
κ times a standard Brownian motion. In fact,

chordal SLEκ is defined by solving (2.8) with Ut =
√
κBt.

As we mentioned the upper bound in Theorem 1.1 is not new. We now state [18, Theorem
1.1] using the notation just defined.

Proposition 2.3. Let z1, . . . , zn be distinct points in H \ {0}. Let d1, . . . , dn be defined by
(2.3). Let rj ∈ (0, dj), 1 ≤ j ≤ n. Then we have

P[τ zjrj <∞, 1 ≤ j ≤ n] . F (z1, . . . , zn; r1, . . . , rn).
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2.2 Lemmas on H-hulls

We will need some results on H-hulls. A relatively closed bounded subset K of H is called
an H-hull if H \K is simply connected. Given an H-hull K, we use gK to denote the unique
conformal map from H \ K onto H that satisfies gK(z) = z + O(|z|−1) as z → ∞. The
half-plane capacity of K is hcap(K) := limz→∞ z(gK(z) − z). Let fK = g−1

K . If K = ∅,
then gK = fK = id, and hcap(K) = 0. Now suppose K 6= ∅. Let aK = min(K ∩ R) and
bK = max(K ∩R). Let Kdoub = K ∪ [aK , bK ]∪{z : z ∈ K}. By Schwarz reflection principle,
gK extends to a conformal map from C \Kdoub onto C \ [cK , dK ] for some cK < dK ∈ R, and
satisfies gK(z) = gK(z). In this paper, we write SK for [cK , dK ].

Examples

• For x0 ∈ R and r > 0, let D
+

x0,r
denote semi-disc {z ∈ H : |z − x0| ≤ r}, which is an

H-hull. It is straightforward to check that g
D

+
x0,r

(z) = z + r2

z−x0
, hcap(D

+

x0,r
) = r2, and

S
D

+
x0,r

= [x0 − 2r, x0 + 2r].

• Each Kt associated with a chordal Loewner curve γ is an H-hull with hcap(Kt) = 2t.
Since γ(t) ∈ ∂Kt and gt(γ(t)) = Ut, we have Ut ∈ SKt .

Lemma 2.4. For any nonempty H-hull K, there is a positive measure µK supported by SK
with total mass |µK | = hcap(K) such that,

fK(z)− z =

∫
−1

z − x
dµK(x), z ∈ C \ SK . (2.9)

Proof. This is [21, Formula (5.1)].

Lemma 2.5. If a nonempty H-hull K is contained in D
+

x0,r
for some x0 ∈ R and r > 0,

then hcap(K) ≤ r2, SK ⊂ [x0 − 2r, x0 + 2r], and

|gK(z)− z| ≤ 3r, z ∈ C \Kdoub. (2.10)

Proof. From the monotone property of hcap ([8]), we have hcap(K) ≤ hcap(D
+

x0,r
) = r2.

From [21, Lemma 5.3], we know that SK ⊂ S
D

+
x0,r

= [x0−2r, x0 +2r]. Formula (2.10) follows

from [8, Formula (3.12)] and that gK−x0(z − x0) = gK(z)− x0.

Lemma 2.6. Let K be as in the above lemma. Then for any z ∈ C with |z − x0| ≥ 5r, we
have

|gK(z)− z| ≤ 2|z − x0|
( r

|z − x0|

)2

; (2.11)

| Im gK(z)− Im z|
| Im z|

≤ 4
( r

|z − x0|

)2

; (2.12)
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|g′K(z)− 1| ≤ 5
( r

|z − x0|

)2

. (2.13)

Proof. Since gK−x0(z − x0) = gK(z)− x0, we may assume that x0 = 0. From the above two
lemmas, we find that |µK | ≤ r2 and

fK(w)− w =

∫ 2r

−2r

−1

z − w
dµK(w), w ∈ C \ [−2r, 2r]. (2.14)

Thus, if |w| > 2r, then |fK(w) − w| ≤ r2

|w|−2r
. So fK maps the circle {|z| = 4r} onto a

Jordan curve that lies within the circles {|z| = 3.5r} and {|z| = 4.5r}. Thus, if |z| > 5r,
then |gK(z)| > 4r, and |z − gK(z)| = |f(gK(z)) − gK(z)| ≤ r2

|gK(z)|−2r
≤ r/2, which implies

|z| ≤ |gK(z)|+ r/2, and |gK(z)− z| ≤ r2

|gK(z)|−2r
≤ r2

|z|−2.5r
≤ r2

|z|/2 . So we get (2.11).

Taking the imaginary part of (2.14), we find that, if w ∈ H and |w| > 2r, then | Im fK(w)−
Imw| ≤ | Imw| r2

(|w|−2r)2 . Letting w = gK(z) with z ∈ H and |z| > 5r, we find that

| Im z − Im gK(z)| ≤ | Im gK(z)| r2

(|gK(z)| − 2r)2
≤ | Im z| r2

(|z| − 2.5r)2
≤ | Im z| r2

(|z|/2)2
,

which implies (2.12). Here we used that | Im gK(z)| ≤ | Im z| that can be seen from (2.14).
Differentiating (2.14) w.r.t. z, we find that, if |w| > 2r, then |f ′K(w) − 1| ≤ r2

(|w|−2r)2 .

Letting w = gK(z) with z ∈ H and |z| > 5r, we find that

|1/g′K(z)− 1| ≤ r2

(|gK(z)| − 2r)2
≤ r2

(|z| − 2.5r)2
≤ r2

(|z|/2)2
,

which then implies (2.13).

Lemma 2.7. Let K be a nonempty H-hull. Suppose z ∈ H satisfies that dist(z, SK) ≥
4 diam(SK). Then dist(fK(z), K) ≥ 2 diam(K).

Proof. Let r = diam(SK). Since gK maps C \Kdoub conformally onto C \ SK , fixes ∞, and
satisfies that g′K(∞) = 1, we see that Kdoub and SK have the same whole-plane capacity.

Thus, diam(K) ≤ diam(Kdoub) ≤ diam(SK). Take any x0 ∈ K ∩ R. Then K ⊂ D
+

x0,r
.

So |µK | = hcap(K) ≤ r2. Since dist(z, SK) ≥ 4r, from (2.9) we get |fK(z) − z| ≤ r/4.
From [21, Lemma 5.2], we know x0 ∈ [aK , bK ] ⊂ [cK , dK ] = SK . Thus, dist(fK(z), K) ≥
|fK(z)− x0| − r ≥ |z − x0| − |fK(z)− z| − r ≥ dist(z, SK)− 2r > 2r ≥ 2 diam(K).

Lemma 2.8. Let K be an H-hull, and w0 be a prime end of H \ K that sits on ∂K. Let
z0 ∈ H \K and R = dist(z0, K) > 0. Let g be any conformal map from H \K onto H that
fixes ∞ and sends w0 to 0. Then for z1 ∈ H \K, we have

|g(z1)− g(z0)|
|g(z0)|

= O
( |z1 − z0|

R

)
; (2.15)

| Im g(z1)− Im g(z0)|
Im g(z0)

= O
( | Im z1 − Im z0|

Im z0

)
+O

( |z1 − z0|
R

)1/2

. (2.16)
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Proof. By scaling invariance, we may assume that g = gK−x0, where x0 = gK(w0) ∈ [cK , dK ].
From Koebe’s 1/4 theorem, we know that

|g(z0)| = |gK(z0)− x0| ≥ dist(gK(z0), [cK , dK ]) & |g′(z0)|R.

Applying Koebe’s distortion theorem, we find that, if |z1 − z0| < R/5, then

|g′(z1)− g′(z0)| . |g′(z0)| |z1 − z0|
R

. (2.17)

|g′(z1)| � |g′(z0)|, |g(z1)− g(z0)| . |g′(z0)||z1 − z0|. (2.18)

Combining the second formula with the lower bound of |g(z0)|, we get (2.15).

To derive (2.16), we assume | Im z1−Im z0|
Im z0

and |z1−z0|
R

are sufficiently small, and consider

several cases. First, assume that Im z0 ≥ R
C

for some big constant C. From Koebe’s 1/4
theorem, we know that Im g(z0) & |g′(z0)|R. This together with the inequalities | Im g(z1)−
Im g(z0)| ≤ |g(z1)− g(z0)| and (2.18) implies (2.16).

Now assume that Im z0 ≤ R
C

. Note that z0−z0 = 2i Im z0 and g(z0)−g(z0) = 2i Im g(z0).
From Koebe’s distortion theorem, we see that when C is big enough,

| Im g(z0)− g′(z0) Im z0| . |g′(z0)| Im z0
Im z0

R
, (2.19)

which implies that
Im g(z0) & |g′(z0)| Im z0. (2.20)

Now we assume that Im z0 ≥
√
R|z1 − z0|. Combining (2.20) with (2.18) and the inequalities

| Im g(z1)− Im g(z0)| ≤ |g(z1)− g(z0)| and |z1−z0|
Im z0

≤ ( |z1−z0|
R

)1/2, we get (2.16).

Finally, we assume that Im z0 ≤
√
R|z1 − z0|. Let R1 = R − |z1 − z0| & R. Then

{|z − z1| < R1} ⊂ {|z − z0| < R}. From Koebe’s distortion theorem and (2.17), we get

| Im g(z1)− g′(z1) Im z1| . |g′(z1)| Im z1
Im z1

R1

. |g′(z0)| Im z0
Im z0

R
. (2.21)

Now we have

| Im g(z1)− Im g(z0)| ≤| Im g(z0)− g′(z0) Im z0|+ | Im g(z1)− g′(z1) Im z1|
+|g′(z1)− g′(z0)| Im z0 + |g′(z1)|| Im z1 − Im z0|.

Combining the above inequality with the inequalities (2.17-2.21) and Im z0
R
≤ ( |z1−z0|

R
)1/2, we

get (2.16) in the last case.

2.3 Lemma on extremal length

We use dΩ(X, Y ) to denote the extremal distance between X and Y in Ω.
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Lemma 2.9. Let S1 and S2 be a disjoint pair of connected bounded closed subsets of H that
intersect R. Then

2∏
j=1

( diam(Sj)

dist(S1, S2)
∧ 1
)
≤ 144e−πdH(S1,S2).

Proof. For j = 1, 2, let Sdoub
j be the union of Sj and its reflection about R. By reflection

principle, dH(S1, S2) = 2dC(Sdoub
1 , Sdoub

2 ). Choose zj ∈ Sj, j = 1, 2, such that |z2 − z1| =
dS := dist(S1, S2). Let rj = maxz∈Sdoub

j
|z − zj|, j = 1, 2. From Teichmüller Theorem and

conformal invariance of extremal distance ([1]), we find that

dC(Sdoub
1 , Sdoub

2 ) ≤ dC([−r1, 0], [dS, dS + r2]) = dC([−1, 0], [R,∞)) = Λ(R),

where R > 0 satisfies that 1
1+R

=
∏2

j=1
rj

dS+rj
, and Λ(R) is the modulus of the Teichmüller

domain C \ ([−1, 0], [R,∞)). From [1, Formula (4-21)] and the above computation, we get

e−πdH(S1,S2) = e−2πΛ(R) ≥ 1

16(R + 1)
=

1

16

2∏
j=1

rj
dS + rj

.

Since diam(Sj) ≤ 2rj and
2rj
dS
∧ 1 ≤ 3rj

dS+rj
, the proof is now complete.

2.4 Lemmas on two-sided radial SLE

For z ∈ H, we use P∗z to denote the law of a two-sided radial SLEκ curve through z. For
z ∈ R \ {0}, we use P∗z to denote the law of a two-sided chordal SLEκ curve through z. Let
E∗z denote the corresponding expectation. In any case, we have P∗z-a.s., Tz <∞. See [15, 16]
for definitions and more details on these measures. For a random chordal Loewner curve γ,
we use (Ft) to denote the filtration generated by γ.

Lemma 2.10. Let z ∈ H and R ∈ (0, |z|). Then P∗z is absolutely continuous w.r.t. P[·|τ zR <
∞] on FτzR ∩ {τ

z
R <∞}, and the Radon-Nikodym derivative is uniformly bounded.

Proof. It is known ([15, 16]) that P∗z is obtained by weighting P using M z
t /G(z), where

M z
t = |g′t(z)|2−dG(Zt(z)) and G(z) is given by (1.2). Since P[·|τ zR < ∞] is obtained by

weighting the restriction of P to {τ zR < ∞} using 1/P[τ zR < ∞], it suffices to prove that
Mz
τ

G(z)
· P[τ <∞] is uniformly bounded, where τ = τ zR.

Let y = Im z. From [18, Lemma 2.6] we have P[τ < ∞] . Py(R)

Py(|z|) . Let z̃ = gτ (z) and

ỹ = Im z̃. It suffices to show that

|z̃|−αỹα−(2−d)

|z|−αyα−(2−d)
· |g′τ (z)|2−d · Py(R)

Py(|z|)
. 1. (2.22)

10



We consider two cases. First, suppose y ≥ R/10. From Lemma 2.1, we get Py(R)

Py(|z|) .

( y
|z|)

α(R
y

)2−d. Applying Koebe’s 1/4 theorem, we get ỹ & |g′τ (z)|R. Thus,

LHS of (2.22) .
(y/|z̃|)α(|g′τ (z)|R)−(2−d)

|z|−αyα−(2−d)
· |g′τ (z)|2−d ·

( y
|z|

)α(R
y

)2−d
=
( ỹ
|z̃|

)α
≤ 1.

So we get (2.22) in the first case. Second, assume that y ≤ R/10. Then we have Py(R)

Py(|z|) =

( R|z|)
α. Applying Koebe’s distortion theorem, we get ỹ � |g′τ (z)|y. Applying Koebe’s 1/4

theorem, we get |z̃| & |g′τ (z)|R. Thus,

LHS of (2.22) .
(|g′τ (z)|R)−α(|g′τ (z)|y)α−(2−d)

|z|−αyα−(2−d)
· |g′τ (z)|2−d ·

( R
|z|

)α
.

So we get (2.22) in the second case. The proof is now complete.

Lemma 2.11. Let z ∈ H and R ∈ (0, |z|). Then for any w ∈ H such that |w−z|
R

is sufficiently
small, P∗z and P∗w restricted to FτzR are absolutely continuous w.r.t. each other, and

log
(dP∗w|Fτz

R

dP∗z|Fτz
R

)
= O

( |z − w|
R

)
.

Proof. Let G and M ·
t be as in the above proof. Let τ = τ zR. It suffices to show that

log
( M z

τ

G(z)

/ Mw
τ

G(w)

)
= O

( |z − w|
R

)
.

Since ||z| − |w|| ≤ |z − w| and |z| ≥ R, we get log |w||z| | = O( |z−w|
R

). Let z̃ = gτ (z) − Uτ and

w̃ = gτ (w) − Uτ . From Koebe’s 1/4 theorem and distortion theorem, we get |z̃| & |g′τ (z)|R
and |z̃− w̃| . |g′τ (z)||z−w|. So we get log |w̃||z̃| = O( |z−w|

R
). From Koebe’s distortion theorem,

we get log |g
′
τ (w)|
|g′τ (z)| = O( |z−w|

R
). So it suffices to show that

log
(Im w̃

Imw

/Im z̃

Im z

)
= O

( |z − w|
R

)
. (2.23)

Now we consider two cases. First, suppose that Im z ≥ R/8. Since | Imw−Im z| ≤ |w−z|
we get log Imw

Im z
= O( |z−w|

R
). Applying Koebe’s 1/4 theorem, we get Im z̃ & |g′τ (z)|R. Since

| Im w̃−Im z̃| ≤ |w̃−z̃| . |g′τ (z)||z−w|, from the above argument, we get log Im w̃
Im z̃

= O( |z−w|
R

),
which implies (2.23). Second, suppose that Im z ≤ R/8. Then Imw < R/4 if |z−w| < R/8.

Applying Koebe’s distortion theorem, we get log( Im z̃
|g′τ (z)| Im z

), log( Im w̃
|g′τ (w)| Imw

) = O( |z−w|
R

), which

together with log |g
′
τ (w)|
|g′τ (z)| = O( |z−w|

R
) imply (2.23) in the second case.

Remark The above two lemmas still hold if z or w lies on R \ {0}, and the two-sided radial
measure is replaced by the two-sided chordal measure.
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3 Main Estimates

Theorem 3.1. Let z1, . . . , zn be distinct points in H \ {0}, where n ≥ 2. Let rj ∈ (0, dj/8),
1 ≤ j ≤ n. Let k0 ∈ {2, . . . , n} and sk0 ∈ (rk0 , |zk0 − z1| ∧ |zk0|). Then we have β > 0 such
that

P[τ z1r1 < · · · < τ znrn ; inradH
τ
z1
r1

(zk0) ≤ sk0 ] . F (z1, . . . , zn; r1, . . . , rn)
( sk0

|zk0 − z1| ∧ |zk0|

)β
.

The proof of this theorem is long and similar to that of [18, Theorem 1.1], but is quite
different from other proofs of this paper. So we postpone the proof to the Appendix.

Lemma 3.2. Let z1 ∈ H and 0 < r < η < R. Further suppose r < Im z1. Let ξ be a
connected component of Hτ

z1
η
∩ {|z − z1| = R}. Then

(i) P[γ[τ z1η , τ
z1
r ] ∩ ξ 6= ∅|τ z1r <∞] . ( η

R
)α/4.

(ii) P∗z1 [γ[τ z1η , Tz1 ] ∩ ξ 6= ∅] . ( η
R

)α/4.

Proof. (i) From [12, Theorem 2.3], we know that there are constants C, δ > 0 such that, if
r < δ Im z1, then P[τ z1r <∞] ≥ CG(z1)r2−d. Thus, for any r < Im z1,

P[τ z1r <∞] ≥ Cδ2−dG(z1)r2−d & F (z1)r2−d = F (z1; r). (3.1)

We will show that

P[γ[τ z1η , τ
z1
r ] ∩ ξ 6= ∅; τ z1r <∞] . F (z1; r)

( η
R

)α/4
, (3.2)

which together with (3.1) implies (i).
To prove (3.2), using Lemma 2.1, we may assume that r = ηe−n for some n ∈ N. Let

rk = ηe−k, 0 ≤ k ≤ n. Let E denote the event in (3.2). Then E =
⋃n
k=1Ek, where

Ek = {γ[τ z1r0 , τ
z1
rk−1

] ∩ ξ = ∅; γ[τ z1rk−1
, τ z1rk ] ∩ ξ 6= ∅; τ z1rn <∞}.

Let y1 = Im z1. From [18, Lemma 2.6] we know that

P[τ z1rk−1
<∞] .

Py1(rk−1)

Py1(|z1|)
; P[τ z1rn <∞|Fτz1rk , τ

z1
rk
<∞] .

Py1(rn)

Py1(rk)
. (3.3)

Suppose τ z1rk−1
<∞ and γ[τ z1r0 , τ

z1
rk−1

] ∩ ξ = ∅. Let ρ be a connected component of {|z − z1| =√
rk−1R}∩Hτ

z1
rk−1

that separates z1 from ξ in Hτ
z1
rk−1

. Since ρ is a crosscut of Hτ
z1
rk−1

, it divides

Hτ
z1
rk−1

into a bounded domain and a unbounded domain. A crosscut in a domain D is an

open simple curve in D whose two ends approach to two boundary points of D. Let Eb (resp.

12



Eu) denote the events that ξ lies in the bounded (resp. unbounded) domain. For the event
Eb, we apply [18, Lemma 2.5] to the crosscuts ρ and ξ to get

P[γ[τ z1rk−1
, τ z1rk ] ∩ ξ 6= ∅;Eb|Fτz1rk−1

, τ z1rk−1
<∞, γ[τ z1r0 , τ

z1
rk−1

] ∩ ξ = ∅]

.e−απdC(ρ,ξ) .
(rk−1

R

)α/4
.

Combining this estimate with (3.3) and Lemma 2.1, we get

P[Ek ∩ Eb] . F (z1; r)
(rk−1

R

)α/4( rk
rk−1

)α
. (3.4)

If Eu happens, then ρ separates z1 from ∞ in Hτ
z1
rk−1

. Let Tρ denote the first time

after τ z1rk−1
that γ visits ρ, and let ρ̃ (resp. J) be a connected component of ρ ∩ HTρ (resp.

