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Abstract. This paper introduces the annulus SLE, processes in doubly connected domains.
Annulus SLEg has the same law as stopped radial SLEg, up to a time-change. For x # 6,
some weak equivalence relation exists between annulus SLE, and radial SLE,. Annulus
SLE, is the scaling limit of the corresponding loop-erased conditional random walk, which
implies that a certain form of SLE, satisfies the reversibility property. We also consider
the disc SLE, process defined as a limiting case of the annulus SLE’s. Disc SLE¢ has the
same law as stopped full plane SLEg, up to a time-change. Disc SLE, is the scaling limit of
loop-erased random walk, and is the reversal of radial SLE,.

1. Introduction

Stochastic Loewner evolution (SLE), introduced by O. Schramm in [16], is a family
of random growth processes of plane sets in simply connected domains. The evolu-
tion is described by the classical Loewner differential equation with the driving term
being a one-dimensional Brownian motion. SLE depends on a parameter x > 0,
the speed of the Brownian motion, and behaves differently for different value of
k. See [15] by S. Rohde and O. Schramm for the basic fundamental properties of
SLE.

Schramm’s processes turned out to be very useful. On the one hand, they are
amenable to computations, on the other hand, they are related with some statistical
physics models. In a series of papers [5]-[9], G. F. Lawler, O. Schramm and W.
Werner used SLE to determine the Brownian motion intersection exponents in the
plane, identified SLE; and SLEg with the scaling limits of LERW and UST Peano
curve, respectively, and conjectured that SLEg/3 is the scaling limit of SAW. S.
Smirnov proved in [17] that SLEg is the scaling limit of critical site percolation on
the triangular lattice.

For various reasons, a similar theory should also exist for multiply connected
domains and even for general Riemann surfaces. We expect that the definition and
some study of general SLE will give us better understanding of SLE itself and its
physics background. The definition of SLE in simply connected domains uses the
fact that the complement of SLE stopped at a finite time in a simply connected
domain other than C is still simply connected, so it is conformally equivalent to
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the whole domain. But this property does not hold for general domains. That is the
main difficulty in our definition of general SLE.

As a start, we consider SLE in the most simple non-simply connected domains:
doubly connected domains. We show that the corresponding processes, the annulus
SLE,, have features similar to those in the simply connected case. More specifi-
cally, we prove that annulus SLE¢ has locality property; and for all « > 0, annulus
SLE, is equivalent to radial SLE,. We also justify this definition by proving that
annulus SLE; is the scaling limit of the corresponding loop-erased conditional
random walk.

After these, we define disc SLE in simply connected domains, which is the limit
case of annulus SLE. Disc SLEg also has locality property, so its final hull has the
same law as the hull generated by a plane Brownian motion stopped on hitting the
boundary. Disc SLE is the scaling limit of the corresponding loop-erased random
walk. It then follows that disc SLE, is the reversal of radial SLE, started from a
random point on the boundary with harmonic measure.

1.1. SLE in simply connected domains

For k > 0, the standard radial SLE,, is obtained by solving the Loewner differential
equations:

I+ @ (2)/ %t

Ui (2) = @1 (2) I 0<r<o00, ¢o2) =z

where
Xt = exp(i B(xt)),

and B(t) is a standard Brownian motion on R started from 0. Let K; be the set of
points zin D = {z € C : |z| < 1} such that the solution ¢s(z) blows up before
or at time 7. Then D; := D \ K; is a simply connected domain, 0 € Dy, and ¢,
maps D; conformally onto D with ¢;(0) = 0 and ¢;(0) = ¢’. The family of hulls
(K¢,0 <t < o0) grows in D from 1 to 0, and is called the standard radial SLE,.
If © is a simply connected domain (other than C), a a prime end, b € €, then
SLE, (2; a — b), radial SLE, in 2 from a to b, is defined as the image of the stan-
dard radial SLE,. under the conformal map (D; 1, 0) — (2, a, b). By construction,
radial SLE is conformally invariant.

Suppose (K;) is a radial SLE, (2; a — b). Then for any fixed s > 0, the law
of a certain conformal image of (K, \ Kj) is the same as the law of (K;), and is
independent of (K, )o<,<s. In other words, radial SLE, has “i.i.d.” increments, in
the sense of conformal equivalence. This property, together with the symmetry of
the law in (ID; 1, 0) w.r.t. complex conjugation, characterizes radial SLE up to k.

Chordal SLE, processes are defined in a similar way. In this case, the family
of hulls (K;) grows in a simply connected domain from one boundary point (prime
end) to another. Once again, the properties of conformal invariance, “i.i.d.” incre-
ments, and the corresponding symmetry property determine a one-parameter family
of such processes.
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Radial SLE and chordal SLE are equivalent in the following sense. Suppose
Q2 is a simply connected domain, a and c are two distinct prime ends, and b € €.
For a fixed k > 0, let (K;) be a radial SLE,(2;a — b) and (L) a chordal
SLE, (2; a — c). Let T be the first time that K; swallows ¢, S the first time that
L, swallows b. We set T or S to be co by convention if the corresponding hitting
time does not exist. If k = 6, up to a time-change, the law of (K;)o<;<7 is the
same as the law of (Ls)o<s<s. If k # 6, there exist two sequences of stopping
times {7,} and {S,} such that T = v,T,, S = Vv, S,, and for each n € N, up
to a time-change, the laws of (K;)o<;<7, and (Ls)o<s<s, are equivalent. In other
words, they have positive density w.r.t. each other. The strong equivalence relation
of radial and chordal SLEg is related to the so-called locality property: the SLEg
hulls do not feel the boundary before hitting it.