{|z − z1| = rk−1} ∩ HTρ that separates z1 from ∞ in HTρ . Applying [18, Lemma 2.5] to ρ̃
and J , we get

P[τ z1rk <∞;Eu|FTρ , Tρ <∞] . e−απdC(ρ̃,J) .
(rk−1

R

)α/4
.

Combining this estimate with (3.3) and Lemma 2.1, we get

P[Ek ∩ Eu] . F (z1; r)
(rk−1

R

)α/4( rk
rk−1

)α
. (3.5)

Since E =
⋃n
k=1 Ek, using (3.4) and (3.5), we get

P[E] . F (z1; r)
( rk
rk−1

)α n∑
k=1

(rk−1

R

)α/4
= F (z1; r)

( η
R

)α/4 eα

1− e−α/4
.

From this we get (3.2) and finish the proof of (i).
(ii) From Lemma 2.10 and (i), we get P∗z1 [γ[τ z1η , τ

z1
r ] ∩ ξ 6= ∅] . ( η

R
)α/4 for any r > 0

smaller than η and Im z1. We then complete the proof by sending r → 0.

Corollary 3.3. Let z1, z0 ∈ H and 0 < r < η < R be such that R− η, η− r > 2|z1− z0| and
r < Im z0. Let ξ be a connected component of Hτ

z1
η
∩ {|z − z1| = R}. Then

(i) P[γ[τ z1η , τ
z0
r ] ∩ ξ 6= ∅|τ z0r <∞] . ( η

R
)α/4.

(ii) P∗z0 [γ[τ z1η , Tz0 ] ∩ ξ 6= ∅] . ( η
R

)α/4.

Proof. (i) Let η′ = η + |z1 − z0| and R′ = R− |z1 − z0|. Then τ z0η′ ≤ τ z1η , and {|z − z0| = R′}
disconnects z1, z0 from {|z − z1| = R}. So there is a connected component ξ′ of {|z − z0| =
R′} ∩Hτ

z0
η′

that disconnects z1, z0 from ξ in Hτ
z0
η′

. Thus, by Lemma 3.2,

P[γ[τ z1η , τ
z0
r ] ∩ ξ 6= ∅|τ z0r <∞] ≤ P[γ[τ z0η′ , τ

z0
r ] ∩ ξ′ 6= ∅|τ z0r <∞] .

( η′
R′

)α/4
.
( η
R

)α/4
.

(ii) This follows from Lemma 2.10 and (i) by sending r → 0.
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The next lemma will be frequently used.

Lemma 3.4. Let z1, . . . , zn be distinct points in H, where n ≥ 2. Let K be an H-hull such
that 0 ∈ K and H \K contains z1, . . . , zn. Let w0 be a prime end of H \K that sits on ∂K.
Suppose that dist(zk, K) ≥ sk, 2 ≤ k ≤ n, where sk ∈ (0, |zk| ∧ |zk − z1|). Then

F (z1)F(H\K;w0,∞)(z2, . . . , zn)

.F (z1, . . . , zn)
n∏
k=2

( |zk| ∧ |zk − z1|
sk

)α
min

2≤k≤n

( dist(gK(zk), SK)

|gK(zk)− gK(w0)|

)α
.F (z1, . . . , zn)

n∏
k=2

( |zk| ∧ |zk − z1|
sk

)α
.

Proof. Since w0 ∈ ∂K, we get gK(w0) ∈ SK . So the first inequality immediately implies the
second. Let yk and lk, 1 ≤ k ≤ n, be defined by (2.3). Let g = gK − gK(w0). Let z̃k = g(zk),

2 ≤ k ≤ n; and define ỹk and l̃k using (2.3) for the n−1 points: z̃k, 2 ≤ k ≤ n. In particular,

l̃2 = |z̃2|. Let S = SK − gK(w0) 3 0. Define for 2 ≤ k ≤ n,

l̃Sk = dist(z̃k, S ∪ {z̃j : 2 ≤ j < k}), lKk = dist(zk, K ∪ {zj : 2 ≤ j < k}).

From Koebe’s 1/4 theorem, we get |g′(zk)|lKk � l̃Sk . We claim that when ε is small,

Pỹk(|g′(zk)|ε)
Pỹk(l̃

S
k )

� Pyk(ε)

Pyk(l
K
k )
, if ε ≤ dist(zk, K). (3.6)

We consider two cases. If yk ≤ dist(zk, K)/10, applying Koebe’s distortion theorem, we get

ỹk � |g′(zk)|yk. Then we have (3.6) because Pay(ar)

Pay(aR)
= Py(r)

Py(R)
. If yk ≥ dist(zk, K)/10, then

yk & lKk . Applying Koebe’s 1/4 theorem, we get ỹk & |g′(zk)| dist(zk, K) & l̃Kk . Thus, when
ε ≤ dist(zk, K), we have (3.6) because both sides of it are comparable to ( ε

lKk
)2−d.

Recall that

F (z1) = lim
ε→0+

εd−2 Py1(ε)

Py1(l1)
; F (z1, . . . , zn) = lim

ε→0+
εn(d−2)

n∏
k=1

Pyk(ε)

Pyk(lk)
.

Since g is a conformal map from D onto H that fixes ∞ and takes w0 to 0, we have

F(D;w0,∞)(z2, . . . , zn) =
n∏
k=2

|g′(zk)|2−d lim
ε→0+

ε(n−1)(d−2)

n∏
k=2

Pỹk(ε)

Pỹk(l̃k)
.

From (3.6), we get

F (z1)F(D;w0,∞)(z2, . . . , zn) �
n∏
k=2

( Pyk(lk)
Pyk(l

K
k )
· Pỹk(l̃

S
k )

Pỹk(l̃k)

)
· F (z1, . . . , zn).

14



Since lKk = dist(zk, K) ∧ dist(zk : {zj : 2 ≤ j < k}) ≥ sk ∧ dist(zk : {zj : 2 ≤ j < k}),
lk = |zk| ∧ |zk − z1| ∧ dist(zk : {zj : 2 ≤ j < k}), and |zk| ∧ |zk − z1| ≥ sk, we get

Pyk(lk)

Pyk(l
K
k )
≤
( |zk| ∧ |zk − z1| ∧ dist(zk : {zj : 2 ≤ j < k})

sk ∧ dist(zk : {zj : 2 ≤ j < k})

)α
≤
( |zk| ∧ |zk − z1|

sk

)α
.

Note that
Pỹk (l̃Sk )

Pỹk (l̃k)
≤ 1, 2 ≤ k ≤ n, and

Pỹ2 (l̃S2 )

Pỹ2 (l̃2)
=

Pỹ2 (dist(z̃2,S))

Pỹ2 (|z̃2|) = (dist(z̃2,S)
|z̃2| )α. From Lemma 2.2,

we get
∏n

k=2

Pỹk (l̃Sk )

Pỹk (l̃k)
. min2≤k≤n

(
dist(z̃k,S)
|z̃k|

)α
. Then the proof is completed.

The next two lemmas are useful when we want to prove the lower bound.

Lemma 3.5. Let z1, . . . , zn be distinct points in H \ {0}. Let rj ∈ (0, dj), 1 ≤ j ≤ n, where
dj’s are given by (2.3). Let K be an H-hull such that 0 ∈ K, and let U0 ∈ SK. Suppose that
zk 6∈ K and

dist(gK(zj), SK) � |z̃j| := |gK(zj)− U0|, 1 ≤ j ≤ n. (3.7)

Suppose I = {1 = j1 < · · · < j|I|} ⊂ {1, . . . , n} satisfies that rj . dist(zj, K). Then we have

F (z1; dist(z1, K)) · F (z̃j1 , . . . , z̃j|I| ; |g
′
K(zj1)|rj1 , . . . , |g′K(zj|I|)|rj|I|)

&F (z1, z2, . . . , zn; r1, r2, . . . , rn).

The implicit constant in the conclusion depends on the implicit constants in the assumption.

Proof. By reordering the points and using (2.7), we may assume that I = {1, . . . ,m}. Let yk
and lk, 1 ≤ k ≤ n, be defined by (2.3). Also take ỹk and l̃k be the corresponding quantities
for z̃k, 1 ≤ k ≤ m. Let S = SK − U0 3 0. For 1 ≤ k ≤ m define.

l̃Sk = dist(z̃k, S ∪ {z̃j : 1 ≤ j < k}), lKk = dist(zk, K ∪ {zj : 1 ≤ j < k}).

It is clear that lKk ≤ lk. By Koebe’s 1/4 theorem we have |g′K(zk)|lKk � l̃Sk . From (3.7) we

know that l̃Sk � l̃k. Since rk . dist(zk, K), 1 ≤ k ≤ m, the argument of (3.6) gives us

Pỹk(|g′K(zk)|rk)
Pỹk(l̃k)

� Pyk(rk)

Pyk(l
K
k )
, 1 ≤ k ≤ m. (3.8)

Since lKk ≤ lk, we have

Pỹk(|g′K(zk)|rk)
Pỹk(l̃k)

&
Pyk(rk)

Pyk(lk)
, 1 ≤ k ≤ m. (3.9)

Multiplying (3.8) for k = 1, (3.9) for 2 ≤ k ≤ m, the equality F (z1; dist(z1, K)) =
Py1 (lK1 )

Py1 (l1)
,

and the inequalities 1 ≥ Pyk (rk)

Pyk (lk)
for m+ 1 ≤ k ≤ n, we get the desired inequality.
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Lemma 3.6. Suppose we have set of distinct points z1, . . . , zn in H. Let lj, 1 ≤ j ≤ n,
be defined by (2.3). Let m ∈ {1, . . . , n − 1}. Take wj = zm+j, 1 ≤ j ≤ n − m. Let lwj ,
1 ≤ j ≤ n−m, be the corresponding quantity for wj’s. Suppose lm+j � lwj , 1 ≤ j ≤ n−m.
Then

F (z1, . . . , zm; r1, . . . , rm)F (zm+1, . . . , zn; rm+1, . . . , rn) � F (z1, . . . , zn; r1, . . . , rn).

The implicit constant in the result depends on the implicit constants in the assumption.

Proof. Just write the definition of F and note that PIm zm+j
(lm+j) � PImwj(l

w
j ).

4 Main Theorems

Following the approach in [15], we will prove the existence of ordered Green’s function, i.e.,
the limit

lim
r1,...,rn↓0

n∏
j=1

rd−2
j P[τ z1r1 < · · · < τ znrn <∞].

It is clear that if the ordered Green’s function exists, then the (unordered) Green’s function
also exists.

For that purpose we define functions Ĝ(z1, . . . , zn) by induction on n. For n = 1, let

Ĝ(z) = G(z) given by (1.2). Suppose n ≥ 2 and Ĝ has been defined for n − 1 points. Now

we define Ĝ for distinct n points z1, . . . , zn ∈ H. Given a chordal Loewner curve γ, for any
t ≥ 0, if z2, . . . , zn ∈ Ht, we define

Ĝt(z2, . . . , zn) =
n∏
j=1

|g′t(zj)|2−dĜ(Zt(z2), . . . , Zt(zn));

otherwise define Ĝt(z2, . . . , zn) = 0. Recall that Zt = gt − Ut is the centered Loewner map

at time t. Now we define Ĝ(z1, . . . , zn) by

Ĝ(z1, . . . , zn) = G(z1)E∗z1 [ĜTz1
(z2, . . . , zn)].

Recall that E∗z1 is the expectation w.r.t. the two-sided radial SLEκ curve through z1.
The authors of [15] proved that the two-point (conformal radius version) Green’s function

exists and agrees with the Ĝ(z1, z2) defined above (up to a constant). Their proof used the
closed-form formula of one-point Green’s function (1.2). We will show their result is also
true for arbitrary number of points. The difficulty is that there is no closed-form formula
known for two-point Green’s function. We find a way to prove the above statement without
knowing the exact formula of the Green’s functions. Below is our first main theorem
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Theorem 4.1. There are finite constants Cn, Bn > 0 and βn, δn ∈ (0, 1) depending only
on κ and n such that the following holds. Let z1, . . . , zn be distinct points in H. Let Rj,
1 ≤ j ≤ n, Q and F be defined by (2.3,2.4). Then for any r1, . . . , rn > 0 that satisfy

QBn
rj
Rj

< δn, 1 ≤ j ≤ n, (4.1)

we have∣∣∣ n∏
j=1

rd−2
j P[τ z1r1 < · · · < τ znrn <∞]− Ĝ(z1, . . . , zn)

∣∣∣ ≤ CnF
n∑
j=1

(
QBn

rj
Rj

)βn
. (4.2)

As an immediate consequence, the G(z1, . . . , zn) defined by (1.1) exists and is equal to∑
σ Ĝ(zσ(1), . . . , zσ(n)), where the summation is over all permutations of {1, . . . , n}.

Proving the convergence of n-point Green’s function requires certain modulus of conti-
nuity of (n− 1)-point Green’s functions, which is given by the following theorem.

Theorem 4.2. There are finite constants Cn, Bn > 0 and βn, δn ∈ (0, 1) depending only on κ
and n such that the following holds. Let z1, . . . , zn be distinct points in H. Let dj, 1 ≤ j ≤ n,
Q and F be defined by (2.3,2.4). If z′1, . . . , z

′
n ∈ H satisfy that

QBn
|z′j − zj|
dj

< δn,
| Im z′j − Im zj|

Im zj
< δn, 1 ≤ j ≤ n, (4.3)

then

|Ĝ(z′1, . . . , z
′
n)− Ĝ(z1, . . . , zn)| ≤ CnF

n∑
j=1

(
QBn
|z′j − zj|
dj

)βn
+
( | Im z′j − Im zj|

Im zj

)βn
. (4.4)

Moreover, the same inequality holds true (with bigger Cn) if Ĝ is replaced by G.

The sharp lower bound for the Green’s function is provided in the theorem below. The
reader may compare it with Proposition 2.3.

Theorem 4.3. Then there are finite constants Cn, Rn > 0 such that for any distinct points
z1, . . . , zn ∈ H \ {0} and any rj ∈ (0, dj), 1 ≤ j ≤ n, we have

P[τ zjrj < τ{|z|=Rn(
∑n
i=1 |zi|)}, 1 ≤ j ≤ n] ≥ CnF (z1, . . . , zn; r1, . . . , rn). (4.5)

We have a local martingale related with the Green’s function.

Corollary 4.4. For fixed distinct z1, . . . , zn ∈ H, Mt := Ĝt(z1, . . . , zn) is a local martingale
up to the first time any zj, 1 ≤ j ≤ n, is swallowed by γ.
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Proof. It suffices to prove the following. Let K be any H-hull such that 0 ∈ K and
z1, . . . , zn ∈ H \ K. Let τ = inf{t > 0 : γ[0, t] 6⊂ K}. Then Mt∧τ is a martingale. To
prove this, we pick a small r > 0, and consider the martingale

M
(r)
t := rn(d−2)P[τ z1r < · · · < τ znr |Ft∧τ ].

By the convergence theorem and Koebe’s distortion theorem, we have M
(r)
t →Mt∧τ as r → 0.

In order to have the desired result, we need uniform convergence. This can be done using the
the convergence rate in Theorem 4.1 and a compactness result from [21]. Let zj;t = gt(zj)−Ut;
let Qt and Rj;t be the Q and Rj for z1;t, . . . , zn;t; let Ft =

∏n
j=1 |g′t(zj)|2−dF (z1;t, . . . , zn;t).

It suffices to show that |g′t(zj)|, Qt, Rj;t, Ft, 1 ≤ j ≤ n, 0 ≤ t ≤ τ , are all bounded from
both above and below by a finite positive constant depending only on κ, K, and z1, . . . , zn.
The existence of these bounds all follow directly or indirectly from [21, Lemma 5.4]. For
example, to prove that Ft, 0 ≤ t ≤ τ , are bounded above, we need to prove that |zj;t − zk;t|,
j 6= k, and |zj,t|, 0 ≤ t ≤ τ , are all bounded below. It suffices to show that |gL(zj)− gL(zk),
j 6= k, and dist(gL(zj), SL) for all L in H(K), the set of H-hulls L with L ⊂ K, are bounded
below. Suppose |gL(zj) − gL(zk)|, j 6= k, L ∈ H(K), are not bounded below by a constant.
Then there are zj 6= zk and a sequence (Ln) ⊂ H(K) such that |gLn(zj) − gLn(zk)| → 0.
Since H(K) is a compact metric space ([21, Lemma 5.4]), by passing to a subsequence,
we may assume that Ln → L0 ∈ H(K). This then implies that gL0(zj) = lim gLn(zj) =
lim gLn(zk) = gL0(zk), which contradicts that gL0 is injective on H \ K. To prove that
dist(gL(zj), SL) , 1 ≤ j ≤ n, L ∈ H(K), are bounded from below, one may choose a
pair of disjoint Jordan curve J1, J2 in H \ K, both of which disconnects K from all of
zj’s. Then dist(gL(zj), SL) ≥ dist(gL(J1), gL(J2)), and the same argument above shows that
dist(gL(J1), gL(J2)), L ∈ H(K), are bounded from below by a positive constant.

Remark We may write Mt =
∏n

j=1 |g′t(zj)|2−dĜ(gt(z1) − Ut, . . . , gt(zn) − Ut). If we know

that Ĝ is smooth, then using Itô’s formula and Loewner’s equation (2.8), one can easily get

a second order PDE for Ĝ. More specifically, if we view Ĝ as a function on 2n real variables:
x1, y1, . . . , xn, yn, then it satisfies

κ

2

( n∑
j=1

∂xj

)2

Ĝ+
n∑
j=1

∂xjĜ ·
2xj

x2
j + y2

j

+
n∑
j=1

∂yjĜ ·
−2yj
x2
j + y2

j

+ (2− d)Ĝ ·
n∑
j=1

−2(x2
j − y2

j )

(x2
j + y2

j )
2

= 0.

Since the PDE does not depend on the order of points, it is also satisfied by the unordered
Green’s function G.

We expect that the smoothness of Ĝ can be proved by Hörmander’s theorem because the
differential operator in the above displayed formula satisfies Hörmander’s condition.

5 Proof of Theorems 4.1 and 4.2

At the beginning, we know that Theorems 4.1 and 4.2 hold for n = 1 with δ1 = 1/2 thanks
to [12, Theorem 2.3] and the explicit formulas for F (z) and G(z). We will prove Theorems
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4.1 and 4.2 together using induction. Let n ≥ 2. Suppose that Theorems 4.1 and 4.2 hold
for n−1 points. We now prove that they also hold for n points. We will frequently apply the
Domain Markov Property (DMP) of SLE (c.f. [8]) without reference, i.e., if γ is a chordal
SLEκ curve in H from 0 to ∞, and τ is a finite stopping time, then Zτ (γ(τ + ·)) has the
same law as γ, and is independent of Fτ .

Fix distinct points z1, . . . , zn ∈ H. Let lj, dj, Rj, yj, 1 ≤ j ≤ n, Q, and F be as defined
in (2.3,2.4). Throughout this section, a variable is a real number that depends on κ, n and

z1, . . . , zn. From the induction hypothesis, Proposition 2.3, and (2.5), we see that Ĝ . F
holds for (n− 1) points. We write Ft for F(Ht;γ(t),∞). Then Lemma 3.4 holds with K = Kt,

G(z1) in place of F (z1), and Ĝt in place of F(H\Kt;w0,∞). We will use the following lemma.

Lemma 5.1. Let k0 ∈ {2, . . . , n} and sk0 ∈ (rk0 , |zk0 − z1| ∧ |zk0|). Then there is some
constant β > 0 such that

G(z1)E∗z1 [ĜTz1
(z2, . . . , zn)1{inradHTz1 (zk0) ≤ sk0}] . F ·

( sk0

|zk0 − z1| ∧ |zk0|

)β
.