The equivalence property ensures that for the same «, radial SLE, and chordal
SLE, behave similarly. For instance, if « < 4, and (K;) is a radial or chordal SLE,
in €2, then a.s. there is a simple path 8 : (0, co) — €2 such that for any ¢ € [0, 00),
we have K; = B(0,¢]. If « > 4 and 9€2 is locally connected, then a.s. there is
a non-simple path B : (0, 00) —  such that for any ¢ € [0, 00), K; is the hull
generated by B(0, ¢]. This path B is called the SLE, trace.

Full plane SLE,.: (K;, —o0 < t < o0) grows in C = CU{oo} from 0 to co. For
any fixed s € R, the law of a certain conformal image of (K4 \ Kj) is the same
as the law of the standard radial SLE,, and is independent of (K;)_co<r<s. Full
plane SLE can be viewed as the limit of radial SLE, (@ \ eD; e — oo)ase — 0.

1.2. Definition of annulus SLE
For p > 0, we denote by A, the standard annulus of modulus p:
A,={zeC:e’ <z] < 1}.

Every doubly connected domain D with non-degenerate boundary is conformally
equivalent to a unique A, and p = M (D) is the modulus of D. We may first
define SLE on the standard annuli, and then extend the definition to arbitrary doubly
connected domains via conformal maps.
Denote
. N p2kp +z
Sp(2) = ngnoo% T

For x € 0D, let
Sp(X’ 7) = Sp(Z/X)~

The function S, (x, -) is a Schwarz kernel of A, in the sense that if f is an ana-
lytic function in A, continuous up to the boundary, and constant on the circle
Cp,:={z€C:|z] =e P} thenforany z € A,

f@)= / FOOSp(x, 2)dm +iC,
Co
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where m is the uniform probability measure on Cop = 9D, and C is some real
constant. Note that the Schwarz kernels are not unique. The choice of S, (x, -) here
satisfies the rotation symmetry and reflection symmetry.

Let x : [0, p) — Cy be a continuous function. Consider the following Loew-
ner-type differential equation:

09:1(2) = 01 (D)Sp—+ (Xs, 91 (2)), 0 <t < p, @o(z) =2z. (1.1)

For 0 <t < p, let K, be the set of z € A, such that the solution ¢ (z) blows up
before orattime r. Let D; = A,\ K;,0 <t < p.Wecall K; (¢;,resp.),0 <t < p,
the standard annulus LE hulls (maps, resp.) of modulus p driven by x;,0 <t < p.
We will see that foreach 0 < ¢t < p, ¢; maps D; conformally onto A ,_;, and maps
C, onto Cp,_;.

If we replace S;,—; (x:, ¢;(z)) in formula (1.1) by

S, 1Ot 91(2) i =Syt Gt 91(2)) —Im S, (s, €7P),

and let @;(z) be the Correspondlng solutions. Then we have @;(e™P) = e’ P,
0 <t < p,since Sp (xr, € 7P) = 1. Actually Sp is the Schwarz kernel in
[18]. We will use it in the proof of Proposition 2.1. We prefer S, to S p in the defi-
nition of SLE because if we use S then the driving function must contain a drift
term besides a Brownian motion. See the definition of SLEg in [3].

We define standard annulus SLE, of modulus p to be the solution of (1.1) with
x: = exp(iB(xt)), 0 <t < p. The family of hulls grows from 1 to C,. Via a
certain conformal map, we may extend the definition to SLE, (2; @ — B) where
2 is a doubly connected domain with non-degenerate boundary, B is a boundary
component, and a is a boundary point (prime end) on the other boundary compo-
nent. Note that the conformal type of €2 \ K; is always changing, so the annulus
SLE, hulls cannot have identical increments in the sense of conformal equiva-
lence. We may only require that for any fixed s € [0, p), the conformal image of
(K541 \ Ks)0<i<p—s has the same law as the annulus SLE hulls of modulus p —s.
This together with the symmetry property does not determine the driving process
up to a single parameter. However, it turns out that exp(i B(xt)), a Brownian motion
on Cy started from 1 with constant speed «, is a reasonable choice for the driving
process. The main goal of the paper is to justify this claim.

Two facts of doubly connected domains are used in the above definition of annu-
lus SLE. First, the conformal type of a doubly connected domain can be described
by a single number, which is the modulus. So we use the time parameter to describe
the modulus. Second, given a boundary component B and a prime end P on the
other boundary component of some doubly connected domain D, there is a self-con-
jugate-conformal map of (D; B, P). This is clear when D is the standard annulus.
We actually assume that the law of annulus SLE, (D; P — B) is invariant under
that map. Because of these, our definition of annulus SLE can be expressed by some
nice differential equations. However, these two facts do not hold for n-connected
domains when n > 2. Some other methods are needed to define the SLEs. The
extensions of SLE to multiply connected domains and Riemann surfaces are now
in preparation, and will appear elsewhere.
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1.3. Main results

Suppose 2 is a simply connected domain, a is a prime end, and b is an interior
point. Suppose F 2 {b} is a contractible compact subset of 2. Then 2\ F is a
doubly connected domain with two boundary components d€2 and d F'. We call F
a hull in Q w.r.t. b. For a fixed ¥ > 0, let (K;) be a radial SLE, (2; a — b), and
(Ls) an annulus SLE, (2 \ F;a — 9F). Then we have

Theorem 1.1. (i) If k = 6, the law of (K;)o<t<Ty, Is equal to that of (Ls)o<s<p,
up to a time-change.

(ii) If k # 6, there exist two sequences of stopping times {T,} and {S,} such that
T =vVuTy, p = VuSy, and for eachn € N, the law of (K;)o<:<T, is equivalent
to that of (Lg)o<s<s,, up to a time-change.

The second main result of the paper concerns the convergence of a loop-erased
conditional random walk (LERW) with appropriate boundary conditions to an annu-
lus SLE;. For any plane domain €2, and § > 0, let Q% denote the graph defined as
follows. The vertex set V (2°) consists of the points in 87> N and the intersection
points of dQ with edges of §Z2. The edge set E(2°) consists of the unordered
vertex pairs {u, v} such that the line segment (u#, v) C €2, and there is an edge of
877 that contains (u, v) as a subset.

Suppose D is a doubly connected domain with boundary components B and
B, 0 € B and there is some a > 0 such that the line segment (0, a] is contained
in D. This line segment determines a prime end in D on Bj, denoted by 0,. We
may assume that § is sufficiently small so that 0 and § are adjacent vertices of D?,
and there is a lattice path on D® connecting § and V (D?%) N B,.

Now let RW be a simple random walk on D? started from 8 and stopped on
hitting d D. Let CRW be RW conditioned on the event that RW hits B, before Bj.
Let LERW be the loop-erasure of CRW, which is obtained by erasing the loops of
CRW in the order that they appear. See [4] for details. Then LERW is a random
simple lattice path on D° from § to B>. We may also view LERW as a random sim-
ple curve in D from é to B;. Taking with the segment [0, ], we obtain a random
simple curve in D from 0 to B>. We parameterize this curve by B°[0, p] so that
B2(0) =0, B%(p) € By,and M(D\ B2(0,1)) = p —t,for0 <t < p.

Now let (K,O)0§z<p be an annulus SLE; (D; 0 — B»). From Theorem 1.1 and
the existence of radial SLE, traces, we know that a.s. there exists a random simple
path ,BO(I), 0 <t < p, such that K,O = ,30(0, t],for0 <t < p.

Theorem 1.2. For every g € (0, p) and ¢ > 0, there is a §9 > 0 depending on g
and € such that for § € (0, 8¢) there is a coupling of the processes B and B° such
that

Plsup{|8°(t) — B%(1)| : t € [q, p)} > €] < e.

Moreover, if the impression of the prime end O is a single point, then the theorem
holds with g = 0.

Here a coupling of two random processes A and B is a probability space with
two random processes A’ and B’, where A’ and B’ have the same law as A and B,
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respectively. In the above statement (as is customary) we don’t distinguish between
A and A’ and between B and B’. The impression (see [13]) of a prime end is the
intersection of the closure of all neighborhoods of that prime end.

For k = 2, 8 and 8/3, chordal SLE, satisfies the reversibility property. That
means the reversal of chordal SLE, (D; a — b) trace has the same law as chordal
SLE, (D; b — a) trace, up to a time-change. For the annulus SLE trace, the start-
ing point is a fixed prime end, but the end point (if it exists) is a random point
on a boundary component. To get the reversibility property, we have to “average”
the annulus SLE traces in the same domain started from different points of one
boundary component. From Theorem 1.2 and the reversibility of LERW (see [4]),
it then follows

Corollary 1.1. The reversal of the annulus SLE> (A p; X — Cp,) trace has the same
law as the annulus SLE; (A p; y — Co) trace, up to a time-change, where X and'y
are uniform random points on Cy and C,, respectively.

The definition of annulus SLE enables us to define disc SLE, that grows in a
simply connected domain 2 from an interior point to the whole boundary. It can be
viewed as the limit of annulus SLE, as the modulus tends to infinity. The relation
between disc SLE and annulus SLE is similar to that between full plane SLE and
radial SLE.

From our methods, it follows that for any simply connected domain €2 that
contains 0, the full plane SLE¢ before the hitting time of 92 has the same law as
the disc SLE¢(€2; 0 — 0%2), up to a time-change. This gives an alternative proof
of the following facts mentioned in [19][9]. The hitting point of full plane SLE¢
at €2 has harmonic measure valued at 0, and therefore the full plane SLE¢ hull at
the hitting time of 92 has the same law as the hull generated by a plane Brownian
motion started from 0 and stopped on exiting €2.

We also show that the LERW on the grid approximation Q° started from an
interior vertex 0 to the boundary converges to the disc SLE>(2; 0 — 0€2), as
6 — 0. Together with the approximation result in [8], this implies that the reversal
of the disc SLE>(£2; 0 — 02) has the same law as the radial SLE>(2;z — 0),
up to a time-change, where z is a random point on 9€2 that has harmonic measure
valued at 0.

1.4. Some comments about the proof

The discussion of the convergence of LERW to annulus SLE; basically follows the
methods developed in [8]. In the same order as in [8], logically, we first find the
observables for LERW; then prove they are martingales and converge to some con-
tinuous harmonic functions; these facts are used to show that the driving function
of the LERW converges to the Brownian motion with speed 2; finally we use the
nice behavior of LERW path to show that the path parameterized according to the
modulus of the remaining domain converges to the annulus SLE, trace uniformly
in probability.

However, some notations and proofs in [8] can not be transplanted to this paper
immediately. For example, the observables in this paper has counterparts in simply
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connected domains, which are exactly the observables introduced in [8]. But the
LERW studied there is from an interior vertex to the boundary, and the proof of
Proposition 3.4 in [8] uses this construction. We have to prove the fact that they are
martingales using a different method, which we believe shows some essence of this
subject. Moreover, since the moduli change in time, some proofs here, e.g., that to
Proposition 3.4, are much longer than their counterparts, e.g., part of the proof to
Proposition 3.4 in [8].

The authors of [8] first use some subgraph of Z? to approximate a simply con-
nected plane domain, and they use the inner radius with respect to a fixed point
(which is O there) to describe the extent that the graph approximates the domain.
After some rescaling, the inner radius means the distance from O to the boundary of
the domain divided by the length of the mesh. It seems not easy to find counterparts
of the inner radius for doubly connected domains. So we proceed in another way by
taking the limit of some sequence of domains. This results in a very long proof of
Proposition 3.3. This method extends to the cases of multiply connected domains.