Proof. This lemma essentially follows from the induction hypothesis, Theorem 3.1, and (2.5).
Below are the details. Let rj ∈ (0, Rj/8), 1 ≤ j ≤ n. From Theorem 3.1, there is a constant
β > 0 such that

P[τ z1r1 <∞] · E[1{inradH
τ
z1
r1

(zk0) ≤ sk0}P[τ z1r1 < · · · < τ znrn <∞|Fτz1r1 , τ
z1
r1
<∞]]

. F (z1, . . . , zn; r1, . . . , rn)
( sk0

|zk0 − z1| ∧ |zk0|

)β
.

By the convergence of (n− 1) point Green’s function, we know that

lim
r2,...,rn→0

n∏
k=2

rd−2
k P[τ z1r1 < · · · < τ znrn |Fτz1r1 , τ

z1
r1
<∞] = Ĝτ

z1
r1

(z2, . . . , zn).

Applying Fatou’s lemma with r2, . . . , rn → 0, we get

P[τ z1r1 <∞] · E[1{inradH
τ
z1
r1

(zk0) ≤ sk0}Ĝτ
z1
r1

(z2, . . . , zn)|τ z1r1 <∞]

. lim
r2,...,rn→0

n∏
k=2

rd−2
k F (z1, . . . , zn; r1, . . . , rn)

( sk0

|zk0 − z1| ∧ |zk0|

)β
,

which together with Lemma 2.10 implies that

P[τ z1r1 <∞] · E∗z1 [1{inradH
τ
z1
r1

(zk0) ≤ sk0}Ĝτ
z1
r1

(z2, . . . , zn)]

. lim
r2,...,rn→0

n∏
k=2

rd−2
k F (z1, . . . , zn; r1, . . . , rn)

( sk0

|zk0 − z1| ∧ |zk0|

)β
.
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By the continuity two-sided radial SLE at its end point and the continuity of (n− 1) point
Green’s function, we see that, under the law P∗z1 , as r1 → 0, inradH

τ
z1
r1

(zk0)→ inradHTz1 (zk0)

and Ĝτ
z1
r1

(z2, . . . , zn) → ĜTz1
(z2, . . . , zn). Since limr1→0 r

d−2
1 P[τ z1r1 < ∞] = G(z1), applying

Fatou’s lemma with r1 → 0, we get the conclusion.

5.1 Convergence of Green’s functions

In this subsection, we work on the inductive step for Theorem 4.1. Let 0 < rj < Rj/8,
1 ≤ j ≤ n. Consider the event {τ z1r1 < · · · < τ znrn <∞}.

Fix ~s = (s2, . . . , sn) with sj ∈ (rj, |zj − z1| ∧ |zj|) being variables to be determined later.
We define events

Er;~s =
n⋂
j=2

{dist(zj, Kτ
z1
r

) ≥ sj}, r ≥ 0. (5.1)

Now we decompose the main event according to Er1;~s, and write

P[τ z1r1 < · · · < τ znrn <∞] = P[τ z1r1 < · · · < τ znrn <∞;Er1;~s] + e∗1.

By Theorem 3.1 and (2.5), the term e∗1 satisfies that, for some β > 0,

0 ≤ e∗1 .
n∏
k=1

r2−d
k F

n∑
j=2

( sj
|zj| ∧ |zj − z1|

)β
.

We express

P[τ z1r1 < · · · < τ znrn <∞;Er1;~s]

=P[τ z1r1 <∞] · E[1Er1;~s
P[τ z2r2 < · · · < τ znrn <∞|Fτz1r1 ;Er1;~s]|τ z1r1 <∞].

From Proposition 2.3 and Koebe’s distortion theorem, we see that, if

rk
sk ∧Rk

<
1

6
, 2 ≤ k ≤ n, (5.2)

then

P[τ z2r2 < · · · < τ znrn <∞|Fτz1r1 ;Er1;~s] .
n∏
k=2

r2−d
k Fτz1r1

(z2, . . . , zn). (5.3)

Since Theorem 4.1 holds for n = 1, we see that, if

r1

R1

< δ1, (5.4)

then
|P[τ z1r1 <∞]− r2−d

1 G(z1)| . r2−d
1 F (z1)O(r1/R1)β1 .
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Now we express

P[τ z1r1 <∞] · E[1Er1;~s
P[τ z2r2 < · · · < τ znrn <∞|Fτz1r1 ;Er1;~s]|τ z1r1 <∞]

=r2−d
1 G(z1)E[1Er1;~s

P[τ z2r2 < · · · < τ znrn <∞|Fτz1r1 ;Er1;~s]|τ z1r1 <∞] + e∗2.

From Lemma 3.4 and (5.3) we see that, if (5.2) and (5.4) hold, then

|e∗2| .
n∏
k=1

r2−d
k F ·

( r1

R1

)β1
n∏
k=2

( |zk| ∧ |zk − z1|
sk

)α
.

Define the events

Er;θ = {dist(gτz1r (zj), SK
τ
z1
r

) ≥ θ|gτz1r (zj)− Uτz1r |, 2 ≤ j ≤ n}, r, θ > 0. (5.5)

Fix a variable θ ∈ (0, 1) to be determined later. According to the occurrence of Er1;θ, we
express

r2−d
1 G(z1)E[1Er1;~s

P[τ z2r2 < · · · < τ znrn <∞|Fτz1r1 ;Er1;~s]|τ z1r1 <∞]

=r2−d
1 G(z1)E[1Er1;~s∩Er1;θ

P[τ z2r2 < · · · < τ znrn <∞|Fτz1r1 ;Er1;~s ∩ Er1;θ]|τ z1r1 <∞] + e∗3.

From Lemma 3.4 and and (5.3), we see that

0 ≤ e∗3 .
n∏
k=1

r2−d
k F

n∏
k=2

( |zk| ∧ |zk − z1|
sk

)α
θα.

Let Z = Zτz1r1
and ẑk = Z(zk), 2 ≤ k ≤ n. Define d̂k, 2 ≤ k ≤ n, and Q̂, for the

(n − 1) points ẑk, 2 ≤ k ≤ n, using (2.3) and (2.4). Since Theorem 4.1 holds for (n − 1)
points, using Koebe’s distortion theorem, we conclude that, for some constants Bn−1 > 0
and βn−1, δn−1 ∈ (0, 1), if

Q̂Bn−1 · rj
sj ∧Rj

<
δn−1

8
, 2 ≤ j ≤ n,

then ∣∣∣ n∏
k=2

rd−2
k P[τ z2r2 < · · · < τ znrn <∞|Fτz1r1 ;Er1;~s]− Ĝτ

z1
r1

(z2, . . . , zn)
∣∣∣

.Fτz1r1 (z2, . . . , zn)
n∑
j=2

(
Q̂Bn−1

rj
sj ∧Rj

)βn−1

.

Suppose Er1;θ happens. Let S = SK
τ
z1
r1

. Since Uτz1r1
∈ S, from Koebe’s 1/4 theorem, we get

d̂k & |g′(zk)|(dk ∧ dist(zk, γ[0, τ z1r1 ]) and

|ẑk| ≤ dist(gτz1r1
(zk), S)/θ � |g′(zk)| dist(zk, γ[0, τ z1r1 ])/θ,
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which together imply that

|ẑk|
d̂k
≤

dist(zk, γ[0, τ z1r1 ])/θ

dk ∧ dist(zk, γ[0, τ z1r1 ])
= θ−1

(dist(zk, γ[0, τ z1r1 ])/θ

dk
∨ 1
)
≤ θ−1 |zk|

dk
,

where the last inequality holds because dk, dist(zk, γ[0, τ z1r1 ]) ≤ |zk|. So for some constant
C > 1,

Q̂ ≤ C

θ
Q. (5.6)

Thus, if Er1;θ happens, and

QBn−1 · rj
sj ∧Rj

<
θBn−1δn−1

8CBn−1
, 2 ≤ j ≤ n, (5.7)

then ∣∣∣ n∏
k=2

rd−2
k P[τ z2r2 < · · · < τ znrn <∞|Fτz1r1 ;Er1;~s ∩ Er1;θ]− Ĝτ

z1
r1

(z2, . . . , zn)
∣∣∣

.Fτz1r1 (z2, . . . , zn)
n∑
j=2

(
θ−Bn−1QBn−1

rj
sj ∧Rj

)βn−1

.

Now we express

r2−d
1 G(z1)E[1Er1;~s∩Er1;θ

P[τ z2r2 < · · · < τ znrn <∞|Fτz1r1 ;Er1;~s ∩ Er1;θ]|τ z1r1 <∞]

=r2−d
1 G(z1)E[1Er1;~s∩Er1;θ

n∏
k=2

r2−d
k Ĝτ

z1
r1

(z2, . . . , zn)|τ z1r1 <∞] + e∗4.

Using Lemma 3.4, we see that, when (5.7) holds,

|e∗4| .
n∏
k=1

r2−d
k F

n∏
k=2

( |zk| ∧ |zk − z1|
sk

)α n∑
j=2

(
θ−Bn−1QBn−1

rj
sj ∧Rj

)βn−1

.

Next, we express

r2−d
1 G(z1)E[1Er1;~s∩Er1;θ

n∏
k=2

r2−d
k Ĝτ

z1
r1

(z2, . . . , zn)|τ z1r1 <∞]

=
n∏
k=1

r2−d
k G(z1)E[1Er1;~s

Ĝτ
z1
r1

(z2, . . . , zn)|τ z1r1 <∞]− e∗5.

The estimate on e∗5 is the same as that on e∗3 by Lemma 3.4.
To simplify the notation, we define for r > 0 and ~s ∈ Rn−1

+ ,

Erz1 = E[·|τ z1r <∞]; Ĝr;~s = 1Er;~sĜτ
z1
r
.
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So far we have

P[τ z1r1 < · · · < τ znrn <∞] =
n∏
k=1

r2−d
k G(z1)Erz1 [Ĝr1;~s(z2, . . . , zn)] + e∗1 + e∗2 + e∗3 + e∗4 − e∗5.

For R > r > s ≥ 0, define Er,s;R to be the event

Er,s;R ={γ[τ z1r , τ
z1
s ] does not intersect any connected component of

{|z − z1| = R} ∩Hτ
z1
r

that separates z1 from any zk, 2 ≤ k ≤ n}. (5.8)

Fix variables η1 < η2 ∈ (r1, d1) to be determined later. According to whether Eη1,r1;η2 occurs,
we have the following decomposition:

G(z1)Er1z1 [Ĝr1;~s(z2, . . . , zn)] = G(z1)Er1z1 [1Eη1,r1;η2
Ĝr1;~s(z2, . . . , zn)] + e6.

From [18, Lemma 2.1] we know that, for each 2 ≤ k ≤ n, there is a unique connected
component, say ξk, of {|z− z1| = η2}∩Hτ

z1
η1

, which separates z1 from zk in Hτ
z1
η1

, and if there

is another ξ′k with this property, then ξk also separates z1 from ξ′k in Hτ
z1
η1

. This means that,

if Eη1,r1;η2 does not occur, then γ[τ z1η1
, τ z1r1 ] must intersect ∪nk=1ξk. By Lemma 3.2 and Lemma

3.4, we have

0 ≤ e6 . F
n∏
j=2

( |zj| ∧ |zj − z1|
sj

)α(η1

η2

)α/4
.

Changing the time from τ z1r1 to τ z1η1
, we get another error term e7:

G(z1)Er1z1 [1Eη1,r1;η2
Ĝr1;~s(z2, . . . , zn)] = G(z1)Er1z1 [1Eη1,r1;r2

Ĝη1;~s(z2, . . . , zn)] + e7

To derive an estimate for e7, we use the following lemma, whose proof is postponed to
the end of this subsection.

Lemma 5.2. There exist constants B∗ > 0 and β∗, δ∗ ∈ (0, 1) such that the following holds.
Let 0 ≤ a < b be such that z1 ∈ Ha, dist(z1, Ka) < |zj − z1| and dist(zj, Kb) ≥ sj, 2 ≤ j ≤ n.
For 2 ≤ j ≤ n, let ρj be the connected component of {|z− z1| = |zj − z1|} ∩Ha that contains
zj; and let ξj be a crosscuts of Ha, which is disjoint from ρj, and disconnects ρj from Kb \Ka

in Ha. Let d∗ = min2≤j≤n dHa(ρj, ξj). If

QB∗ · e−2πd∗ < δ∗, (5.9)

then

G(z1)|Ĝb(z2, . . . , zn)− Ĝa(z2, . . . , zn)| . F
n∏
k=2

( |zk| ∧ |zk − z1|
sk

)α
(QB∗e−2πd∗)β∗ .
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We now apply Lemma 5.2 with a = τ z1η1
, b = τ z1r1 , and ξk being a connected component of

{|z−z1| = η2}∩Hτ
z1
η1

that separates zk from z1. By comparison principle of extremal length,
we have

dHa(ρk, ξk) ≥ log(|zk − z1|/η2)/(2π) ≥ log(d1/η2)/(2π), 2 ≤ k ≤ n.

Assume that
η2 + sk < |zk − z1|, 2 ≤ k ≤ n. (5.10)

Then Eη1,r1;η2 ∩Er1;~s = Eη1,r1;η2 ∩Eη1;~s. Thus, for some constants B∗ > 0 and β∗, δ∗ ∈ (0, 1),
if

QB∗ · η2

d1

< δ∗, (5.11)

and (5.10) holds, then

|e7| . F
n∏
k=2

( |zk| ∧ |zk − z1|
sk

)α(
QB∗

η2

d1

)β∗
.

Removing the restriction of the event Eη1,r1;η2 , we get another error term e8:

G(z1)Er1z1 [1Eη1,r1;η2
Ĝη1;~s(z2, . . . , zn)] = G(z1)Er1z1 [Ĝη1;~s(z2, . . . , zn)]− e8.

Here the estimate on e8 is same as that on e6 by Lemmas 3.2 and 3.4.
Changing the probability measure from the conditional chordal Er1 to the two-sided radial

E∗z1 , we get another error term e9:

G(z1)Er1z1 [Ĝη1;~s(z2, . . . , zn)] = G(z1)E∗z1 [Ĝη1;~s(z2, . . . , zn)] + e9.

From [15, Proposition 2.13] and Lemma 3.4, we find that for some constant β0 > 0,

|e9| . F

n∏
k=2

( |zk − z1| ∧ |zk|
sk

)α(r1

η1

)β0

.

Let the event Eη1,0;η2 be defined by (5.8). We now express

G(z1)E∗z1 [Gη1;~s(z2, . . . , zn)] = G(z1)E∗z1 [1Eη1,0;η2
Ĝη1;~s(z2, . . . , zn)] + e10

Here the estimate on e10 is same as that on e6 by Lemmas 3.2 and 3.4.
Changing the time from τ z1η1

to τ z10 = Tz1 , we get another error term e11:

G(z1)E∗z1 [1Eη1,0;η2
Ĝη1;~s(z2, . . . , zn)] = G(z1)E∗z1 [1Eη1,0;η2

Ĝ0;~s(z2, . . . , zn)] + e11.

If (5.10) holds, then Eη1,0;η2 ∩ Eη1;~s = Eη1,0;η2 ∩ E0;~s. Apply Lemma 5.2 with a = τ z1η1
,

b = τ z10 = Tz1 , and ξk being a connected component of {|z − z1| = η2} ∩Hτ
z1
η1

that separates

zk from z1, we get an estimate on e11, which is the same as that on e7, provided that (5.11)
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holds. Note that the constants B∗, β∗, δ∗ here may be different from those for e7. But by
taking the bigger B∗ and smaller β∗ and δ∗, we may make both estimates hold for the same
set of constants.

Removing the restriction of the event Eη1,0;η2 , we get another error term e12:

G(z1)E∗z1 [1Eη1,0;η2
Ĝ0;~s(z2, . . . , zn)] = G(z1)E∗z1 [Ĝ0;~s(z2, . . . , zn)]− e12.

Here the estimate on e12 is same as that e6 by Lemmas 3.2 and 3.4.
Finally, note that Ĝ0;~s = 1E0;~s

ĜTz1
. Removing the restriction of the event E0;~s, we get

the last error term e13:

G(z1)E∗z1 [Ĝ0;~s(z2, . . . , zn)] = G(z1)E∗z1 [ĜTz1
(z2, . . . , zn)]− e13 = Ĝ(z1, . . . , zn) + e13.

where by Lemma 5.1, the estimate on e13 is the same as that on e∗1/
∏n

k=1 r
2−d
k .

At the end, we need to choose the variables s2, . . . , sn and η1, η2, θ, and constants Cn, Bn >
0 and βn, δn ∈ (0, 1), such that if (4.1) holds, then (5.2,5.4,5.7,5.10,5.11) all hold, rj < Rj/8,
1 ≤ j ≤ n, and the upper bounds for |es| := |e∗s|/

∏n
k=1 r

2−d
k , 1 ≤ s ≤ 5, and |es|, 6 ≤ s ≤ 13,

are all bounded above by the RHS of (4.2).
We take X ∈ (0, 1) to be determined, and suppose that

sj
|zj |∧|zj−z1| = X, 2 ≤ j ≤ n. We

have
rj

sj ∧Rj

=
(

1 ∨ Rj

sj

)
· rj
Rj

≤ X−1 · rj
Rj

, 2 ≤ j ≤ n. (5.12)

In the argument below, we assume that (5.2,5.4,5.7,5.10,5.11) all hold so that we can freely
use the estimates we have obtained.

From the estimate on |e∗4|, we get

|e4| . FQBn−1βn−1X−nα−βn−1θ−Bn−1βn−1 max
2≤j≤n

( rj
Rj

)βn−1

.

From the estimates on e∗3 and e∗5, we get

|es| . FX−nαθα, s ∈ {3, 5}.

If we take θ such that θα = θ−Bn−1βn−1 max2≤j≤n(
rj
Rj

)βn−1 , then we get

|es| . FQBn−1βn−1X−nα−βn−1 max
2≤j≤n

( rj
Rj

) αβn−1
α+Bn−1βn−1 , 3 ≤ s ≤ 5.

Choose η1 and η2 such that r1
η1

= η1

η2
= η2

d1
. Then we find that

|es| . FQB∗β∗X−nα
( r1

d1

) 1
3

(α
4
∧β∗∧β0)

, 6 ≤ s ≤ 12.

Since R1 ≤ d1, combining with the estimate on e∗2, we get

|es| . FQB∗β∗X−nα
( r1

R1

) 1
3

(α
4
∧β∗∧β0)∧β1

, s ∈ {2, 6, 7, 8, 9, 10, 11, 12}.
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Combining this with the estimates on |es|, 3 ≤ s ≤ 5, we get

|es| . FQBn−1βn−1+B∗β∗X−nα−βn−1 max
1≤j≤n

( rj
Rj

)β#

, 2 ≤ s ≤ 12,

where β# := 1
3
(α

4
∧ β∗ ∧ β0) ∧ β1 ∧ αβn−1

α+Bn−1βn−1
. Since |e1|, |e13| . FXβ, if we choose X such

that Xβ = X−nα−βn−1 max1≤j≤n(
rj
Rj

)β# , then with βn :=
ββ#

β+nα+βn−1
, we get

|es| . FQBn−1βn−1+B∗β∗ max
1≤j≤n

( rj
Rj

)βn
, 1 ≤ s ≤ 13. (5.13)

Now we check Conditions (5.2,5.4,5.7,5.10,5.11) and rj < Rj/8, 1 ≤ j ≤ n. Clearly,
(5.7) implies (5.2). The LHS of (5.11) equals to QB∗( r1

d1
)1/3 ≤ QB∗( r1

R1
)1/3, and so it holds if

Q3B∗ r1
R1

< δ3
∗. Thus, (5.4) and (5.11) both hold if Q3B∗ r1

R1
< δ3

∗ ∧ δ1. Condition (5.10) holds

if η2 <
d1

2
and sk <

1
2
|zk − z1| ∧ |zk|, which are equivalent to r1

d1
< 1

8
and X < 1

2
, respectively,

which further follow from

max
1≤j≤n

rj
Rj

<
(1

2

)3+
β+nα+βn−1

β# .

From (5.12) and the choices of X and θ, we see that (5.7) follows from

QBn−1 max
1≤j≤n

rj
Rj

<
XθBn−1δn−1

8CBn−1
=

δn−1

8CBn−1
max
1≤j≤n

( rj
Rj

) β#
β+nα+βn−1

+
Bn−1βn−1

α+Bn−1βn−1 .

Let β& = 1− β#

β+nα+βn−1
− Bn−1βn−1

α+Bn−1βn−1
. Since β# ≤ αβn−1

α+Bn−1βn−1
, we get β& > 0. So (5.2) and

(5.7) hold if QBn−1/β& max1≤j≤n
rj
Rj
< ( δn−1

8CBn−1
)1/β& . Thus, (5.2,5.4,5.7,5.10,5.11) all hold if

Q
3B∗+

Bn−1
β& max

1≤j≤n

rj
Rj

< δn,

where δn := δ3
∗ ∧δ1∧ (1

2
)
3+

β+nα+βn−1
β# ∧ ( δn−1

8CBn−1
)

1
β& . Combining this with (5.13), we see that, if

we set Bn = 3B∗+
Bn−1

β&
+Bn−1βn−1+B∗β∗

βn
, then whenever (4.1) holds, (5.2,5.4,5.7,5.10,5.11) and

rj < Rj/8, 1 ≤ j ≤ n, all hold, and the upper bounds for |es|, 1 ≤ s ≤ 13, are all bounded
above by the RHS of (4.2). It remains to prove Lemma 5.2 to finish this subsection.

5.1.1 Proof of Lemma 5.2

Since Ka ⊂ Kb we also have dist(zj, Ka) ≥ sj, 2 ≤ j ≤ n. Let K = ga(Kb \ Ka). Then
K is an H-hull, and gb = gK ◦ ga. Since ga(γ(a)) = Ua, we have Ua ∈ K ∩ R. Since
gb(γ(b)) = Ub, we have Ub ∈ SK . Let rK = sup{|z − Ua| : z ∈ K}. From Lemma 2.5, we get
SK ⊂ [Ua − 2rK , Ua + 2rK ]. Thus, |Ub − Ua| ≤ 2rK .
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Define zaj = ga(zj), ρ
a
j = ga(ρj), ξ

a
j = ga(ξj), z

b
j = gb(zj), ρ

b
j = gb(ρj), 2 ≤ j ≤ n. Then

ρaj , ρ
b
j, ξ

a
j are crosscuts of H, zaj ∈ ρaj , zbj ∈ ρbj, and ξaj disconnects K from ρaj . By conformal

invariance of extremal distance, we get

dH(ρbj, SK) = dH(ρaj , K) = dHa(ρj, Kb \Ka) ≥ dHa(ρj, ξj) ≥ d∗.

Applying Lemma 2.9 to ρaj and K, and to ρbj and SK , respectively, we get( diam(ρaj )

dist(ρaj , K)
∧ 1
)
·
( diam(K)

dist(ρaj , K)
∧ 1
)
≤ 144e−πd∗ , 2 ≤ j ≤ n; (5.14)

( diam(ρbj)

dist(ρbj, SK)
∧ 1
)
·
( diam(SK)

dist(ρbj, SK)
∧ 1
)
≤ 144e−πd∗ , 2 ≤ j ≤ n. (5.15)

Fix a variable φ ∈ (0, 1) to be determined later. Define the event Ea;φ using (5.5) but with
τ z1r replaced by a (instead of τ z1a ). First, suppose Ea;φ does not occur. Since dist(zj, Ka) ≥ sj,
2 ≤ j ≤ n, from Lemma 3.4 we get

G(z1)Ĝa(z2, . . . , zn) . F
n∏
k=2

( |zk| ∧ |zk − z1|
sk

)α
φα. (5.16)

Fix some j ∈ {2, . . . , n} for a while. Applying Koebe’s 1/4 theorem, we get

dist(zbj , SKb) � |g′b(zj)| dist(zj, Kb) ≤ |g′b(zj)| dist(zj, Ka)

= |g′K(zaj )||g′a(zj)| dist(zj, Ka) � |g′K(zaj )| dist(zaj , SKa)

and
|zbj − Ub| ≥ dist(zbj , SK) � |g′K(zaj )| dist(zaj , K).

Now we consider two cases.
Case 1. diam(SK) ≤ dist(zbj , SK)/4. In this case, since zaj = fK(zbj), applying Lemma 2.7,

we get dist(zaj , K) ≥ 2 diam(K), which implies that dist(zaj , K) � |zaj − Ua| since Ua ∈ K.

From the above two displayed formulas, we get
dist(zbj ,SKb )

|zbj−Ub|
.

dist(zaj ,SKa )

|zaj−Ua|
.

Case 2. diam(SK) ≥ dist(zbj , SK)/4. From (5.15), we have

diam(ρbj)

dist(ρbj, SK)
≤ 576e−πd∗ , (5.17)

if
144e−πd∗ < 1/4. (5.18)

Since dist(z1, Ka) < |zj−z1|, and ρj ⊂ {|z−z1| = |zj−z1|}, we see that either ρj disconnects
Kb from∞, or ρj touches Kb. The former case implies that diam(ρbj) ≥ dist(ρbj, SK) because
ρbj disconnects K from ∞, which is impossible by (5.17) if (5.18) holds. In the latter case,
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ρbj := gb(ρj) touches SKb , and so dist(zbj , SKb) ≤ diam(ρbj). On the other hand, since Ub ∈ SK
and zbj ∈ ρbj, we get |zbj − Ub| ≥ dist(ρbj, SK). Thus by (5.17), we have dist(zbj , SKb) ≤
576e−πd∗|zbj − Ub| if (5.18) holds.

Combining Case 1 with Case 2, we see that, if (5.18) holds and Ea;φ does not occur, then
for some 2 ≤ j ≤ n, dist(zbj , SKb) . (φ+ e−πd∗)|zbj −Ub|. This together with Lemmas 3.4 and
that dist(zj, Kb) ≥ sj, 2 ≤ j ≤ n, implies that

G(z1)Ĝb(z2, . . . , zn) . F
n∏
k=2

( |zk| ∧ |zk − z1|
sk

)α
(φα + e−απd∗). (5.19)

Now suppose that Ea;φ occurs. Since zaj ∈ ρaj and Ua ∈ K, we have |zaj−Ua| ≥ dist(ρaj , K).
We claim that diam(ρaj ) ≥ dist(zaj , SKa). If this is not true, then the region bounded by ρaj in
H is disjoint from SKa , which implies that ρj = g−1

a (ρaj ) is also a crosscut of H, and the region
bounded by ρj in H is disjoint from Ka. Since ρj is an arc on the circle {|z− z1| = |zj− z1|},
this would imply that dist(z1, Ka) ≥ |zj − z1|, which is a contradiction. So the claim is
proved. Thus, we have

diam(ρaj )

dist(ρaj , K)
≥

dist(zaj , SKa)

|zaj − Ua|
≥ φ. (5.20)

From (5.14), (5.20), rK ≤ diam(K) and zaj ∈ ρaj , we see that

rK
dist(zaj , K)

≤ 144

φ
e−πd∗ , 2 ≤ j ≤ n, (5.21)

as long as the RHS is less than 1. Applying Lemma 2.6 with x0 = Ua, r = rK , and z = zaj ,
from zbj = gK(zaj ), we see that, if

144

φ
e−πd∗ <

1

5
, (5.22)

then

|zbj − zaj | ≤ rK ,
| Im zbj − Im zaj |

Im zaj
≤ 4
( rK

dist(zaj , K)

)2

; (5.23)

|g′K(zaj )− 1| ≤ 5
( rK

dist(zaj , K)

)2

. (5.24)

Let ẑaj = zaj − Ua and ẑbj = zbj − Ub, 2 ≤ j ≤ n. Since |Ub − Ua| ≤ 2rK , from (5.23), we find
that, if (5.22) holds, then

|ẑbj − ẑaj |
|ẑaj |

≤ 3
rK

dist(zaj , K)
,
| Im ẑbj − Im ẑaj |

Im ẑaj
≤ 4
( rK

dist(zaj , K)

)2

. (5.25)
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By definition, we have

Ĝa(z2, . . . , zn) =
n∏
j=2

|g′a(zj)|2−dĜ(ẑa2 , . . . , ẑ
a
n);

Ĝb(z2, . . . , zn) =
n∏
j=2

|g′b(zj)|2−dĜ(ẑb2, . . . , ẑ
b
n)

=
n∏
j=2

|g′K(zaj )|2−d
n∏
j=2

|g′a(zj)|2−dĜ(ẑb2, . . . , ẑ
b
n).

Define Ĝa,b(z2, . . . , zn) =
∏n

j=2 |g′a(zj)|2−dĜ(ẑb2, . . . , ẑ
b
n). From (5.24) we see that there is a

constant δ ∈ (0, 1) (depending on n) such that, if

rK
dist(zaj , K)

< δ, (5.26)

then

|Ĝb(z2, . . . , zn)− Ĝa,b(z2, . . . , zn)| .
( rK

dist(zaj , K)

)2

Ĝa,b(z2, . . . , zn). (5.27)

Define d̂k, 2 ≤ k ≤ n, and Q̂ using (2.3) and (2.4) for the (n − 1) points ẑa2 , . . . , ẑ
a
n. Since

Theorem 4.2 holds for (n− 1) points, from (5.25) we see that, for some constants Bn−1 > 0
and βn−1, δn−1 ∈ (0, 1), if

Q̂Bn−1 ·
|ẑbj − ẑaj |

d̂j
< δn−1,

| Im ẑbj − Im ẑaj |
Im ẑaj

< δn−1,

then

|Ĝa,b(z2, . . . , zn)− Ĝa(z2, . . . , zn)|/Fa(z2, . . . , zn)

.
n∑
j=2

(
Q̂Bn−1

|ẑbj − ẑaj |
d̂j

)βn−1

+
( | Im ẑbj − Im ẑaj |

Im ẑaj

)βn−1
)
.

Since Ea;φ occurs, (5.6) holds here with φ in place of θ by the same argument. Let B0 =
Bn−1 + 1. Then, for some constant C > 1, if

QB0 ·
|ẑbj − ẑaj |
|ẑaj |

<
φB0δn−1

CB0
,
| Im ẑbj − Im ẑaj |

Im ẑaj
< δn−1, (5.28)

then

|Ĝa,b(z2, . . . , zn)− Ĝa(z2, . . . , zn)|/Fa(z2, . . . , zn)

.
n∑
j=2

((
φ−B0QB0

|ẑbj − ẑaj |
|ẑaj |

)βn−1

+
( | Im ẑbj − Im ẑaj |

Im ẑaj

)βn−1
)
. (5.29)
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From (5.28) we see that the RHS of (5.29) is bounded above by a constant. Since Ĝa . Fa
by induction hypothesis, we get Ĝa,b . Fa as well. From (5.27) and (5.29), we see that if
(5.26) and (5.28 ) both hold, then

|Ĝb(z2, . . . , zn)− Ĝa(z2, . . . , zn)|/Fa(z2, . . . , zn)

.
( rK

dist(zaj , K)

)2

+
n∑
j=2

((
φ−B0QB0

|ẑbj − ẑaj |
|ẑaj |

)βn−1

+
( | Im ẑbj − Im ẑaj |

Im ẑaj

)βn−1
)

.φ−2e−2πd∗ + (φ−B0−1QB0e−πd∗)βn−1 + (φ−2e−2πd∗)βn−1 . (φ−B0−1QB0e−πd∗)βn−1 .

where the second last inequality follows from (5.21), (5.25), and that |zj − z1| ≥ d1, and the
last inequality holds provided that

φ−2e−2πd∗ < 1. (5.30)

Since dist(zj, Ka) ≥ sj, 2 ≤ j ≤ n, from Lemma 3.4, we get

G(z1)|Ĝb(z2, . . . , zn)− Ĝa(z2, . . . , zn)| . F
n∏
k=2

( |zk| ∧ |zk − z1|
sk

)α
(φ−B0−1QB0e−πd∗)βn−1 .

Combining the above with (5.16,5.19), which holds when Ea;φ does not occur, we find that,
as long as Conditions (5.18,5.22,5.26,5.28,5.30) all hold, no matter whether Ea;φ happens,
we have

G(z1)|Ĝb(z2, . . . , zn)− Ĝa(z2, . . . , zn)|

.F
n∏
k=2

( |zk| ∧ |zk − z1|
sk

)α
[e−απd∗ + φα + (φ−B0−1QB0e−πd∗)βn−1 ].

Finally, we may find constants b, B∗ > 0 and β∗, δ∗ ∈ (0, 1), such that, with φ = e−b2πd∗ ,
if (5.9) holds, then (5.18,5.22,5.26,5.28,5.30) all hold, and the quantity in the square bracket
of the above displayed formula is bounded above by a constant times (QB∗e−πd∗)β∗ . This is
analogous to the argument after the estimate on e13 and before this proof.

5.2 Continuity of Green’s functions

We work on the inductive step for Theorem 4.2 in this subsection. Suppose z′1, . . . , z̃
′
n are

distinct points in H such that z′j is close to zj, 1 ≤ j ≤ n. Let T = Tz1 = τ z10 and

T ′ = Tz′1 = τ
z′1
0 . The main part of this subsection is composed of two lemmas.

Lemma 5.3. With the induction hypothesis, Theorem 4.2 holds if z′1 = z1.

Lemma 5.4. With the induction hypothesis, Theorem 4.2 holds if z′k = zk, 2 ≤ k ≤ n.
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Before proving these lemmas, we first show how they can be used to prove the inductive
step for Theorem 4.2 from n− 1 to n. We have

|Ĝ(z′1, z
′
2, . . . , z

′
n)− Ĝ(z1, z2, . . . , zn)|

≤|Ĝ(z′1, z
′
2, . . . , z

′
n)− Ĝ(z′1, z2, . . . , zn)|+ |Ĝ(z′1, z2, . . . , zn)− Ĝ(z1, z2, . . . , zn)| =: I1 + I2.

By Lemma 5.4, for some constants B
(2)
n > 0 and β

(2)
n , δ

(2)
n ∈ (0, 1), I2 is bounded by the RHS

of (4.4) when (4.3) holds for j = 1. We need to use Lemma 5.3 to estimate I1 with the
assumption that z′1 is close to z1 but may not equal to z1. Define d′k and l′k, 1 ≤ k ≤ n, Q′

and F ′ using (2.3) and (2.4) for the n points z′1, z1, . . . , zn. From Lemma 5.3, we know that,
for some constants B′n > 0 and β′n, δ

′
n ∈ (0, 1), I1 is bounded by the RHS of (4.4) when (4.3)

holds for 2 ≤ j ≤ n, with d′j, Q
′ and F ′ in place of dj, Q and F , respectively. Suppose

|z′1 − z1| < d1/2, Im z′1 � Im z1. (5.31)

Then we have |z′1| � |z1 and |zk − z′1| � |zk − z1|, 2 ≤ k ≤ n, which imply that d′k � dk and
l′k � lk, 1 ≤ k ≤ n, which in turn imply that Q′ � Q and F ′ � F .

Thus, there are constants B
(1)
n > 0 and β

(1)
n , δ

(1)
n ∈ (0, 1), such that I1 is bounded by the

RHS of (4.4) when (4.3) holds for 2 ≤ j ≤ n. Finally, taking Bn = B
(1)
n ∨B(2)

n , βn = β
(1)
n ∧β(2)

n

and δn = δ
(1)
n ∧ δ(2)

n ∧ 1/8, we then finish the inductive step for Theorem 4.2 from n− 1 to n.

Proof of Lemma 5.3. Define E0;~s and E0;θ using (5.1) and (5.5) for z1, z2, . . . , zn; and define
E ′0;~s and E ′0;θ using (5.1) and (5.5) for z1, z

′
2, . . . , z

′
n.

Fix ~s = (s2, . . . , sn) with sj ∈ (|z′j − zj|, |zj − z1| ∧ |zj|) and θ ∈ (0, 1) being variables to
be determined later. From Koebe’s 1/4 theorem and distortion theorem, we see that there
is a constant δ ∈ (0, 1/10) such that, if

|z′j − zj|
sj

< δ, 2 ≤ j ≤ n, (5.32)

and E0;~s occurs, then

4|gT (z′j)− gT (zj)| < dist(gT (zj), SKT ) ≤ |gT (zj)− UT |, 2 ≤ j ≤ n,

which implies that
E0;~s ∩ E ′0;2θ ⊂ E0;~s ∩ E0;θ ⊂ E0;~s ∩ E ′0;θ/2. (5.33)

Since δ < 1/2, (5.32) clearly implies that

E ′0;2~s ⊂ E0;~s ⊂ E ′0;~s/2. (5.34)

Suppose (5.32) holds. First, we express

Ĝ(z1, z2, . . . , zn) = G(z1)E∗z1 [ĜT (z2, . . . , zn)] = G(z1)E∗z1 [1E0;~s
ĜT (z2, . . . , zn)] + e1;
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Ĝ(z1, z
′
2 . . . , z

′
n) = G(z1)E∗z1 [ĜT (z′2, . . . , z

′
n)] = G(z1)E∗z1 [1E0;~s

ĜT (z′2, . . . , z
′
n)] + e′1.

Using Lemma 5.1 and (5.34), we find that there is a constant β > 0 such that

0 ≤ e1, e
′
1 . F

n∑
j=2

( sj
|zj| ∧ |zj − z1|

)β
.

Second, we express

G(z1)E∗z1 [1E0;~s
ĜT (z2, . . . , zn)] = G(z1)E∗z1 [1E0;~s∩E0;θ

ĜT (z2, . . . , zn)] + e2;

G(z1)E∗z1 [1E0;~s
ĜT (z′2, . . . , z

′
n)] = G(z1)E∗z1 [1E0;~s∩E0;θ

ĜT (z′2, . . . , z
′
n)] + e′2.

From Lemma 3.4, (5.33,5.34), and that Ĝ . F holds for (n− 1) points, we get

0 ≤ e2, e
′
2 . F

n∏
j=2

( |zj| ∧ |zj − z1|
sj

)α
θα.

Now suppose E0;~s and E0;θ both occur. Let Z = ZT , ẑj = Z(zj) and ẑ′j = Z(z′j),
2 ≤ j ≤ n. By definition, we have

ĜT (z2, . . . , zn) =
n∏
j=2

|g′T (zj)|2−dĜ(ẑ2, . . . , ẑn);

ĜT (z′2, . . . , z
′
n) =

n∏
j=2

|g′T (z′j)|2−dĜ(ẑ′2, . . . , ẑ
′
n).

Define Ĝ′T (z′2, . . . , z
′
n) =

∏n
j=2 |g′T (zj)|2−dĜ(ẑ′2, . . . , ẑ

′
n). From Koebe’s distortion theorem,

there is a constant δ′ ∈ (0, 1) such that, if

|z′j − zj|
sj

< δ′, 2 ≤ j ≤ n, (5.35)

then

|ĜT (z′2, . . . , z
′
n)− Ĝ′T (z′2, . . . , z

′
n)| .

n∑
j=2

|z′j − zj|
sj

· Ĝ′T (z′2, . . . , z
′
n). (5.36)

Define d̂k, 2 ≤ k ≤ n, and Q̂ using (2.3) and (2.4) for the (n − 1) points ẑ2, . . . , ẑn.
Since Theorem 4.2 holds for (n − 1) points, we see that, for some constants Bn−1 > 0 and
βn−1, δn−1 ∈ (0, 1), if

Q̂Bn−1 ·
|ẑ′j − ẑj|
d̂j

< δn−1,
| Im ẑ′j − Im ẑj|

Im ẑj
< δn−1,
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then

|Ĝ(ẑ′2, . . . , ẑ
′
n)− Ĝ(ẑ2, . . . , ẑn)|/F (ẑ2, . . . , ẑn)

.
n∑
j=2

(
Q̂Bn−1

|ẑ′j − ẑj|
d̂j

)βn−1

+
( | Im ẑ′j − Im ẑj|

Im ẑj

)βn−1
)
.