2. Equivalence of annulus and radial SLE
2.1. Deterministic annulus LE hulls

We recall some facts about the Schwarz function

N - 2kr
. et +z
Sr(2) = Nh_r)noo Z Tt 0.
k=—N

(i) S, is analytic in C \ {0} \ {¢**" : k € Z};

(ii) {**" : k € Z} are simple poles of S, ;
(iii)) ReS, =1onC, ={ze€C: |z ="}
@iv) ReS, =0o0n Cy \ {1};

(v) ReS, > 0inA,; and
(vi) ImS, =0on R\ {0} \ {poles}.
Suppose f is an analytic function in A,, Re f is non-negative, and Re f(z)

tends to a as z — C,, then there is some positive measure & = w(f) on Cp of
total mass a such that

f(z)=/C Sy (z/x)du(x) +iC, 2.1)
0

for some real constant C. If Re f(z) tends to zero as z approaches the complement
of an arc « of Cy, then u(f) is supported by o. Moreover, if f is bounded, then
the radial limit of f on Cy exists a.e., and du(f)/dm = f|c,. The proof is similar
to that of the Poisson integral formula.

Divide both sides of equation (1.1) by ¢;(z)and take the real part. We get

9 In'f@r (2)| = ReSp—1 (91 (2)/ Xx1)-

From the values of ReS,_; on C,_; and Cp we see that if z € Cp \ {1}, then
@:(z) € Co \ {1} until it blows up; if z € Cp, then ¢;(z) € C,—; for0 <t < p.
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Thus for z € Ap, ¢;(z) stays between Cy and C,,_; until it blows up. So ¢, maps
D; into A ,_,. The fact that S,,_, is analytic implies that for every ¢ € [0, p), ¢, is
a conformal map of D;. By considering the backward flow, it is easy to see that ¢,
maps D; onto A ,_;.

Definition 2.1. Suppose D is a doubly connected domain with boundary compo-
nents B and B'. We call K C D a hull in D on B if D \ K is a doubly connected
domain that has B’ as a boundary component. The capacity of K in D w.r.t. B/,
denoted by Cp p/(K), is the value of M(D) — M(D \ K).

Definition 2.2. Suppose Q2 is a simply connected domain. We call K C Q a hull
in Qon a2, if Q\ K is a simply connected domain. If ¢ maps Q \ K conformally
onto  and for some a € Q\ K, p(a) = a and ¢'(a) > 0, then In¢'(a) > 0, and
is called the capacity of K in Q w.r.t. a, denoted by Cq 4(K).

If K isahullinA, on Co, and v is any conformal map fromA , \ K onto A ,_,
which takes C, to C;,_,, then the radial limit of w_l on Cy exists a.e., and

-1
Capc,(K) = f —In |y~ [dm.
Co
If K isahullin D on Cp and ¢ maps D\ K onto ID conformally so that ¢ (0) = 0,
then the radial limit of ¢ ~! on Cj exists a.e., and

Cpo(K) = / ~Inlg~!dm.
Co
Similarly as Lemma 2.8 in [5], using the integral formulas for capacities of
hulls in D and A, it is not hard to derive the following Lemma:

Lemma 2.1. Suppose x,y € Co, and G is a conformal map from a neighborhood
U of x onto a neighborhood V of y such that G(U ND) = V ND. Fixany p > 0.
For every ¢ > 0, there is r = r (&) > 0 such that if K is a non-empty hull in D on
Co and K C B(x; r), the open ball of radius r about x, then K C U, G(K) is a
hullin A, on Co, and

Ca,.c,(G(K))
Cp,o(K)

Suppose D is a doubly connected domain with boundary components B; and
B;. We call (Kg,a < s < b) a Loewner chain in D on B if every K, is a hull in
D on By, K, g K, if a < 51 < s < b, and for every ¢ € (a, b), the extremal
length (see [1]) of the family of curves in D \ K., that disconnect K, \ K from
B, tends to 0 as u — 0T, uniformly in s € [a, c]. If the area of D is finite, then
the above condition holds iff the infimum length of all C I curves in D \ Ks+, that
disconnect B; from K, \ K tends to 0 as u — 0T, uniformly in s € [a, c].

Now we consider a Loewner chain in A, on Cy. The following proposition is
similar to the theorems for chordal and radial LE in [5] and [11].

— 1G] <e.

Proposition 2.1. The following two statements are equivalent:
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1. K;, 0 <t < p, are the standard LE hulls of modulus p driven by some contin-
uous function x : [0, p) — Cp;

2. (K;,0 <t < p)isaLoewner chaininA, on Cy, and CAp,cp(K,) =MA,)—
MA,\K) =tforO<t < p.

Moreover, {x;} = Ny=0@: (Ki4u \ Kt), where ¢; is the standard annulus LE map.
If (Ls,a <'s < b) is any Loewner chain in A, on Cy, then s — Ca, c,(Ls) is a
continuous (strictly) increasing function.

Proof. The method of the proof is a combination of extremal length comparison,
the use of formula (2.1), and some estimation of Schwarz kernels. It is very similar
to the proof of the counterparts in [5] and [11]. So we omit the most part of it.
One thing we want to show here is how we derive ¢; from K; in the proof of 2
implies 1. We first choose ¢; that maps A, \ K, conformally onto A ,_; such that
@(Cp) =C,_; and ¢;(e~?) = ¢'~P. Then we prove that ¢; satisfies the equation

391(2) = @1 Sp— (@ () /X) — iImSp_ ("7 / %),

for some continuous ¥ : [0, p) — Co. And {X;} = Ny=0¢: (Ks+y \ K;). Define
t
0(t) Zf ImSp—s(es_p/j(\s)dS’
0

xi = €Dy and ¢, (2) = €’V (2), for t € [0, p). Then ¢o(z) = Po(2) = 2. ¢
maps A, \ K; conformally onto A,_;, {x;} = Nu>0¢; (K4 \ K;), and

3 Ing;(z) = 0; In@; (2) + i0'(t) = Spfz(@(Z)/?z) = Spft((pl(z)/Xt)-

Thus 9;¢;(2) = ¢1(2)Sp—1(¢(2)/x:). So K;, 0 < t < p, are the standard annulus
LE hulls of modulus p, driven by x;, 0 <t < p. O

2.2. Proof of Theorem 1.1

We may assume in Theorem 1.1 that Q = D, a = 1 and b = 0. Then (K;,0 <
t < oo) is the standard radial SLE,. Suppose ¢; and x;, 0 < ¢t < oo, are the
corresponding standard radial SLE, maps and driving process, respectively. Then
x: = ¢ B%D where B(t) is a standard Brownian motion on R started from 0.

For0 <t < Tr,D\ F \ K; is a doubly connected domain. So K;,0 <t < T,
are hulls in D \ F on Cy. From [11] we know that (K;,0 <t < Tr) is a Loewner
chainin D\ F on Cyp. Suppose W maps ID\ F conformally onto A , so that W (1) = 1.
Then (W(K;),0 <t < TF) is a Loewner chain in A, on Cy. From [15] we know
that K, approaches FF ast /' Tr,so W(K,) approaches C, ast ' Tr.This implies
that M(D\ F\ K;) - Oast / Tp. Letu(t) = Cp yr(K) = Ca,c,(W(K)).
Then u is a continuous increasing function and maps [0, Tr) onto [0, p). Let v
be the inverse of u. By Proposition 2.1, W(K)), 0 < s < p, are the standard
annulus LE hulls of modulus p driven by some continuous v : [0, p) — Cp. Let
¥, 0 < s < p, be the corresponding standard annulus LE maps.

Now ¢; maps D\ F \ K; conformally onto D\ ¢;(F). Let f; = YyoWo go,_l.
Then f; maps D\ ¢, (F) conformally onto A, ), and f;(Co) = Co. By Schwarz
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reflection, we may extend f; analytically to ¥, which is the union of D\ ¢, (F'), Co,
and the reflection of D\ ¢, (F)) w.r.t. Cy. And f; is a conformal map on ¥;. Note that
fr maps ¢; (Ky44 \ K;) t0 ¥y (W(Ki14) \ W(K;)) for a > 0. From Proposition
2.1, we see that {vy)} = Ne=0Vu@)(W(Ki+a) \ W(K;)). And from the coun-
terpart in [11] of Proposition 2.1, we know that {x;} = Ny~0¢;(K;+4 \ K;). Thus
Vur) = fi(xr). Now @; (K44 \ K;)isahullin D, ¢; 44 o<pf1 maps D\ ¢ (K¢44 \ Kt)
conformally onto D, fixes 0, and (¢;+4 © @, 1)’ (0) = e“. So the capacity w.r.t. 0
of ¢/ (Ki1a \ Ky) is a. Similarly, ¥,y (W (Ki4q \ W(K;)) is a hull in A,_ )
on Cy, and the capacity is u(t + a) — u(t). From Lemma (2.1) we conclude that
Wy () = | f] )

Let H={(t,2) : 0 <t <Tr,ze€ X;}and G(x) ={(t, xs) : 0 <t < Tr}.
By the definition of f;, we see that (¢, z) — f/(z) is continuous in H \ G(x). Note
that f/ is analytic in %, for each ¢ € [0, TF). The maximum principle implies that
(t,z) + f/(z) is continuous in H. In particular, 7 — f/(x;) is continuous. So we
have

Lemma 2.2. u(?) is C! continuous, and u' () = |f,/()(,)|2.

The fact W(xo) = W(1) = 1 implies that vgp = 1. We now lift f; to the covering
space. Write x, = ¢'% and v, = €', where & = B(kt),0 <t < oo, and n;,
0 < s < p, is areal continuous function with ny = 0. Let f), = {5 e C:é%e
%,}. Then there is a unique conformal map f, on &, such that €//1® = f£,(¢i%)
and 1, = If@l)' And f; takes real values on the real line. Moreover, u'(f) =

|1l = f{ &)

Lemma 2.3. (z,x) — ﬁ(ic) is C1%° continuous on [0, Tr) x R. And for all

t€[0,TF), 0 f; (&) = _3fz”(§t)-

Proof. Foranyt € [0, Tr),and z € D\ F \ K;, we have f; 0¢;(z) = Yo W(2).
Taking the derivative w.r.t. f, we compute

£ (2) + F (a0 B0
Xt — ¢1(2)

=u' (OYury (W (@) p—ut) Wuy W () /Nuir)-
By Lemma 2.2, u/(¢) = | f/(x;)|*. Thus for any t € [0, Tr) andz e D\ F \ K,

3 fi (91 () = 1 )P Fr @1 @)S piy (i (01 fi (xe)

@) (0 @
Xt — 91 (2)

For any r € [0, Tr), and w € D \ ¢;(F), we have gpfl(w) e D\ F \ K;. Thus

Xt +w
3 fr(w) = | G frw)Sp—uiy (i) /fi () — f (w)w Xf —.
-
Let g;(w) be the right-hand side of the above formula for t € [0, Tr) and w € X, \
{x:}. Thenforeacht € [0, TF), g;(w) is analytic in X; \ {x,}. And (¢, w) > g;(w)
is €% continuous on H \ G(x).
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Now fix tp € [0, TF). Let us compute the limit of g;,(w) when w — x;,. Since

fto(Xl‘()) + ft()(w)
Jio(Xeo) — Jro(w)

so the limit of g;,(w) is equal to the limit of the following function:

S p—uto) 1o W)/ fio (Xtg)) —

— 0, asw — xy,

Jio(Xeg) + fro(w) Xip T W
| Qi) P g (w) 2000 () 20—
fto(Xto) - fto (w) to w
Let w = ¢'*, we may express the above formula in term of x, &;, and ﬁo, which is
i fio Gig) 4 g Jig ) - els '
TR it Sy P WY 0 Ltk
fo i) _ gifp) 70 oi%0 _ pix
Fio®) = Fiy &) ao