If E0;θ occurs,(5.6) holds here by the same argument. Let B0 = Bn−1 + 1. Then, for some
constant C > 1, if

QB0 ·
|ẑ′j − ẑj|
|ẑj|

<
θB0δn−1

CB0
,
| Im ẑ′j − Im ẑj|

Im ẑj
< δn−1, (5.37)

then

|Ĝ′T (z′2, . . . , z
′
n)− ĜT (z2, . . . , zn)|/FT (z2, . . . , zn)

.
n∑
j=2

((
θ−B0QB0

|ẑ′j − ẑj|
|ẑj|

)βn−1

+
( | Im ẑ′j − Im ẑj|

Im ẑj

)βn−1
)
. (5.38)

From (5.37) we see that the RHS of (5.38) is bounded above by a constant. Since

ĜT . FT , we get Ĝ′T (z′2, . . . , z
′
n) . FT (z2, . . . , zn). From (5.36) and (5.38), we see that, if

(5.35) and (5.37) both hold, then

|ĜT (z′2, . . . , z
′
n)− ĜT (z2, . . . , zn)|/FT (z2, . . . , zn)

.
n∑
j=2

( |z′j − zj|
sj

+
(
θ−B0QB0

|ẑ′j − ẑj|
|ẑj|

)βn−1

+
( | Im ẑ′j − Im ẑj|

Im ẑj

)βn−1
)
. (5.39)

Applying Lemma 2.8 to K = KT and using Z = gT − UT and UT ∈ SKT , we find that, if
(5.32) holds, then for 2 ≤ j ≤ n,

|ẑ′j − ẑj|
|ẑj|

.
|z′j − zj|

sj
,
| Im ẑ′j − Im ẑj|

Im ẑj
.
| Im z′j − Im zj|

Im zj
+
( |z′j − zj|

sj

)1/2

. (5.40)

Thus, there is a constant C0 > 0, such that if

QB0 ·
|z′j − zj|

sj
<
θB0δ2

n−1

C0

,
| Im z′j − Im zj|

Im zj
<
δn−1

C0

, (5.41)

then (5.37) holds.
Now we express

G(z1)E∗z1 [1E0;~s∩E0;θ
ĜT (z′2, . . . , z

′
n)] = G(z1)E∗z1 [1E0;~s∩E0;θ

ĜT (z2, . . . , zn)] + e3.

From (5.39,5.40) and Lemma 3.4, we find that, if (5.32,5.35,5.41) all hold, then

|e3| . F

n∏
j=2

( |zj| ∧ |zj − z1|
sj

)α n∑
j=2

((
θ−B0QB0

|z′j − zj|
sj

)βn−1/2

+
( | Im z′j − Im zj|

Im zj

)βn−1
)
.
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At the end, we follow the argument after the estimate on e13 in Section 5.1. First
suppose that

sj
|zj |∧|zj−z1| = X, 2 ≤ j ≤ n, for some X ∈ (0, 1) to be determined. Then we

have
|z′j−zj |
sj
≤ X−1 · |z

′
j−zj |
dj

, 2 ≤ j ≤ n. Then we may set

θ = max
2≤j≤n

( |z′j − zj|
dj

)a
, X = max

2≤j≤n

( |z′j − zj|
dj

)b∨
max
2≤j≤n

( | Im z′j − Im zj|
Im zj

)c
for some suitable constants a, b, c > 0. It is easy to find those a, b, c and some constants
Bn > 0 and βn, δn ∈ (0, 1) such that the upper bounds for |e1|, |e′1|, |e2|, |e′2|, |e3| are all
bounded by the RHS of (4.4) with z′1 = z1, and if (4.3) holds, then (5.32,5.35,5.41) all hold.
The proof is now complete.

Proof of Lemma 5.4. Fix sj ∈ (|z′1−z1|, |zj−z1|∧|zj|), 2 ≤ j ≤ n, and η2 > η1 > |z′1−z1| de-
pending on κ, n, z1, z

′
1, z2, . . . , zn to be determined later. Define E0;~s, Eη1;~s, and Eη1,0;η2 using

(5.1), (5.1), and (5.8), respectively, for z1, z2, . . . , zn. Define E ′0;~s using (5.1) for z′1, z2, . . . , zn,
let E ′η1,~s

= Eη1;~s, and define

E ′η1,0;η2
={γ[τ z1η1

, Tz′1 ] does not intersect any connected component of

{|z − z1| = η2} ∩Hτ
z1
η1

that separates z′1 from any zk, 2 ≤ k ≤ n}.

First, we express

Ĝ(z1, z2, . . . , zn) = G(z1)E∗z1 [1E0;~s
ĜTz1

(z2, . . . , zn)] + e1;

Ĝ(z′1, z2, . . . , zn) = G(z′1)E∗z′1 [1E′
0;~s
ĜTz′1

(z2, . . . , zn)] + e′1.

Now suppose (5.31) holds. Recall that we have |zj − z′1| � |zj − z1|, 2 ≤ j ≤ n, Q′ � Q and
F ′ � F . By Lemma 5.1, we see that there is a constant β > 0 such that

0 ≤ e1, e
′
1 . F

n∑
j=2

( sj
|zj| ∧ |zj − z1|

)β
.

Second, we express

G(z1)E∗z1 [1E0;~s
ĜTz1

(z2, . . . , zn)] = G(z1)E∗z1 [1E0;~s∩Eη1,0;~s
ĜTz1

(z2, . . . , zn)] + e2;

G(z′1)E∗z′1 [1E′
0;~s
ĜTz′1

(z2, . . . , zn)] = G(z′1)E∗z′1 [1E′
0;~s
∩E′

η1,0;~s
ĜTz′1

(z2, . . . , zn)] + e′2.

From Lemma 3.2, Corollary 3.3, Lemma 3.4, and that |zj − z′1| � |zj − z1| and F ′ � F , we
get

0 ≤ e2, e
′
2 . F

n∏
j=2

( |zj| ∧ |zj − z1|
sj

)α(η1

η2

)α/4
.
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Third, we change the times in the two expressions from Tz1 and Tz′1 , respectively, to the
same time τ z1η1

, and express

G(z1)E∗z1 [1E0;~s∩Eη1,0;~s
ĜTz1

(z2, . . . , zn)] = G(z1)E∗z1 [1Eη1;~s∩Eη1,0;~s
Ĝτ

z1
η1

(z2, . . . , zn)] + e3;

G(z′1)E∗z′1 [1E′
0;~s
∩E′

η1,0;~s
ĜTz′1

(z2, . . . , zn)] = G(z′1)E∗z′1 [1E′
η1;~s
∩E′

η1,0;~s
Ĝτ

z1
η1

(z2, . . . , zn)] + e′3.

Now suppose (5.10) holds. Then Eη1,0;η2 ∩ Eη1;~s = Eη1,0;η2 ∩ E0;~s and E ′η1,0;η2
∩ E ′η1;~s =

E ′η1,0;η2
∩ E ′0;~s. Applying Lemma 5.2 with a = τ z1η1

, b = Tz1 or b = Tz′1 , and using Q′ � Q,
F ′ � F and |zj − z′1| � |zj − z1|, we find that, for some constants B∗ > 0 and β∗, δ∗ ∈ (0, 1),
if (5.11) holds, then

|e3|, |e′3| . F

n∏
j=2

( |zj| ∧ |zj − z1|
sk

)α(
QB∗

η2

d1

)β∗
.

Note that the proof of Lemma 5.2 uses Theorem 4.2 for n − 1 points so we can use it
here by induction hypothesis. Removing the restriction of the events Eη1,0;η2 and E ′η1,0;η2

, we
express

G(z1)E∗z1 [1Eη1;~s∩Eη1,0;~s
Ĝτ

z1
η1

(z2, . . . , zn)] = G(z1)E∗z1 [1Eη1;~s
Ĝτ

z1
η1

(z2, . . . , zn)]− e4;

G(z′1)E∗z′1 [1E′
η1;~s
∩E′

η1,0;~s
Ĝτ

z1
η1

(z2, . . . , zn)] = G(z′1)E∗z′1 [1E′
η1;~s
Ĝτ

z1
η1

(z2, . . . , zn)]− e′4.

The estimates on e4, e
′
4 are the same as that on e2, e

′
2 by Lemma 3.2, Corollary 3.3, Lemma

3.4, and that F ′ � F and |zj − z′1| � |zj − z1|.
Changing G(z′1) to G(z1) on the RHS of the second displayed formula, we express

G(z′1)E∗z′1 [1E′
η1;~s
Ĝτ

z1
η1

(z2, . . . , zn)] = G(z1)E∗z′1 [1E′
η1;~s
Ĝτ

z1
η1

(z2, . . . , zn)] + e5.

From (1.2) and Lemma 3.4 we see that there is a constant δ > 0 such that, if

|z′1 − z1|
|z1|

< δ,
| Im z′1 − Im z1|

Im z1

< δ, (5.42)

then

|e5| . F
n∏
k=2

( |zk| ∧ |zk − z1|
sk

)α( |z′1 − z1|
|z1|

+
| Im z′1 − Im z1|

Im z1

)
.

Finally, we express

G(z1)E∗z′1 [1E′
η1;~s
Ĝτ

z1
η1

(z2, . . . , zn)] = G(z1)E∗z1 [1Eη1;~s
Ĝτ

z1
η1

(z2, . . . , zn)] + e6.

Since E ′η1,~s
= Eη1;~s, the random variables in the two square brackets are the same, which is

Fτz1η1 -measurable. By Lemmas 2.11 and 3.4, we see that there is a constant δ such that, if

|z′1 − z1|
η1

< δ, (5.43)
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then

|e6| . F
n∏
k=2

( |zk| ∧ |zk − z1|
sk

)α( |z′1 − z1|
η1

)
.

At the end, we follow the argument after the estimate on e13 in Section 5.1. Suppose
that

sj
|zj |∧|zj−z1| = X, 2 ≤ j ≤ n, for some X ∈ (0, 1) to be determined. Pick η1, η2 such that

|z′1 − z1|/η1 = η1/η2 = η2/d1. It is easy to find constants a,Bn > 0 and βn, δn ∈ (0, 1) such

that with X = (
|z′1−z1|
d1

)a, if (4.3) holds for j = 1, then Conditions (5.31,5.10,5.11,5.42,5.43)
all hold, and the upper bounds for |ej|, 1 ≤ j ≤ 6, and |e′j|, 1 ≤ j ≤ 4, are all bounded by
the RHS of (4.4). The proof is now complete.

6 Proof of Theorem 4.3

In this section we want to show the desired lower bound for the multi-point Green’s function.
The method of the proof is based on the generalization of the method used in [16] and [13]
to show the lower bound. We find the best point (almost means the nearest point but we
make it precise) to go near first and we consider the event to go near that point before going
near other points (as much as possible). This can be done by staying in a L-shape as defined
in [16]. It is possible that we can not go all the way to a specific given point since couple
of points are very near each other. In this case we can stop in an earlier time and separate
points by a conformal map. We will go through the details about this general strategy in
this section. Following Lawler and Zhou in [16], we define for z ∈ H and ρ ∈ (0, 1),

Lz = [0,Re z] ∪ [Re z, z],

and
Lz,ρ = {z′ ∈ H| dist(z′, Lz) ≤ ρ|z|}.

A simple geometry argument shows that, for any z0 ∈ H \ {0} and ρ ∈ (0, 1),

Lz0,ρ ∩ {z ∈ H : |z| ≥ |z0|} ⊂ {|z − z0| ≤
√

2ρ|z0|}. (6.1)

Now we state a lemma which shows what happens to points which are not in the L-shape
when we flatten the domain.

Lemma 6.1. Suppose 0 < ρ ≤ 1
4
. Then there exists c < ∞ such that the following holds.

Suppose z ∈ H, z1, z2 ∈ H \Lz,2ρ, and γ(t), 0 ≤ t ≤ T , is a chordal Loewner curve such that
γ(0) = 0, γ(T ) = z, and γ[0, T ] ⊂ Lz,ρ. Let Z = ZT be the centered Loewner map at time
T . Then we have the followings.

|Z ′(z1)| � 1.

Im(Z(z1)) � Im(z1).

|Z(z1)| � |z1|.
|Z(z1)− Z(z2)| . |z1 − z2|.
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Finally if z1, z2, . . . , zn are distinct points in H \ Lz,2ρ and r1, . . . , rn > 0 we have

F (Z(z1), . . . , Z(zn); |Z ′(z1)|r1, . . . , |Z ′(zn)|rn) & F (z1, . . . , zn; r1, . . . , rn).

The implicit constants depend only on κ and ρ.

Proof. The proofs for first 3 equations above are in [16, Proposition 3.2]. For the second to
last one, suppose η is a curve in H \ Lz,2ρ which connects z1 and z2 and has length at most
c1|z1 − z2|. If the closed line l passing through z1 and z2 does not pass through Lz,2ρ then
it works otherwise we go on the l until we hit Lz,2ρ then we go up on Lz,2ρ to modify pass
such that it does not pass through Lz,2ρ. Then the length of the image of η under Z is at
most c2|z1 − z2| by derivative estimate. The last statement is a result of the definition of F
and the previous equations.

Remark We expect that |Z(z1) − Z(z2)| � |z1 − z2| holds in the statement of the lemma.
We do not try to prove it since it is not needed.

The same proof gives us the following modification of Lemma 6.1. Suppose the chordal
Loewner curve γ satisfies that γ[0, T ] ⊂ {|z| ≤ R}. Suppose z1, . . . , zn 6∈ {|z| ≤ 2R}. Then
all the results of the Lemma 6.1 holds for z1, . . . , zn as well. These results also follow from
[21, Lemma 5.4]. See, e.g., the proof of Corollary 4.4.

Now we strengthen [16, Proposition 3.1]. We quantify the chance that we stay in the
L-shape and at the same time the tip of the curve behaves nicely.

Proposition 6.2. There are uniform constants C0, C1 > 0, N > 2, b2 > 1 > b1 > 0 such
that for every 0 < δ < 1, there is Cδ > 0 such that for every z0 ∈ H \ {0} and 0 < r ≤ δ|z0|

N

there exists stopping time τ0 = τ δ0 (z0, r) such that the event Eτ0 defined by τ0 <∞ and

(i) dist(z0, γ[0, τ0]) ∈ (b1r, b2r),

(ii) γ[0, τ0] ⊂ Lz0,δ,

(iii) dist(gτ0(z0), SKτ0 ) ≥ C0|gτ0(z0)− Uτ0 | = C0|Zτ0(z0)|,

(iv) |Zτ0(z0)| ≤ C1

√
r|z0|,

satisfies that
P∗z0 [Eτ0 ] ≥ Cδ; (6.2)

P[Eτ0 ] ≥ CδF (z0; r). (6.3)

Proof. By scaling we may assume max{|x0|, y0} = 1, where x0 = Re z0 and y0 = Im z0.
Then |z0| � 1. We first prove (6.2), and consider two different cases to prove this. First we
consider the interior case when r is smaller or comparable to y0, and then we consider the
boundary case when r is bigger or comparable to y0. Also throughout the proof we consider
N as a fixed number (greater than 2) which we will determine at the end.
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Interior Case: Suppose for this case that r < 10y0. Define the stopping time τ by

τ = inf{t : dist(γ(t), z0) =
y0

10
∧ r}.

By [16, Proposition 3.1], we know that there is u > 0 depending only on κ and δ
N

such that
for every z0 ∈ H, P∗z0 [γ[0, Tz0 ] ⊂ Lz0, δN

] ≥ u. By this we know that

P∗z0 [γ[0, τ ] ⊂ Lz0, δN
] ≥ u.

Let Ẽ denote the event γ[0, τ ] ⊂ Lz0, δN
. Now define τ0 by

τ0 = inf{t : Υt(z0) =
y0

100
∧ r

10
},

where Υt(z0) is the conformal radius of z0 in Ht.

Now we want to show P∗z0 [Eτ0|Ẽ] ≥ u0 for some constant u0 > 0. Since P∗z0-a.s. Tz0 <∞,
we have P∗z0 [τ0 <∞] = 1. By Koebe’s 1/4 theorem, we immediately have Property (i).

For Property (ii) let E1
τ0

denote the event that after time τ, γ stays in Lz0,δ till Tz. Since
dist(γ(τ), z0) ≤ r ≤ δ

N
, there exists at least one connected component of {|z−z0| = δ

2
)}∩Hτ

that disconnects γ(τ) from∞ in Hτ . After τ , in order for γ to reach ∂Lz0,δ, it must intersect

that arc. By Lemma 3.2 we have P∗z0 [E1
τ0
|Ẽ] ≥ 1− CN−c for some constants C, c > 0 .

For Property (iii) we use [16, Lemma 2.2]. By Koebe’s 1/4 theorem we know that
log(Υτ0)− log(Υτ ) ≤ −1. By [16, Lemma 2.2], for any ρ < 1 we have θ0 > 0 such that

P∗z0 [ImZτ0(z0)/|Zτ0(z0)| ≥ θ0|Fτ ] ≥ ρ.

Call the event ImZτ0(z0)/|Zτ0(z0)| ≥ θ0 as E2
τ0

. If E2
τ0

occurs then Property (iii) is satisfied
(with the constant depending on θ0) because dist(gτ0(z0), SKτ0 ) ≥ ImZτ0(z0).

If we choose ρ ∈ (0, 1) and N > 2 such that u0 = ρ− CN−c > 0 then we have

P∗z0 [E1
τ0
∩ E2

τ0
|Ẽ] ≥ P∗z0 [E1

τ0
|Ẽ] + P∗z0 [E2

τ0
|Ẽ]− 1 ≥ ρ− CN−c = u0 > 0.

So P∗z0 [E1
τ0
∩ E2

τ0
] ≥ uu0 > 0. We have seen that Properties (i)-(iii) are satisfied on the

event E1
τ0
∩ E2

τ0
. For Property (iv), set Z = Zτ0 , and let Π = {z ∈ H : Im(z) = 10}. Then

ImZ(z) ≤ Im z = 10 for z ∈ Π. Consider the event that Brownian motion starting at z0 hits
Π before hitting γ[0, τ0] ∪ R. By Property (i) and Beurling estimate it has chance less than
c
√
r for some fixed constant c. After map Z, the chance that Brownian motion starting at

Z(z0) hits Z(Π) before hitting R is at least Im(Z(z0))/10 by gambler’s ruin estimate which
has the same order as |Z(z0)| when E2

τ0
happens. So we have Property (iv) on the event

E1
τ0
∩ E2

τ0
. Thus, E1

τ0
∩ E2

τ0
⊂ Eτ0 . This finishes the proof of (6.2) in the interior case.

Boundary Case: For this case assume that 1 > r ≥ 10y0. Without loss of generality we
assume x0 = 1. Then z0 = 1 + iy0. We follow the steps as in the interior case just we have
to modify some definitions for the boundary case. First, following [11] we consider

xt = inf{x > 0 : Tx > t}, Dt = Ht ∪ {z̄ : z ∈ Ht} ∪ (xt,∞),
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Xt = Zt(1) = gt(1)− Ut, Ot = gt(xt)− Ut,

Jt =
Xt −Ot

Xt

, Υt(1) =
Xt −Ot

Xt

g′t(1).

Note that Υt is 1/4 times the conformal radius of 1 in Dt. So we have

1

4
dist(1, ∂Dt) ≤ Υt(1) ≤ dist(1, ∂Dt). (6.4)

Take
τ = inf{t : dist(γ(t), 1) = 100r}.

By [16, Proposition 3.1], we know that there is u > 0 depending on κ and δ
N

such that

P∗1[γ[0, T1] ⊂ L1, δ
N

] ≥ u. Let Ẽ denote the event that γ[0, τ ] ⊂ L1, δ
N

. Then P∗1[Ẽ] ≥ u. Now

take τ0 as
τ0 = inf{t : Υt(1) = 8r}.

Since P∗1-a.s. T1 <∞, we have P∗1[τ0 <∞] = 1. By (6.4), we immediately have Property
(i). Let Eτ0

1 denote the event that after τ , the curve stays in L1,δ till T1. Using Lemma 3.2

as in the interior case, we get P∗1[E1
τ0
|Ẽ] ≥ 1 − CN−c for some constants C, c > 0. If E1

τ0

happens, since L1,δ ⊂ Lz0,δ, we have Property (ii).
By Koebe’s 1/4 theorem we know that log(Υτ0) − log(Υτ ) ≤ −1. By [11, Section 4] we

have that for any ρ < 1 there is θ0 > 0 such that

P∗1[Jτ0 ≥ θ0|Fτ ] ≥ ρ.

Call the event Jτ0 ≥ θ0 as E2
τ0

. Since |z0− 1| = y0 and dist(z0, Kτ0) ≥ 2r ≥ 20y0, by Koebe’s
1/4 theorem and distortion theorem, we get |gτ0(z0) − gτ0(1)| ≤ 2

9
dist(gτ0(z0), SKτ0 ). Thus,

by triangle inequality, dist(gτ0(z0), SKτ0 ) � dist(gτ0(1), SKτ0 ). Since Uτ0 ∈ SKτ0 , we have
|gτ0(z0) − gτ0(1)| ≤ 2

9
|gτ0(z0) − Uτ0|. So we also get |gτ0(z0) − Uτ0| � |gτ0(1) − Uτ0|. If E2

τ0

happens then the Property (iii) is satisfied at the point 1 with C0 = θ0, and so is also satisfied
at the point z0 with a bigger constant by the above estimates.

If we choose ρ ∈ (0, 1) and N > 2 such that u0 = ρ− CN−c > 0 then we have P∗1[E1
τ0
∩

E2
τ0
|Ẽ] ≥ u0. So P∗1[E1

τ0
∩ E2

τ0
] ≥ uu0 > 0. Since dist(z0, γ[0, τ0]) ≥ 2r, until time τ0 the two

probability measures P∗z0 and P∗1 are comparable by a universal constant c by [16, Proposition
2.9]. So we get P∗z0 [E1

τ0
∩ E2

τ0
] ≥ uu0/c > 0.

We have seen that Properties (i)-(iii) are satisfied on the event E1
τ0
∩ E2

τ0
. For Property

(iv), similar to the interior case, we use Beurling estimate. Take D = Dτ0 . Brownian motion
starting at 1 has chance less than c

√
r to hit Π = {Im z = 10} before exiting D. By

conformal invariance of Brownian motion, this implies that distance between (−∞, Oτ0) and
Zτ0(1) which is Xτ0 − Oτ0 is not more than c

√
r, which then implies g′τ0(1) . 1√

r
because

Υτ0 � r. Since Jτ0 ≥ θ0, we have |Zτ0(1)| .
√
r. By Koebe’s distortion theorem we get

|Zτ0(z0) − Zτ0(1)| . g′τ0(1)|z0 − 1| .
√
r. So we get |Zτ0(z0)| .

√
r, as desired. So we get

E1
τ0
∩ E2

τ0
⊂ Eτ0 . This finishes the proof of (6.2) in the boundary case.
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Finally, we prove (6.3). From [15, 16] we know that P is absolutely continuous with
respect to P∗z0 on Fτ0 ∩ {τ0 <∞}, and the Radon-Nikodym derivative is

R =


|Zτ0 (z0)|α Im(Zτ0 (z0))(2−d)−α

|g′τ0 (z0)|2−d|z0|αy(2−d)−α
0

, z0 ∈ H;

|Zτ0 (z0)|α
|g′τ0 (z0)|α|z0|α , z0 ∈ R \ {0}.

Recall that in both of the above two cases, we defined events E1
τ0

and E2
τ0

such that E1
τ0
∩E2

τ0
⊂

Eτ0 and P∗z0 [E1
τ0
∩ E2

τ0
] & 1. So it suffices to show that R � F (z0; r) on E2

τ0
.

In the interior case, suppose E2
τ0

happens. Then ImZτ0(z0) � |Zτ0(z0)|. They are also
comparable to dist(gτ0(z0), SKτ0 ) because ImZτ0(z0) ≤ dist(gτ0(z0), SKτ0 ) ≤ |Zτ0(z0)|. By
Koebe’s 1/4 theorem we get

R �
dist(gτ0(z0), SKτ0 )2−d

|g′τ0(z0)|2−d|z0|αy(2−d)−α
0

� dist(z0, Kτ0)2−d

|z0|αy(2−d)−α
0

� r2−d

|z0|αy(2−d)−α
0

= F (z0; r).

In the boundary case, by Koebe’s distortion theorem, we get R � |Zτ0 (z0)|α
|g′τ0 (z0)|α|z0|α . Suppose

E2
τ0

happens. Then |Zτ0(z0)| � dist(gτ0(z0), SKτ0 ). By Koebe’s 1/4 theorem we get

R �
dist(gτ0(z0), SKτ0 )α

|g′τ0(z0)|α|z0|α
� dist(z0, Kτ0)α

|z0|α
� rα

|z0|α
= F (z0; r).

So we get R � F (z0; r) on E2
τ0

in both cases. The proof is now complete.

Remark. Note that we expect that F (z0; r) is comparable to the probability that SLE goes
to distance r of z0. So We showed that there is a good chance to go to distance r of z0 in a
”good way ”. Once we have this we can prove Theorem 4.3.

Proof of Theorem 4.3. We prove the theorem by induction on n. For n = 1 it is a corollary
of Proposition 6.2. Suppose that n ≥ 2 and the theorem is true for 1, . . . , n− 1 and we want
to prove it for n. We consider different cases.

Case A: There exist R ≥ 2(max1≤j≤n−1Rj)r > 0 and 1 ≤ m ≤ n − 1 such that |zj| < r,
1 ≤ j ≤ m, and |zj| > R, m + 1 ≤ j ≤ n. Let τ0 = ∨mj=1τ

zj
rj and r′ = R/2. From the

induction hypothesis, we have P[τ0 < τ{|z|=r′}] & F (z1, . . . , zm; r1, . . . , rm). Let Eτ0 denote
the event τ0 < τ{|z|=r′}. Let γ̃(t) = Zτ0(γ(τ0 + t)), z̃j = Zτ0(zj), and r̃j = |Z ′τ0(zj)|rj/4,
m+ 1 ≤ j ≤ n. By DMP of SLE, conditionally on Fτ0 , γ̃ has the same law as γ. Let τ̃S and
τ̃ zr be the stopping times that correspond to γ̃. By induction hypothesis, we have

P[τ̃
z̃j
r̃j
< τ̃{|z|=Rn−m

∑n
j=m+1 |z̃j |},m+ 1 ≤ j ≤ n|Fτ0 , Eτ0 ] & F (z̃m+1, . . . , z̃n; r̃m+1, . . . , r̃n).

Suppose Eτ0 happens. Then Kτ0 ⊂ {|z| ≤ r′}. By Lemma 2.5 and that Uτ0 ∈ SKτ0 we

have |Zτ0(z) − z| ≤ 5r′ for any z 6∈ Kτ0 . Let Ẽ denote the event on the LHS of the above
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displayed formula. By Koebe’s 1/4 theorem, we see that Eτ0 ∩ Ẽ ⊂
⋂n
j=1{τ

zj
rj < τ{|z|=r′′}},

where r′′ = 6r′ + Rn−m
∑n

j=m+1(|zj| + 5r′). Since r′ ≤ R ≤ |zn|, we can find a constant Rn

such that r′′ ≤ Rn

∑n
j=1 |zj|. Thus,

P[τ zjrj < τ{|z|=Rn
∑n
j=1 |zj |}] ≥ P[Eτ0 ∩ Ẽ] = E[Eτ0 ] · E[P[Ẽ|Fτ0 , Eτ0 ]]

&F (z1, . . . , zm; r1, . . . , rm) · E[F (z̃m+1, . . . , z̃n; r̃m+1, . . . , r̃n)|Fτ0 , Eτ0 ].

&F (z1, . . . , zm; r1, . . . , rm) · F (zm+1, . . . , zn; rm+1, . . . , rn)

�F (z1, . . . , zn; r1, . . . , rn).

where the second last estimate follows from the remark after Lemma 6.1, and the last estimate
follows from Lemma 3.6 because dist(zj, {z1, . . . , zm}) � |zj|, m + 1 ≤ j ≤ n. The proof of
Case A is now complete.

We will reduce other cases to Case A or the case of fewer points. By (2.7) we may assume
that z1 has the smallest norm among zj, 1 ≤ j ≤ n. Fix constants ρ1 > · · · > ρn ∈ (0, 1/2)
to be determined later.

Case B: {z1, . . . , zn} \ Lz1,ρ1 6= ∅. By pigeonhole principle, Case B is a union of subcases:
Case B.k, 1 ≤ k ≤ n − 1, where Case B.k denotes the case that Case B happens and
{z1, . . . , zn} ∩ (Lz1,ρk \ Lz1,ρk+1

) = ∅.
Case B.k: In this case we have {z1, . . . , zn} \ Lz1,ρk 6= ∅, {z1, . . . , zn} ∩ (Lz1,ρk \ Lz1,ρk+1

) =
∅, and {z1, . . . , zn} ∩ Lz1,ρk+1

6= ∅ because z1 ∈ Lz1,ρk+1
. By (2.7) we may assume that

z1, . . . , zm ∈ Lz1,ρk+1
and zm+1, . . . , zn 6∈ Lz1,ρk , where 1 ≤ m ≤ n− 1.

We will apply Proposition 6.2. Let N, b1, C1 be the constants there. Let δ = 2N
b1

√
2ρk+1,

and r = δ|z1|
N

. Let τ0 = τ δ0 (z1, r) and Eτ0 be given by Proposition 6.2. For 1 ≤ j ≤ m, since

zj ∈ Lz1,ρk+1
and |zj| ≥ |z1|, by (6.1), we have |zj − z1| ≤

√
2ρk+1|z1| ≤ b1r

2
. Suppose Eτ0

happens. By Koebe’s 1/4 theorem, we have

|g′τ0(z1)|b1r ≤ |g′τ0(z1)| dist(z1, Kτ0) ≤ 4 dist(gτ0(z1), SKτ0 ) ≤ 4|Zτ0(z1)| ≤ 4C1

√
r|z1|.

For 1 ≤ j ≤ m, since dist(z1, Kτ0) ≥ b1r ≥ 2|zj − z1|, by Koebe’s distortion theorem, we
have

|Zτ0(zj)− Zτ0(z1)| ≤ 2|g′τ0(z1)||zj − z1| ≤ |g′τ0(z1)|b1r ≤ 4C1

√
r|z1|.

Since |Zτ0(z1)| ≤ C1

√
r|z1|, we get

|Zτ0(zj)| ≤ 5C1

√
r|z1|, 1 ≤ j ≤ m.

Suppose that
δ ≤ ρk/2. (6.5)

Since Kτ0 ⊂ Lz1,δ, and zj 6∈ Lz1,ρk , m+1 ≤ j ≤ n, by Lemma 6.1, we see that |g′τ0(zj)| ≥ Cρk ,
where Cρk > 0 depends only on κ and ρk. By Koebe’s 1/4 theorem, we get

|Zτ0(zj)| ≥ dist(gτ0(zj), SKτ0 ) ≥ |g′τ0(zj)| dist(zj, Kτ0)/4 ≥ Cρkρk|z1|/8, m+ 1 ≤ j ≤ n.
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Suppose now that
Cρkρk|z1|/8 ≥ 2( max

1≤j≤n−1
Rj)5C1

√
r|z1|. (6.6)

Then we see that Zτ0(z1), . . . , Zτ0(zn) satisfy the condition in Case A.
We will apply Lemma 3.5 with K = Kτ0 and U0 = Uτ0 . Let I = {1} ∪ {1 ≤ j ≤ n :

rj ≤ dist(zj, Kτ0)}. We check the conditions of that lemma when Eτ0 happens. By the
definition of I, we have rj ≤ dist(zj, Kτ0) for j ∈ I \ {1}. For j = 1, since dist(z1, Kτ0) ≥
b1r & |z1| and r1 ≤ d1 ≤ |z1|, we have r1 . dist(z1, Kτ0). We have to check Condition
(3.7). First, (3.7) holds for j = 1 by Property (iii) of Eτ0 . Second, for 2 ≤ j ≤ m, since
|zj − z1| ≤ 1

2
dist(z1, Kτ0), by Koebe’s 1/4 theorem and distortion theorem, (3.7) also holds

for these j. Third, for m + 1 ≤ j ≤ n, by Lemma 6.1 and Koebe’s 1/4 theorem, we have
dist(gτ0(zj), SKτ0 ) & dist(zj, Lz1,δ). On the other hand, since Kτ0 ⊂ Lz1,δ ⊂ {|z| ≤ r′}, where

r′ := 2|z1|, we have |Zτ0(z) − z| ≤ 5r′ = 10|z1| for any z ∈ H \ Kτ0 by Lemma 2.5. Thus,
|Zτ0(zj)| . |zj|. Since ρk ≥ 2δ, it is clear that |z| . dist(z, Lz1,δ) for any z ∈ H \ Lz,ρk . So
we see that (3.7) also holds for m+ 1 ≤ j ≤ n.

Let γ̃, z̃j, r̃j, τ̃S and τ̃ zr be as defined in Case A. Then z̃j = Zτ0(zj), 1 ≤ j ≤ n, satisfy
the condition in Case A. By the result of Case A (if |I| = n) or the induction hypothesis (if
|I| < n), we see that

P[τ̃
z̃j
r̃j
< τ̃{|z|=R

∑
j∈I |z̃j |}, j ∈ I|Fτ0 , Eτ0 ] & F (z̃j1 , . . . , z̃j|I| ; r̃j1 , . . . , r̃j|I|),

where R is the maximum of Rj, 1 ≤ j ≤ n−1, and the Rn in Case A. Let Ẽ denote the event
on the LHS of the above displayed formula. Since |z̃j−zj| ≤ 5r′, by Koebe’s 1/4 theorem, we

see that Eτ0 ∩ Ẽ ⊂
⋂n
j=1{τ

zj
rj < τ{|z|=r′′}}, where r′′ = 6r′+R

∑
j∈I(|zj|+ 5r′) ≤ Rn

∑n
j=1 |zj|

for some constant Rn > 0. Thus,

P[τ zjrj < τ{|z|=Rn
∑n
j=1 |zj |}] ≥ P[Eτ0 ∩ Ẽ] = E[Eτ0 ] · E[P[Ẽ|Fτ0 , Eτ0 ]]

&F (z1; r) · E[F (z̃j1 , . . . , z̃j|I| ; r̃j1 , . . . , r̃j|I|)|Fτ0 , Eτ0 ] & F (z1, . . . , zn; r1, . . . , rn),

where the last inequality follows from Lemma 3.5 and that dist(z1, Kτ0) ≤ b2r. We remark
that the implicit constant in the above estimate depends on ρk and ρk+1. This does not
matter because ρk and ρk+1 are constants once they are determined. Now we have finished
the proof of Case B.k assuming Conditions (6.5,6.6).

Case C: z1, . . . , zn ∈ Lz1,ρ1 . This case is the complement of Case B, and we will reduce it
to Case B. Let

en = max
1≤j≤n

|zj − z1|.

From (6.1) we know that en ≤
√

2ρ1|z1|.
We apply Proposition 6.2 with z0 = z1, δ = 4N

b1

√
ρ1 and r = 2en

b1
. Let τ = τ δ0 (z1, r) and

Eτ0 given by that proposition. Suppose Eτ0 happens. By Properties (i,iii) and Koebe’s 1/4
theorem, we have

|Zτ0(z1)| ≤ dist(gτ0(z1), SKτ0 )/C0 ≤ 4|g′τ0(z1)| dist(z1, Kτ0)/C0 ≤
8b2

b1Cn
|g′τ0(z1)|en.
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By Koebe’s distortion theorem, we have

max
1≤j≤n

|Zτ0(zj)− Zτ0(z1)| ≥ 2

9
|g′τ0(z1)|en.

Thus, if Zτ0(zs) has the smallest norm among Zτ0(zj), 1 ≤ j ≤ n, then

max
1≤j≤n

|Zτ0(zj)− Zτ0(zs)| ≥
b1Cn
72b2

|Zτ0(zs)|.

If ρ1 satisfies that √
2ρ1 <

b1Cn
72b2

, (6.7)

then from (6.1) we see that not all Zτ0(zj), 1 ≤ j ≤ n, are contained in LZτ0 (zs),ρ1 . After
reordering the points, we see that Zτ0(zj), 1 ≤ j ≤ n, satisfy the condition in Case B.

We will apply Lemma 3.5 with K = Kτ0 and U0 = Uτ0 . Let I = {1, . . . , n}. We
check the conditions of that lemma when Eτ0 happens. Since r1 ≤ |z1 − z1| ≤ en and
dist(z1, Kτ0) ≥ 2e1, we have r1 < dist(z1, Kτ0). For 2 ≤ j ≤ n, since rj ≤ dj ≤ |zj − z1| ≤ en
and dist(z1, Kτ0) ≥ 2en, we see that rj ≤ dist(zj, Kτ0). So I satisfies the property there. We
have to check Condition (3.7). First, (3.7) holds for j = 1 by Property (iii) of Eτ0 . Second,
for 2 ≤ j ≤ n, since |zj − z1| ≤ 1

2
dist(z1, Kτ0), by Koebe’s 1/4 theorem and distortion

theorem, (3.7) also holds for these j.
Let γ̃, z̃j, r̃j, τ̃S and τ̃ zr be as defined in Case A. By the result of Case B we see that

P[τ̃
z̃j
r̃j
< τ̃{|z|=R

∑
1≤j≤n |z̃j |}, 1 ≤ j ≤ n|Fτ0 , Eτ0 ] & F (z̃1, . . . , z̃n; r̃1, . . . , r̃n),

where R is the Rn in Case B. Let r′ = 2|z1|. Then Kτ0 ⊂ {|z| ≤ r′}. So |Zτ0(z)− z| ≤ 5r′ for

z ∈ H\Kτ0 . Let Ẽ denote the event on the LHS of the above displayed formula. By Koebe’s

1/4 theorem, we see that Eτ0 ∩ Ẽ ⊂
⋂n
j=1{τ

zj
rj < τ{|z|=r′′}}, where r′′ = 6r′ + R

∑n
j=1(|zj| +

5r′) ≤ Rn

∑n
j=1 |zj| for some constant Rn > 0. Thus,

P[τ zjrj < τ{|z|=Rn
∑n
j=1 |zj |}] ≥ P[Eτ0 ∩ Ẽ] = E[Eτ0 ] · E[P[Ẽ|Fτ0 , Eτ0 ]]

&F (z1; r) · E[F (z̃1, . . . , z̃n; r̃1, . . . , r̃n)|Fτ0 , Eτ0 ] & F (z1, . . . , zn; r1, . . . , rn),

where the last inequality follows from Lemma 3.5 and that dist(z1, Kτ0) ≤ b2r. Now we have
finished the proof of Case B.k assuming Condition (6.7).

In the end, we need to find ρ1, . . . , ρn such that Conditions (6.5,6.6,6.7) all hold. To do
this, we may first use (6.7) to choose ρ1. Once ρk is chosen, we may use (6.5,6.6) to choose
ρk+1 because these two inequalities are satisfied when ρk+1 is sufficiently small given ρk.
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Appendices

A Proof of Theorem 3.1

In order to prove Theorem 3.1, we need some lemmas. The proof of Theorem 3.1 will be
given after the proof of Lemma A.4. We still let γ be a chordal SLEκ curve in H from 0 to
∞. Throughout the appendix, we use C (without subscript) to denote a positive constant
depending only on κ, and use Cx to denote a positive constant depending only on κ and
some variable x. The value of a constant may vary between occurrences.

First, let’s recall the one-point estimate and the boundary estimate for chordal SLEκ.
(see Lemma 2.6 and Lemma 2.5 in [18, Lemma 2.6, Lemma 2.5]).