— —ieTo W7 (£,)* cot( ) — J7 () cot(F=20

2

By expanding the Laurent series of cot(z) near 0, we see that the limit of the
above formula is 3ie' o €0o) f:g 1) = 3ifio(Xry) f (&1)- Therefore g; has an ana-
Iytic extension to X, for each ¢ € [0, Tr). The maximum principle also implies
that g;(w) is €Y% continuous in H, and 9, fir(w) = g,(w) holds in the whole H.
Thus f; (w) is C1-*° continuous on [0, Tr) x Co, and f;(w) is C1** continuous on
[0, Tr) x R. Finally,

10 fr (%) _ ig(Xr) —3ft(Xt)f; &)
fi(xe) ft(Xt) fr(xe)

Proof of Theorem 1.1. Note that 1) = ft(Sz) & = B(kt), and from Lemma 2.2,
Btft(ét) = —3f (&;). By It6’s formula, we have

O fi(&) = = 31/ (&). O

dnuey = fl(ENdE + (% —3) f/(&)dtr.
Since u'(t) = f:(ét)z, )
dns = B+ (5 = 3) i &)/ Tl &) ds.

where S s = B (k5),0 <s < p,and B (s) is another standard Brownian motion on R
started from 0. Note that no = 0. If « = 6, then ny = Ev = B(KS) 0 <s < p.Thus
(W(Ky(s)))o<s<p has the same law as the standard annulus SLE, —¢ of modulus p.
So (Ky(s))0<s<p has the same law as (Ly)o<s<p-

If «k # 6, then dn; = dfé + drift term. The remaining part follows from
Girsanov’s Theorem ([14]). O

Remark. This equivalence implies the a.s. existence of annulus SLE trace. Suppose
(K;) is an annulus SLE, (D; P — B»). If « < 4, the trace § is a simple curve in
D such that every K, = B(0,¢]. If « > 4 and B is locally connected, then $
is a non-simple curve in D U By such that for every ¢, D \ K; is the connected
component of D \ B(0, ¢] that has B as a boundary component.
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3. Annulus SLE; and LERW
3.1. Observables for SLE,

Suppose D is a doubly connected domain of modulus p with boundary components
Bj and By, P is aprime end on Bj. Let (K;) be an annulus SLE; (D; P — B;) and
B the corresponding trace. Let D; = D\ K;,0 <t < p.Then (¢, t+¢) determines
a prime end in Dy, denoted by B(¢+). Now consider a positive harmonic function
H; in D;, which has a harmonic conjugate and satisfies the following properties.
As z € Dy and 7 — Bj, we have H;(z) — 1; for any neighborhood V of B(¢4), as
z€ D;\Vand z — B; U K;, we have H,(z) — 0. The existence of the harmonic
conjugate implies that for any smooth Jordan curve, say y, that disconnects the two
boundary components of D;, we have f v onH;ds = 0, where n are normal vectors
on y pointed towards Bj. Now we introduce another positive harmonic function
P; in D; which satisfies that for any neighborhood V of (1), as z € D; \ V and
z — 0Dy, we have P;(z) — 0, and fy on Prds = 2m for any smooth Jordan curve
y that disconnects the two boundary components of D;.

Proposition 3.1. For any fixed z € D, H;(z) and P;(z), 0 <t < p, are local
martingales.

Proof. By conformal invariance, we may assumethat D = A, By = Cp, B, = Cp,
and P = 1. So (K;,0 <t < p) is the standard annulus SLE; of modulus p. Let
x: and ¢y, 0 <t < p, be the corresponding driving function and conformal maps.
Then x; = exp(i§(¢)) and £(t) = B(2t). Since ¢; maps D, conformally onto A ,_;
and by Proposition 2.1, ¢;(B(t+)) = x:, we have

H;(z) =ReSp_1(¢1(2)/x1), and Pi(2) = In|g;(2)| + (p — 1) H; (2).

We want to use the It6’s formula. To simplify the computation, we lift the maps to
the covering space. Let Dy, A, and C, be the preimages of D;, A, and C,, respec-
tively, under the map z ¢'Z. We may lift ¢, to a conformal map @; from D, onto
Ap ; so that exp(i@;(2)) = ¢;(e'?), Po(z) = z, and @ (z) is continuous in 7. Let
S, (z) = }S (¢'%). Then we have

% @1 (2) = Sp—1(@1(2) — §(1)).

It is clear that S has period 27, is meromorphic in C with poles {2kz + i2mr :
k,m € 7}, ImS = 0 on R \ {poles}, and ImS = —1 on C It is also easy
to check that S, is an odd function, and the pr1n01pa1 part of S, at 0 is 2/z. So
S (z) =2/z+az+ 0(z3) near 0, for some a € R. It is possible to explicit this
kernel using classical functions in [2]:

10,0 z ir

S (z2) =2¢(2) — —C(ﬂ)Z = ;7(5 ;),

where ¢ is the Weierstrass zeta function with basic periods (27, i2r), and
6 = O0(v, t) is Jacobi’s theta function. The following lemma is a direct conse-
quence of the heat-type differential equation satisfied by 6: (83 —4imd; )0 = 0.
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But we prefer a proof using only basic complex analysis. The symbols ’ and ” in
the lemma denote the first and second derivatives w.r.t. z.

Lemma 3.1. 8,§, — §r§; — §;/ = 0.

Proof. Let J = 0, S, —S, §/ §” Then J is odd, has period 27, takes real val-
ues on R \ {an : k € 7}, and is analytic on C \ {2kzw + i2mr : k,m € Z}.
Smce near 0, S (z) =2/z4+az+ 0(23) so S A(2) = —2/72% +a + 0(z%), and
S (z) =4/ + 0(z) Thus S, (Z)S () + S '(z) = O(z) near 0, i.e. 0 is a remov-
able pole of S, S + S Since S, (z) — 1 ”" is analytic in a neighborhood of 0,
+e

and = is constant in ¢, so O is also a removable pole of a,s Thus J extends
analytlcally at 0. As J has period 27, J extends analytically at 2k, for all k € Z.
So J is analytic in {|Im z| < 2r}. The fact that ImS = 0 on R\ {poles} implies
ImJ=0onR. - -

Since ImS, = —1onC, = ir +R, wehaveImS,” = 92ImS, = 8,ImS, =0,
and 9,ImS, = —9,ImS, = —BxReS on C Therefore

Im(S,S,) = ReS,d,ImS, +ImS,d,ReS, = —3,ReS,

on 6,. Thus Im J = Im 8,§, —Im (§r§;) — Imglr/ = 0on 6,. Now ImJ =0 on
both R and ir + R, so it has to be zero everywhere. It then follows that J = C for
some C € R. Since J isodd, C =0and J = 0. |

Now we may express H; and P; by

Hy(¢"%) =ImS,— (@ (2) — £@)), and P (") = Im(2) + (p — DH, (2).
So it suffices to prove that for any z € A s

My (1) =S,—(§1(z) — £@®)), and Ma(1) = §(2) + (p — HMy (1),

0 <t < p, are martingales. Using It6’s formula, we have

AM(t) = =3,8,—dt +8,_, - [d§/(z) — dE ()] +§,_,dt

where 8r§p . §/p , and §;: _, are all valued at ¢;(z) — E(t) The last term is the

drift term. Note that we use « = 2 here. Since d¢;(z) = Sy (@1 (z) — E@))dt, we
have

dM(t) = (=98, +S, S, +8, pdt =S, d&(t) = S, ,d&@)
by Lemma 3.1. Thus (M;(¢),0 <t < p) is a local martingale. Now
dM(t) = Sp—(F1(2) — E®)dt + (p — NAM; () — My (1)dt = (p — )dM; (1)

Thus (M>(t),0 <t < p) is also a local martingale. |
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Remark. Similar observables also exist for radial and chordal SLE;. For example,
let K, be radial SLE; in a simply connected domain €2, let H; be the positive har-
monic function in Q \ K; which tends to 0 on 9(2 \ K;) except at the “tip” point
of K;, and normalized so that the value of H; at the target point is constant 1. Then
for any fixed z € D, H;(z), 0 <t < oo, is a martingale. This observable was
mentioned implicitly in the proof of Proposition 3.4 in [8]. As we want to define
SLE for general domains, we conjecture that such kinds of observables always exist
for SLE,.

3.2. Observables for LERW

Let G = (V, E) beafinite or infinite simple connected graph such that deg(v) < oo
foreachv € V.Forafunction fonV,andve V,letAg f(v)=), ., (f (w)—f(v),
where w ~ v means that w and v are adjacent. A subset K of V is called reachable,
if for any v € V \ K, a symmetric random walk on G started from v will hit K in
finite steps almost surely. For subsets Sy, S; and S3 of V, let ' g? S denote the set
of all lattice paths ¥y = (yp, ..., ¥») such that yy € S1, ¥, € S2 and y; € S3 for

0 < s < n. For a finite lattice path y = (y, ..., ¥n), Write
n n—1 n—1
P(y) =1/ ][] deg(yj). Po(y) =1/]]deg(y;), and Pi(y) =1/ ] deg(y;).
j=0 j=0 j=1

Let R(y) = (Vu,...,y0) be the reversal of y, then P(R(y)) = P(y) and
Pi(R(y)) = Pi(y). If S1, S2 and S3 partition V, v € S3, then the probability
that a random walk on G started from v hits S, before S is equal to the summation

of Py(y), where y runs over F53S2.

Lemma 3.2. Suppose A and B are disjoint subsets of V, and A U B is reach-
able. Let f(v) be the probability that the random walk on G started from v hits A
before B. Then f is the unique bounded function on V that satisfies f = 1 on A,
f=0o0nB,and Agf =00n C =V \ (AU B). Moreover ZveB Agfv) =
—Y vea A f(v) > 0.

Proof. The proof is elementary. For the last statement, note that ) ", _p Ag f(v) =
> Pi(y) where y runs over the non-empty set Fg’A; and =) 4 Agf(v) =
> Pi(y) where y runs over l"fL g- The values of the two summations are equal

because the reverse map R is a one-to-one correspondence between Fg, 4 and Fg’ B
and Py(y) = Pi(R(y)). 0

Let L(A, B) = ZUGB Ag f(v) for the f in Lemma 3.2. Then L(A, B) =
L(B, A) > 0. If any of A or B is a finite set, then we have L(A, B) < oo.

Lemma 3.3. Let A, B, C and f be as in Lemma 3.2. Fix x € C. Let h(v) be equal
to the probability that a simple random walk on G started from v hits x before
AU B. Then

> Agh(v) = f()(=Aghw)).

vEA
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Proof. From the proof of Lemma 3.2, we have

f= > P@= > PP Y. Py= Y PP Ach),

aely BeT{ yers W pere, veA
and
1= Y m@=Y PB Y P= Y. PB(-Ach(x)).
€Ty g Ber, yerS\ perc,
So we proved this lemma. O

Lemma 3.4. Let A, B, C and f be as in Lemma 3.2. Suppose L(A, B) < oo. Fix
x € C such that f(x) > 0. Then there is a unique bounded function g on V such
thatg = 1onA; g =00onB; Agg =00nC\{x};and ), ., Acg(v) = 0. More-
over, such g is non-negative and satisfies ZveBU{x} Agg() =0and Agg(x) =

—L(A, B)/f(x).

Proof. Suppose g satisfies the first group of properties. Let I = g — f. Then [ is
bounded, / =0on AU B and AgI =0on C \ {x}. Thus I (v) = I (x)h(v), where
h is as in Lemma 3.3. Then by Lemma 3.2 and 3.3,

0=2 Aggw) =) Ag( + /)v) = ~1(x)f(@X)Ach(x) — L(A, B).

vEA vEA

Thus I(x) = L(A, B)/(—f(x)Agh(x)) is uniquely determined. Therefore g is
unique.