Lemma A.1 (One-point Estimate). Let T be a stopping time for γ. Let z0 ∈ H, y0 =
Im z0 ≥ 0, and R ≥ r > 0. Then

P[τ z0r <∞|FT , dist(z0, KT ) ≥ R] ≤ C
Py0(r)

Py0(R)
.

Lemma A.2 (Boundary Estimate). Let T be a stopping time. Let ξ1 and ξ2 be a disjoint
pair of crosscuts of HT such that

1. either ξ1 disconnects γ(T ) from ξ2 in HT , or γ(T ) is an end point of ξ1;

2. among the three bounded components of HT \ (ξ1 ∪ ξ2), the boundary of the unbounded
component does not contain ξ2.

Then
P[τξ2 <∞|FT ] ≤ Ce−απdHT (ξ1,ξ2).

The lemma below is similar to and stronger than [18, Theorem 3.1]. The symbols zj, Rj, rj
in this lemma are not related with the symbols with the same names in Theorem 3.1 or main
theorems of this paper.

Lemma A.3. Let m ∈ N, zj ∈ H, yj = Im zj, and |zj| > Rj ≥ rj > 0, 1 ≤ j ≤ m. Let

Dj = {|z − zj| < rj} and D̂j = {|z − zj| < Rj}, 1 ≤ j ≤ m. Let Ĵ0, J0, J
′
0 be three mutually

disjoint Jordan curves in C, which bound Jordan domains D̂0, D0, D
′
0, respectively. Suppose

that D′0 ⊂ D0 ⊂ D̂0, and 0 6∈ D0. Let A = D̂0 \D0 be the doubly connected domain bounded

by J0 and Ĵ0. Suppose that A∩ D̂j = ∅, 1 ≤ j ≤ m, and there is some n0 ∈ {1, . . . ,m} such

that D̂0 ∩ D̂n0 = ∅. Let ξj = ∂Dj ∩H, ξ̂j = ∂D̂j ∩H, 0 ≤ j ≤ m, and ξ′0 = ∂D′0 ∩H. Let

E = {τξ0 < τξ̂1 ≤ τξ1 < · · · < τξ̂m ≤ τξm < τξ′0 <∞}.

Then

P[E|Fτξ0 ] ≤ Cme−απdC(J0,Ĵ0)/2

m∏
j=1

Pyj(rj)

Pyj(Rj)
.
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Figure 1: The two pictures above illustrate Ûρ
t and Uρ

t , respectively. The red curve is γ up
to time t, the big circle is ρ, and the small circle is ξ′0. The connected components of ρ∩Ht

that disconnects ξ′0 from ∞ are labeled as ρt, ρ
′
t, ρ
′′
t , where ρt is closest to ξ′0 in Ht. The grey

region on the left picture is Ûρ
t ; and the grey region on the right picture is Uρ

t .

Proof. We write τ0 = τξ0 , τ̂j = τξ̂j and τj = τξj , 1 ≤ j ≤ m, and τm+1 = τξ′0 .
From the one-point estimate, we have

P[τj <∞|Fτ̂j ] ≤ C
Pyj(rj)

Pyj(Rj)
, 1 ≤ j ≤ m. (A.1)

Thus, P[E|Fτ0 ] ≤ Cm
∏m

j=1

Pyj (rj)

Pyj (Rj)
. Now we need to derive the factor e−απdC(J0,Ĵ0)/2.

By mapping A conformally onto an annulus, we see that there is a Jordan curve ρ in A
that disconnects J0 from Ĵ0, such that

dC(ρ, J0) = dC(ρ, Ĵ0) = dC(J, Ĵ0)/2. (A.2)

Let T = inf{t ≥ 0 : ξ′0 6⊂ Ht}. Let t ∈ [τ0, T ). Each connected component η of
ρ ∩ Ht is a crosscut of Ht, and Ht \ η is the disjoint union of a bounded domain and an
unbounded domain. We use H∗t (η) to denote the bounded domain. First, consider the
connected components η of ρ ∩ Ht such that ξ′0 ⊂ H∗t (η). If such η is unique, we denote it
by ρt. Otherwise, applying [18, Lemma 2.1], we may find the unique component η0, such
that H∗t (η0) is the smallest among all of these H∗t (η). Again we use ρt to denote this η0. Let

Ûρ
t = H∗t (ρt). Then ξ′0 ⊂ Ûρ

t . Next, consider the connected components η of ρ ∩ Ht such

that H∗t (η) ⊂ Ûρ
t \ ξ′0. Let the union of H∗t (η) for these η be denoted by Uρ

t . Then we have

Uρ
t ⊂ Ûρ

t and Uρ
t ∩ ξ′0 = ∅.

Now we define a family of events.

• Let A(0,1) be the event that τ0 < τ̂1 ∧ T and D1 ∩H ⊂ Uρ
τ0

.

• For 1 ≤ j ≤ n0− 1, let A(j,j) be the event that τj−1 < τj < T , and Dj ∩H 6⊂ Uρ
τj−1

, but
Dj ∩H ⊂ Uρ

τj
.
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• For 1 ≤ j ≤ n0− 1, let A(j,j+1) be the event that τj < τ̂j+1 ∧ T , and Dj ∩H 6⊂ Uρ
τj

, but
Dj+1 ∩H ⊂ Uρ

τj
.

• For n0 ≤ j ≤ m, let A(j,j) be the event that τj−1 < τj < T , and Dj ∩ H 6⊂ Ûρ
τj−1

, but

Dj ∩H ⊂ Ûρ
τj

.

• For n0 ≤ j ≤ m − 1, let A(j,j+1) be the event that τj < τ̂j+1 ∧ T , and Dj ∩ H 6⊂ Ûρ
τj

,

but Dj+1 ∩H ⊂ Ûρ
τj

.

• Let A(m,m+1) be the event that τm < τm+1 ∧ T and Dm ∩H 6⊂ Ûρ
τm .

Let I = {(j, j + 1) : 0 ≤ j ≤ m} ∪ {(j, j) : 1 ≤ j ≤ m}. We claim that E ⊂
⋃
ι∈I Aι.

To see this, note that, if none of the events A(j,j+1), 0 ≤ j ≤ n0 − 1, and A(j,j), 1 ≤ j ≤
n0 − 1, happens, then Dn0 ∩H 6⊂ Uρ

τn0
. Since Dn0 is disjoint from D̂0, we can conclude that

Dn0∩H 6⊂ Ûρ
τn0

. In fact, if Dn0∩H ⊂ Ûρ
τn0

, then from Dn0∩D̂0 = ∅, ρ ⊂ D̂0, and ρ surrounds

ξ′0, we may find a connected component η of ρ ∩Hτn0
that disconnects Dn0 ∩ H from ξ′0 in

Hτn0
. Since Dn0 ∩ H, ξ′0 ⊂ Ûρ

τn0
, we have η ⊂ Ûρ

τn0
. From the definitions of ρn0 and Ûρ

n0
,

we see that η does not disconnect ξ′0 from ∞ in Hτn0
. Thus, Dn0 ∩ H ⊂ H∗τn0

(η) ⊂ Ûρ
τn0

,

and ξ′0 ∩ H∗τn0
(η) = ∅. This shows that Dn0 ∩ H ⊂ Uρ

τn0
, which is a contradiction. Since

Dn0 ∩ H 6⊂ Ûρ
τn0

, one of the events A(j,j) and A(j,j+1), n0 ≤ j ≤ m, must happen. So the
claim is proved. We will finish the proof by showing that

P[E ∩ Aι|Fτ0 ] ≤ Cme−απdC(J0,Ĵ0)/2

m∏
j=1

Pyj(rj)

Pyj(Rj)
, ι ∈ I. (A.3)

Case 1. Suppose A(0,1) occurs. Then at time τ0, there is a connected component, denoted

by ρ̃τ0 , of ρ∩Hτ0 , that disconnects ξ̂1 from both ξ′0 and ∞ in Hτ0 . Since ξ′0 ⊂ D0 ∩H ⊂ Hτ0

and γ(τ0) ∈ ∂D0, we see that ρ̃τ0 disconnects ξ̂1 also from γ(τ0) in Hτ0 . Since ξ̂1 is disjoint

from A, it is contained in either D0 or C \ D̂0. If ξ̂1 is contained in D0 (resp. C \ D̂0), then

J0∩Hτ0 (resp. Ĵ0∩Hτ0) contains a connected component, denoted by ητ0 , which disconnects

ξ̂1 from ρ̃τ0 and ∞ in Hτ0 . Using the boundary estimate and (A.2), we get

P[τ̂1 <∞|Fτ0 , A(0,1)] ≤ Ce−απdHτ0 (ρ̃τ0 ,ητ0 ) ≤ Ce−απdC(J0,Ĵ0)/2,

which together with (A.1) implies that (A.3) holds for ι = (0, 1).
Case 2. Suppose for some 1 ≤ j ≤ n0 − 1, A(j,j+1) occurs. Then at time τj, there is a

connected component, denoted by ρ̃τj , of ρ∩Hτj , that disconnects ξ̂j+1 from both ξj and ∞
in Hτj . Since γ(τj) ∈ ξj, we see that ρ̃τj disconnects ξ̂j+1 also from γ(τj) in Hτj . According

to whether ξj+1 belongs to D0 or C \ D̂0, we may find a connected component ητj of J0∩Hτ0
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or Ĵ0 ∩Hτ0 that disconnects ξ̂j+1 from ρ̃τj and ∞ in Hτj . Using the boundary estimate and
(A.2), we get

P[τ̂j+1 <∞|Fτj , A(j,j+1), τj < τ̂j+1] ≤ Ce
−απdHτj (ρ̃τj ,ητj ) ≤ Ce−απdC(J0,Ĵ0)/2,

which together with (A.1) implies that (A.3) holds for ι = (j, j + 1), 1 ≤ j ≤ n0 − 1.
Case 3. Suppose for some n0 ≤ j ≤ m, A(j,j+1) occurs. We write ξm+1 = ξ′0. Then ρτj
disconnects ξ̂j+1 from γ(τj) and ∞ in Hτj . According to whether ξj+1 belongs to D0 or

C \ D̂0, we may find a connected component ητj of J0∩Hτ0 or Ĵ0∩Hτ0 that disconnects ξ̂j+1

from ρτj and ∞ in Hτj . Using the boundary estimate and (A.2), we get

P[τ̂j+1 <∞|Fτj , A(j,j+1), τj < τ̂j+1] ≤ Ce
−απdHτj (ρτj ,ητj ) ≤ Ce−απdC(J0,Ĵ0)/2,

which together with (A.1) implies that (A.3) holds for ι = (j, j + 1), n0 ≤ j ≤ m.
Case 4. Suppose for some n0 ≤ j ≤ m− 1, A(j,j) occurs. Define a stopping time

σj = inf{t ≥ τj−1 : Dj ∩H ⊂ Ûρ
t }.

Then τj−1 ≤ σj ≤ τj. From [18, Lemma 2.2], we know that

• γ(σj) is an endpoint of ρσj ;

• Dj ∩H ⊂ Ûρ
σj

.

The second property implies that τj−1 < σj < τj. Now we define two events. Let F< =
{σj < τ̂j} and F≥ = {τ̂j ≤ σj < τj}. Then A(j,j) ⊂ F< ∪ F≥.
Case 4.1. Suppose F≥ occurs. Let N = dlog(Rj/rj)e ∈ N. Let ζk = {z ∈ H : |z − zj| =

(RN−k
j rkj )

1/N}, 0 ≤ k ≤ N . Note that ζ0 = ξ̂j and ζN = ξj. Then F≥ ⊂
⋃N
k=1 Fk, where

Fk := {τζk−1
≤ σj < τζk <∞}, 1 ≤ k ≤ N.

If Fk occurs, then ζk ⊂ Ûρ
σj

. Since ζk−1 ∩ Hσj has a connected component ζ
σj
k−1, which

disconnects ζk from ρσj in Hσj , by the boundary estimate, we get

P[τζk <∞|Fσj , Fk] ≤ Ce
−απdHσj (ρσj ,ζ

σj
k−1)

.

According to whether ζk belongs to D0 or D̂0, we may find a connected component ησj of

J0 ∩Hσj or Ĵ0 ∩Hσj that disconnects ζ
σj
k−1 from ρσj and ∞ in Hσj . Moreover, we may find

a connected component ζ
σj
0 of ζ0 ∩Hσj that disconnects ησj from ζ

σj
k−1. From (A.2) we get

dHσj (ρσj , ζ
σj
k−1) ≥ dHσj (ρσj , ησj) + dHσj (ζ

σj
0 , ζ

σj
k−1) ≥ 1

2
dC(J0, Ĵ0) +

k − 1

2πN
log
(Rj

rj

)
Thus, we get

P[τζk <∞|Fσj , Fk] ≤ Ce−απdC(J0,Ĵ0)/2
( rj
Rj

)α
2
k−1
N
.
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From the one-point estimate, we get

P[Fk|Fτj−1
, τj−1 < τ̂j] ≤ C

Pyj((R
N−k+1
j rk−1

j )1/N)

Pyj(Rj)
;

P[τj <∞|Fτζk , Fk] ≤ C
Pyj(rj)

Pyj((R
N−k
j rkj )

1/N)
.

The above three displayed formulas together imply that

P[τj <∞, Fk|Fτj−1
, τj−1 < τ̂j] ≤ Ce−απdC(J0,Ĵ0)/2

( rj
Rj

)α
2
k−1
N
( rj
Rj

)−α/N Pyj(rj)

Pyj(Rj)
.

Since F≥ ⊂
⋃N
k=1 Fk, by summing up the above inequality over k, we get

P[τj <∞, F≥|Fτj−1
, τj−1 < τ̂j] ≤ Ce−απdC(J0,Ĵ0)/2 Pyj(rj)

Pyj(Rj)

[( rj
Rj

)−α/N 1− (
rj
Rj

)α/2

1− (
rj
Rj

)α/(2N)

]

≤ Ce−απdC(J0,Ĵ0)/2 Pyj(rj)

Pyj(Rj)
, (A.4)

where the second inequality holds because the quantity inside the square bracket is bounded
above by eα

1−e−α/4 . To see this, consider the cases Rj/rj ≤ e and Rj/rj > e separately.

Case 4.2. Suppose F< occurs. Then ξ̂j ⊂ Ûρ
σj

. According to whether ξ̂j belongs to D0 or

D̂0, we may find a connected component ησj of J0∩Hσj or Ĵ0∩Hσj that disconnects ξ̂j from
ρσj and ∞ in Hσj . By the boundary estimate, we get

P[τ̂j <∞|Fσj , F<] ≤ Ce
−απdHσj (ρσj ,ησj ) ≤ Ce−απdC(J0,Ĵ0)/2,

which together with (A.1) implies that

P[τj <∞, F<|Fτj−1
] ≤ Ce−απdC(J0,Ĵ0)/2 Pyj(rj)

Pyj(Rj)
. (A.5)

Combining (A.4) and (A.5), we get

P[τj <∞, A(j,j)|Fτj−1
, τj−1 < τ̂j] ≤ Ce−απdC(J0,Ĵ0)/2 Pyj(rj)

Pyj(Rj)
,

which together with (A.1) implies that (A.3) holds for ι = (j, j), n0 ≤ j ≤ m.
Case 5. Suppose for some 1 ≤ j ≤ n0 − 1, A(j,j) occurs. Define a stopping time

σj = inf{t ≥ τj−1 : Dj ∩H ⊂ Uρ
t }.

To derive properties of σj, we claim that the following are true.
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(i) If Dj∩H ⊂ Ht0 \U
ρ
t0 , then there is ε > 0 such that Dj∩H ⊂ Ht \Uρ

t for t0 ≤ t < t0 +ε;

(ii) If Dj ∩ H ⊂ Uρ
t0 , and if γ(t0) is not an endpoint of a connected component of ρ ∩Ht0

that disconnects Dj ∩H from ∞ in Ht0 , then there is ε > 0 such that Dj ∩H ⊂ Uρ
t for

t0 − ε < t ≤ t0.

To see that (i) holds, we consider two cases. Case 1. Dj ∩ H ⊂ Ht0 \ Û
ρ
t0 . From [18,

Lemma 2.2], there is ε > 0 such that for t0 ≤ t < t0 + ε, Dj ∩ H ⊂ Ht \ Ûρ
t , which implies

that Dj ∩H ⊂ Ht \ Uρ
t . Case 2. Dj ∩H ⊂ Ûρ

t0 \ U
ρ
t0 . Then there is a curve ζ in Ht0 , which

connects ξ′0 with Dj, and does not intersect ρ. In this case, there is ε > 0 such that for
t0 ≤ t < t0 + ε, ζ ⊂ Ht and Dj ∩H ⊂ Ht, which imply that Dj ∩H ⊂ Ht \ Uρ

t .
Now we consider (ii). Since Dj ∩ H ⊂ Uρ

t0 , there is a connected component ζ of ρ ∩
Ht0 , which is contained in Ûρ

t0 , and disconnects Dj ∩ H from ξ′0 and ∞ in Ht0 . From the
assumption, γ(t0) is not an end point of ζ. By the continuity of γ, there is ε1 > 0 such that
γ[t0 − ε1, t0] ∩ ζ = ∅. This implies that, for t0 − ε1 < t ≤ t0, ζ is also a crosscut of Ht.
Since Ht is simply connected, ζ also disconnects Dj ∩H from ξ′0 and ∞ in Ht. Since ρt0 is a

connected component of ρ ∩Ht0 that disconnects Ûρ
t0 ⊃ Uρ

t0 ⊃ Dj ∩H from ∞, γ(t0) is also

not an endpoint of ρt0 . Since ζ ⊂ Ûρ
t0 , from [18, Lemma 2.2], there is ε ∈ (0, ε1) such that

for t0 − ε < t ≤ t0, ζ ⊂ Ûρ
t , which implies that Dj ∩H ⊂ Uρ

t .
From (i) and (ii) we conclude that

• γ(σj) is an endpoint of a connected component of ρ∩Hσj that disconnects Dj∩H from
∞ in Hσj . Let this crosscut be denoted by ρ̃σj .

• D(zj, rj) ∩H ⊂ Uρ
σj

.

Following the proof in Case 4 with ρ̃σj and Uρ
σj

in place of ρσj and Ûρ
σj

, respectively, we
conclude that (A.3) holds for ι = (j, j), 1 ≤ j ≤ n0 − 1. The proof is now complete.

Let Ξ be a family of mutually disjoint circles with center in H, each of which does not
pass through or enclose 0. Define a partial order on Ξ such that ξ1 < ξ2 if ξ2 is enclosed
by ξ1. One should keep in mind that a smaller element in Ξ has bigger radius, but will be
visited earlier (if it happens) by a curve started from 0.

Suppose that Ξ has a partition {Ξe}e∈E with the following properties:

• For each e ∈ E , the elements in Ξe are concentric circles with radii forming a geometric
sequence with common ratio 1/4. We denote the common center ze, the biggest radius
Re, and the smallest radius re, and let ye = Im ze.

• Let Ae = {re ≤ |z − z0| ≤ Re} be the closed annulus associated with Ξe, which is a
single circle if Re = re, i.e., |Ξe| = 1. Then the annuli Ae, e ∈ E , are mutually disjoint.

Note that every Ξe is a totally ordered set w.r.t. the partial order on Ξ.
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Lemma A.4. Suppose that J1 and J2 are disjoint Jordan curves in C, which are disjoint
from all ξ ∈ Ξ. Suppose that 0 is not contained in or enclosed by J1, J1 is enclosed by J2, and
that every ξ ∈ Ξ that lies in the doubly connected domain bounded by J1 and J2 disconnects
J1 from J2. Suppose ξa < ξb ∈ Ξ are both enclosed by J1, and ξc ∈ Ξ neither encloses J2, or
is enclosed by J2. Let E denote the event that τξ < ∞ for all ξ ∈ Ξ, and τξa < τξc < τξb.
Then

P[E] ≤ C|E|e
− α

4|E|πdC(J1,J2)
∏
e∈E

Pye(re)

Pye(Re)
,

where C|E| ∈ (0,∞) depends only on κ and |E|.

Discussion. From [18, Theorem 3.2], we know that P[τξ < ∞, ξ ∈ Ξ] ≤ C|E|
∏

e∈E
Pye (re)

Pye (Re)
.

Now we need to derive the additional factor e−απdC(J1,J2)/2 using the condition τξa < τξc < τξb .

Proof. We write Nn for {k ∈ N : k ≤ n}. Let S denote the set of bijections σ : N|Ξ| → Ξ
such that ξ1 < ξ2 implies that σ−1(ξ1) < σ−1(ξ2), and σ−1(ξa) < σ−1(ξc) < σ−1(ξb). Let

Eσ = {τσ(1) < τσ(2) < · · · < τσ(|Ξ|) <∞}, σ ∈ S.

Then we have
E =

⋃
σ∈S

Eσ. (A.6)

We will derive an upper bound of P[Eσ] in (A.11).
Fix σ ∈ S. For e ∈ E , if there is no ξ ∈ Ξ such that ξ > max Ξe, then we say that e

is a maximal element in E. In this case, we define Ξ̂e = Ξe and ξ∗e = max Ξe. If e is not a
maximal element in E, let ξ∗e denote the first ξ > max Ξe that is visited by γ on the event

Eσ, and define Ξ̂e = Ξe ∪ ξ∗e . This definition certainly depends on σ. Label the elements of

Ξ̂e by ξe0 < · · · < ξeNe = ξ∗e , where Ne = |Ξ̂e| − 1.
For e ∈ E, define

Je = {1 ≤ n ≤ Ne : σ−1(ξen) > σ−1(ξen−1) + 1}.

Roughly speaking, n ∈ Je means that between τξen−1
and τξen , γ visits other element in Ξ that

it has not visited before on the event Eσ.
Order the elements of Je ∪ {0} by 0 = se(0) < · · · < se(Me), where Me = |Je|. Set

se(Me + 1) = Ne + 1. Every Ξ̂e can be partitioned into Me + 1 subsets:

Ξ̂(e,j) = {ξen : se(j) ≤ n ≤ se(j + 1)− 1}, 0 ≤ j ≤Me.

The meaning of the partition is that, after γ visits the first element in Ξ̂(e,j), which must be

ξese(j), it then visits all elements in Ξ̂(e,j) without visiting any other circles in Ξ that it has

not visited before. Let I = {(e, j) : e ∈ E , 0 ≤ j ≤ Me}. Then {Ξ̂ι : ι ∈ I} is a cover of Ξ.

Note that every σ−1(Ξ̂ι), ι ∈ I, is a connected subset of Z.
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For ι ∈ I, let eι denote the first coordinate of ι, zι = zeι and yι = Im zι. Define Pι for

each ι ∈ I. If max Ξ̂ι ∈ Ξeι , define Pι =
Pyι (Rmax Ξ̂ι

)

Pyι (Rmin Ξ̂ι
)
, where we use Rξ to denote the radius

of ξ. If max Ξ̂ι 6∈ Ξeι , which means max Ξ̂ι = ξ∗eι > max Ξeι , then we consider two subcases.

If Ξ̂ι contains only one element (i.e., ξ∗eι) or two elements (i.e., ξ∗eι and max Ξeι), then let

Pι = 1; otherwise let Pι =
Pyι (Rmax Ξeι

)

Pyι (Rmin Ξ̂ι
)

. From the one-point estimate, we get

P[τmax Ξ̂ι
<∞|Fmin Ξ̂ι

] ≤ CPι, ι ∈ I. (A.7)

Let Pe = Pye (re)

Pye (Re)
, e ∈ E . From Lemma 2.1 we get

Me∏
j=0

P(e,j) ≤ 4αMePe, e ∈ E . (A.8)

We have |I| =
∑

e∈E(Me+1). Considering the order that γ visits Ξ̂ι, ι ∈ I, we get a bijec-

tion map σI : N|I| → I such that n1 < n2 implies that maxσ−1(Ξ̂σI(n1)) ≤ minσ−1(Ξ̂σI(n2)),

and n1 = n2 − 1 implies that minσ−1(Ξ̂σI(n2)) − maxσ−1(Ξ̂σI(n1)) ∈ {0, 1}. The difference

may take value 0 if max Ξ̂σI(n1) = ξ∗e 6∈ Ξe for e = eσI(n1). We may express Eσ as

Eσ = {τmin Ξ̂σI (1)
≤ τmax Ξ̂σI (1)

≤ τmin Ξ̂σI (2)
≤ · · · ≤ τmin Ξ̂σI (|I|)

< τmax Ξ̂σI (|I|)
<∞}.

Fix e0 ∈ E . Let nj = σ−1
I ((e0, j)), 0 ≤ j ≤ Me0 . Then nj+1 ≥ nj + 2, 0 ≤ j ≤ Me0 − 1.

Fix 0 ≤ j ≤Me0−1. Let m = nj+1−nj−1. If max Ξ̂σI(nj+k) and min Ξ̂σI(nj+k) are concentric

for 1 ≤ k ≤ m, applying Lemma A.3 with Ĵ0 = min Ξe0 , J0 = max Ξ̂(e0,j) = max Ξ̂σI(nj),

J ′0 = min Ξ̂(e0,j+1) = min Ξ̂σI(nj+1), {|z − zk| = Rk} = min Ξ̂σI(nj+k) and {|z − zk| = rk} =

max Ξ̂σI(nj+k), 1 ≤ k ≤ m, we get

P[Eσ
[max Ξ̂σI (nj),min Ξ̂σI (nj+1)]

|Fτ
max Ξ̂σI (nj)

] ≤ Cm4−α/4(se0 (j+1)−1)

nj+1−1∏
n=nj+1

PσI(n), (A.9)

where Eσ
[max Ξ̂σI (nj),min Ξ̂σI (nj+1)]

is the event

{τmax Ξ̂σI (nj)
≤ τmin Ξ̂σI (nj+1)

≤ τmax Ξ̂σI (nj+1)
≤ · · · ≤ τmax Ξ̂σI (nj+m)

≤ τmin Ξ̂σI (nj+1)
<∞}.

Because of the definition of Pι, ι ∈ I, the above estimate still holds in the general case, i.e.,
there may be some 1 ≤ k ≤ n such that max Ξ̂σI(nj+k) = ξ∗e 6∈ Ξe, where e = eσI(nj+k).

We say that γ makes a (J1, J2) jump during [max Ξ̂σI(nj),min Ξ̂σI(nj+1)] if min Ξe0 is en-

closed by J1, and there is at least one k0 ∈ Nm such that min Ξ̂σI(nj+k0) is not enclosed by

J2. In this case, applying Lemma A.3 with J0 = J1 and Ĵ0 = J2, we get

P[Eσ
[max Ξ̂σI (nj),min Ξ̂σI (nj+1)]

|Fτ
max Ξ̂σI (nj)

] ≤ Cme−απdC(J1,Ĵ2)/2

nj+1−1∏
n=nj+1

PσI(n).
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Combining this with (A.9), we get

P[Eσ
[max Ξ̂σI (nj),min Ξ̂σI (nj+1)]

|Fτ
max Ξ̂σI (nj)

] ≤ Cme−
α
4
πdC(J1,Ĵ2)4−

α
8

(se0 (j+1)−1)

nj+1−1∏
n=nj+1

PσI(n). (A.10)

Letting j vary between 0 and Me0 − 1 and using (A.7) and (A.9), we get

P[Eσ] ≤ C |I|4−α/4
∑Me0
j=1 (se0 (j)−1)

∏
ι∈I

Pι.

Using (A.8) and |I| =
∑

e(Me + 1), we find that

P[Eσ] ≤ C |E|C
∑
e∈EMe4−

α
4

∑Me0
j=1 se0 (j)

∏
e∈E

Pe.

Since σ−1(ξa) < σ−1(ξc) < σ−1(ξb), ξa < ξb are enclosed by J1, and ξc is not enclosed by
J2, there must exist some e0 ∈ E and some j ∈ [0,Me0−1] such that γ makes a (J1, J2) jump

during [max Ξ̂σI(nj),min Ξ̂σI(nj+1)]. In that case, using (A.7), (A.9), and (A.10), we get

P[Eσ] ≤ C |E|C
∑
e∈EMee−

α
4
πdC(J1,Ĵ2)4−

α
8

∑Me0
j=1 se0 (j)

∏
e∈E

Pe.

Taking a geometric average of the above upper bounds for P[Eσ] over e0 ∈ E , we get

P[Eσ] ≤ C |E|C
∑
e∈EMee−

α
4|E|πdC(J1,Ĵ2)4−

α
8|E|

∑
e∈E

∑Me
j=1 se(j)

∏
e∈E

Pe. (A.11)

So far we have omitted the σ on I, Me, se(j) and etc; we will put σ on the superscript if
we want to emphasize the dependence on σ. From (A.6) and (A.11), we get

P[E] ≤ C |E|
∑

(Me;(se(j))
Me
j=0)e∈E

|S(Me,(se(j)))|C
∑
e∈EMee−

α
4|E|πdC(J1,Ĵ2)4−

α
8|E|

∑
e∈E

∑Me
j=1 se(j)

∏
e∈E

Pe,

(A.12)
where

S(Me,(se(j))) := {σ ∈ S : Mσ
e = Me, s

σ
e (j) = se(j), 0 ≤ j ≤Me, e ∈M},

and the first summation in (A.12) is over all possible (Me; (se(j))
Me
j=0)e∈E , namely, Me ≥ 0

and 0 = se(0) < se(1) < · · · se(Me) ≤ Ne for every e ∈ E . It now suffices to show that∑
(Me;(se(j))

Me
j=1)e∈E

|S(Me,(se(j)))|C
∑
e∈EMe4−

α
8|E|

∑
e∈E

∑Me
j=1 se(j) ≤ C|E|, (A.13)

for some C|E| <∞ depending only on |E| and κ.
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We now bound the size of S(Me,(se(j))). Note that when Mσ
e and sσe (j), 0 ≤ j ≤ Mσ

e ,
e ∈ E , are given, σ is then determined by σI : N|Iσ | → Iσ, which is in turn determined by
eσI(n), 1 ≤ n ≤ |Iσ| =

∑
e∈E(M

σ
e + 1). Since each eσI(n) has at most |E| possibilities, we have

|S(Me,(se(j)))| ≤ |E|
∑
e∈E(Me+1). Thus, the left-hand side of (A.13) is bounded by

|E||E|
∑

(Me;(se(j))
Me
j=0)e∈E

∏
e∈E

(C|E|)Me4−
α

8|E|
∑Me
j=1 se(j)

=|E||E|
∏
e∈E

Ne∑
Me=0

(C|E|)Me
∑

0=se(0)<···<se(Me)≤Ne

4−
α

8|E|
∑Me
j=1 se(j)

≤|E||E|
∏
e∈E

∞∑
M=0

(C|E|)M
∞∑

s(1)=1

· · ·
∞∑

s(M)=M

4−
α

8|E|
∑M
j=1 s(j)

≤|E||E|
∏
e∈E

∞∑
M=0

(C|E|)M
M∏
j=1

∞∑
s(j)=j

4−
α

8|E| s(j)

=

[
|E|

∞∑
M=0

(
C|E|

1− 4−
α

8|E|

)M
4−

α
16|E|M(M+1)

]|E|
.

The conclusion now follows since the summation inside the square bracket equals to a finite
number depending only on κ and |E|.

Proof of Theorem 3.1. By (2.7), we may change the order of the points z1, . . . , zn. Thus, it
suffices to show that

P[τ zjrj <∞, 1 ≤ j ≤ n; τ z1s1 < τ z2r2 < τ z1r1 ] ≤ Cn

n∏
j=1

Pyj(rj)

Pyj(lj)
·
( s1

|z1 − z2| ∧ |z1|

) α
32n2

, (A.14)

for any distinct points z1, . . . , zn ∈ H\{0}, rj ∈ (0, dj), 1 ≤ j ≤ n, and s1 ∈ (r1, |z1−z2|∧|z1|),
where yj, lj, dj are defined by (2.3).

We want to deduce the theorem from Lemma A.4, so we want to construct a family Ξ of
mutually disjoint circles and Jordan curves J1, J2.

Suppose 4hjrj ≤ lj ≤ 4hj+1rj for some hj ∈ N, 1 ≤ j ≤ n. By increasing the value of s1,

we may assume that s1 = 4h̃1r1, where h̃1 ∈ N and h̃1 > h1. Define

ξsj = {|z − zj| = 4hj−srj}, 1 ≤ j ≤ n, 1 ≤ s ≤ hj.

The family {ξsj : 1 ≤ j ≤ n, 1 ≤ s ≤ hj} may not be mutually disjoint. So we can not
define Ξ to be this family. To solve this issue, we will remove some circles as follows. For
1 ≤ j < k ≤ n, let Dk = {|z − zk| ≤ lk/4}, which contains every ξrk, 1 ≤ r ≤ hk, and

Ij,k = {ξsj : 1 ≤ s ≤ hj, ξ
s
j ∩Dk 6= ∅}. (A.15)
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Then Ξ := {ξsj : 1 ≤ j ≤ n, 1 ≤ s ≤ hj}\
⋃

1≤j<k≤n Ij,k is mutually disjoint. If dist(γ, zj) ≤ rj,
then γ intersects every ξsj , 1 ≤ s ≤ hj. So we get

P[dist(γ, zj) ≤ rj, 1 ≤ j ≤ n] ≤ P
[ n⋂
j=1

hj⋂
s=1

{γ ∩ ξsj 6= ∅}
]
≤ P

[ ⋂
ξ∈Ξ

{γ ∩ ξ 6= ∅}
]
. (A.16)

Next, we construct a partition {Ξe : e ∈ E} of Ξ. We introduce some notation: if e is
a family of circles centered at z0 ∈ H with biggest radius R and smallest radius r, then we

define Ae = {r ≤ |z − z0| ≤ R} and Pe =
PIm z0

(r)

PIm z0
(R)

.

First, Ξ has a natural partition Ξj, 1 ≤ j ≤ n, such that Ξj is composed of circles centered
at zj. For each j, we construct a graph Gj, whose vertex set is Ξj, and ξ1 6= ξ2 ∈ Ξj are
connected by an edge iff the bigger radius is 4 times the smaller one, and the open annulus
between them does not contain any other circle in Ξ. Let Ej denote the set of connected
components of Gj. Then we partition Ξj into Ξe, e ∈ Ej, such that every Ξe is the vertex set
of e ∈ Ej. Then the circles in every Ξe are concentric circles with radii forming a geometric
sequence with common ratio 1/4, and the closed annuli Ae associated with Ξe, e ∈ Ej, are
mutually disjoint. From the construction we also see that for any j < k, and e ∈ Ej, Ae does
not intersect Dk, which contains every Ae with e ∈ Ek. Let E =

⋃n
j=1 Ej. Then Ae, e ∈ E ,

are mutually disjoint. Thus, {Ξe : e ∈ E} is a partition of Ξ that satisfies the properties
before Lemma A.4.

We observe that for j < k,
⋃
ξ∈Ξk

ξ ⊂ Dk can be covered by an annulus centered at zj
with ratio less than 4 because

maxz∈Dk{|z − zj|}
minz∈Dk{|z − zj|}

≤ |zj − zk|+ lk/4

|zj − zk| − lk/4
≤ lk + lk/4

lk − lk/4
< 4.

Thus, every Ij,k defined in (A.15) contains at most one element. We also see that, for j < k,⋃
ξ∈Ξk

ξ ⊂ Dk intersects at most 2 annuli from {4hj−srj ≤ |z − zj| ≤ 4hj−s+1rj}, 2 ≤ s ≤ hj.

If j > k, by construction,
⋃
ξ∈Ξk

ξ is disjoint from the annuli {4hj−srj ≤ |z−zj| ≤ 4hj−s+1rj},
2 ≤ s ≤ hj, which are contained in Dj.

From [18, Theorem 1.1], we have P[τ
zj
rj < ∞, 1 ≤ j ≤ n] ≤ Cn

∏n
j=1

Pyj (rj)

Pyj (lj)
. So we may

assume that |z2 − z1| ∧ |z1| > 44n+1s1. Since for k ≥ 2,
⋃
ξ∈Ξk

ξ ⊂ Dk can be covered by an
annulus centered at z1 with ratio less than 4, by pigeon hole principle, we can find a closed
annulus centered at z1 with two radii r < R satisfying s1 ≤ r < R ≤ |z2−z1|∧|z1| and R/r ≤
( |z2−z1|∧|z1|

s1
)1/2n that is disjoint from all

⋃
ξ∈Ξk

ξ ⊂ Dk, k ≥ 2. Moreover, we may choose R
and r such that the boundary circles are disjoint from every ξ ∈ Ξ. Applying Lemma A.4
with J1 = {|z − z1| = r}, J2 = {|z − z1| = R}, ξa = {|z − z1| = s1}, ξb = {|z − z1| = r1},
ξc = {|z − z2| = r2}, and {Ξe : e ∈ E}, we find that

P[τ zjrj <∞, 1 ≤ j ≤ n; τ z1s1 < τ z2r2 < τ z1r1 ] ≤ C|E|

( s1

|z1 − z2| ∧ |z1|

) α
16n|E|

n∏
j=1

∏
e∈Ej

Pe. (A.17)
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Here we set
∏

e∈Ej Pe = 1 if Ej = ∅. We will finish the proof by proving that |E| ≤ 2n and∏
e∈E Pe ≤ Cn

Pyj (rj)

Pyj (lj)
.

We now bound |E| =
∑n

j=1 |Ej|. For 1 ≤ m ≤ n, we use E (m)
j , 1 ≤ j ≤ m, to denote

the set of connected components of the graph G
(m)
j obtained by removing the circles in Ij,k,

j < k ≤ m, from Ξj. Let E (m) =
⋃m
j=1 E

(m)
j . Then E = E (n). For 2 ≤ m ≤ n, and

1 ≤ j ≤ m− 1, we may define a map fm :
⋃m−1
j=1 E

(m)
j → E (m−1) such that for every e ∈ E (m)

j ,

1 ≤ j ≤ m− 1, fm(e) is the unique element in E (m−1)
j that contains e. Then each e ∈ E (m−1)

has at most 2 preimages, and e ∈ E (m−1) has exactly 2 preimages iff Dm is contained in the
interior of Ae. Since the annuli Ae, e ∈ E (m−1), are mutually disjoint, at most one of them
has two preimages. Since E (m)

m contains only one element, we find that |E (m)| ≤ |E (m−1)|+ 2.
From |E (1)| = 1 and E = E (n), we get |E| ≤ 2n− 1.

To estimate
∏

e∈E Pe, we introduce Sj to be the family of pairs of circles {{|z − zj| =

4srj}, {|z − zj| = 4s−1rj}}, s ∈ N. Let S
(m)
j denote the set of e′ ∈ Sj such that Ae′ ⊂⋃

e∈E(m)
j

Ae. Then
∏

e∈E(m)
j

Pe =
∏

e′∈S(m)
j

Pe′ . Note that, for m > j, Ae′ , e
′ ∈ S

(m)
j can be

obtained from Ae′ , e
′ ∈ S(m−1)

j , by removing the annuli in the latter group that intersects Dm.
Since Dm can be covered by an annulus centered at zj with ratio less than 4, it can intersect at
most two of Ae′ , e

′ ∈ Sj. Using Lemma 2.1, we find that
∏

e∈E(m)
j

Pe ≤ 42α
∏

e∈E(m−1)
j

Pe. Since

lj ≤ 4hj+1rj, we get
∏

e∈E(j)
j
Pe =

Pyj (rj)

Pyj (4hj rj)
≤ 4α

Pyj (rj)

Pyj (lj)
. Thus,

∏
e∈E(n)

j
Pe ≤ 4α(2n−2j+1) Pyj (rj)

Pyj (lj)
,

which implies that∏
e∈E(n)

Pe =
n∏
j=1

∏
e∈E(n)

j

Pe ≤
n∏
j=1

4α(2n−2j+1)Pyj(rj)

Pyj(lj)
= 4αn

2
n∏
j=1

Pyj(rj)

Pyj(lj)
.

The proof is now complete.
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