On the other hand, if we define g = f + hL(A, B)/(—f(x)Agh(x)), then
from the last paragraph, we see that g satisfies the first group of properties. Since
f and h are non-negative, and —Agh(x) = L(x, AUB) > Oby Lemma 3.2,s0 g
is also non-negative. By Lemma 3.2 and 3.3,

D Acg() =L(A, B) + Ag f(x)
veBU{x}
+ Y AGh()L(A, B)/(—f(X)Agh(x))
veBU{x}
= L(A, B) = ) Agh()L(A, B)/(—f(x)Agh(x))

vEA

=L(A,B)—L(A,B)=0.
Finally, Agg(x) = Agh(x) - L(A, B)/(=f(x)Agh(x)) = —L(A, B)/f(x). O

From now on, let D be a doubly connected domain with boundary components
B and B», and satisfies 0 € By and (0,a] C D for some a > 0. We use the
symbols D® and LERW defined in Section 1.3. Note that D® may not be connected.
To apply the lemmas in above, we need to modify D? a little bit. Let P denote the
set of all lattice paths on D? from & to some boundary vertex whose vertices are



Stochastic Loewner evolution in doubly connected domains 355

inside D except the last vertex. Every path of P can be viewed as a subgraph of DS,
Let D? be the union of all paths in P as a subgraph of D?. Then D? is a connected
graph. And if we replace D® by D? in the definition of LERW in Section 1.3, we
will get the same LERW. So we can consider D? instead of D?. For simplicity of
notations, we write D® for D?.

By the definition, any two vertices of D® on 3D are not adjacent, so the neigh-
bors of boundary vertices of D? are those vertices lie in D, are in §Z and has exactly
4 neighbors. It follows that if any B; is bounded, then there are finitely many ver-
tices that lie on B;. On the other hand, By and B; can’t be both unbounded. Now
we denote

E} =v(D)N By, F*=V(D*)N By, and N®, = V(D*) N D.

Then at least one of E’S_1 and F? is a finite set. Write LERW as y = (o, ..., Yu),
where yo =8 and y, € By.For0 < j < v, let

ES=E’ U{yo.....y;}, and N? =N’ \ {po.....;}.

Then E?, N;S and F® partition V (D?), for —1 < j < v. The fact that the lattice Z>
is recurrent easily implies that E}S U F? is reachable in D?. Since one of Ef and F?°
is a finite set, we have L(Ef., F%) <oofor—1<j <wv.For—1<j<uv,let fi
be the f in Lemma 3.2 with G = D%, A = F® and B = Ef For 0 < j < v, since
(yj, ..., Yyu) is a lattice path from y; to F? not passing through Ef;_l, we have

fi-1(y;) > 0.Let g; be the g in Lemma 3.4 with G = D°, A = F®, B = Ej_l,
and x = y;,for0 < j < v.

Lemma 3.5. Conditioned on the event that y; = w;, 0 < j < k, and k < v, the
probability that yr11 = u is fir(u)/ ZU"‘U)k Je() ifu ~ wy; and is zero if u # wy.

Proof. This result is well known. See [4] for details. O

Proposition 3.2. Let F?3 be the union of F® and the set of vertices of D° that are
adjacent to F®. Fix a vertex vy of D®. Conditioned on the event that y i = wj,
0<j<kwy¢ F3, and fr(vo) > O, the expectation of gr+1(vo) is equal to
8k (vo), which is determined by w;, 0 < j < k. Thus gr(vo) is a discrete martin-
gale up to the first time yy hits F3, or E,f = E‘S_1 U {yo, ..., Yk} disconnects vy
from F% in D°.

Proof. Let S be the set of v such that v ~ wy and fx(v) > 0. Bylemma 3.5, the con-
ditional probability that yry1 = uis fi(u)/ Y g fk(v) foru € S.Forv € S, let
gy, bethe ginLemma3.4 with G = D°, A = F°, B = EJ and x = v. Then with
probability fi(u)/ D cs fr(V), grv1 = g} 1~ Thus the conditional expectation of
gk+1(vo) is equal to g (vo), where

Zw) =) fiwg /Y filw).

ues ues
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Thengy =0on EJ, = lon F®; Agy =0on N\ S,and >_, s AZk(v) = 0.And

fe@Agy (v)  L(EY, F)
ZMGS fk(”) N ZuGS fk(u) ’

by Lemma 3.4. Now define g on V(D?) such that gy(wx) = L(ES, F%)/
Y ues fi(u); for those v € N,f such that fy(v) = 0, define g (v) to be gi(wi)
times the probability that a simple random walk on D? started from v hits wy be-
fore E{ |; and let gx(v) = gk (v) for other v € V(D®). Then Ag; = 0 on N},
2r = Oon E,‘E \ {wr}, and gx = 1 on F?. Since wy ¢ F9, and for v € N,f such
that fr(v) = O we have v & F%,50 > _ps AGk(v) = Y, cps AZk(v) = 0. Now
g1 satisfies all properties of gx. The uniqueness of g; implies that gx = gx. Since
fie(vo) > 0, we have gi(vo) = 8k (vo) = 8k (vo). o

Agr(v) =

Yv e S,

Remark 1. The observable g; corresponds to H; in Proposition 3.1. We may define
another kind of observables g to be the bounded function on the vertices of D®
such that gy = O on Ex_1 U F, Agy = 0 on Ny, and ), _p Agr(v) = 2m =
— Y e £, Aqk(v). Then Proposition 3.2 still holds if g is replaced by gy, and g
corresponds to P; in Proposition 3.1. The definition of g; does not need the fact
that L(E, F') < co. We may also use g to do the approximation.

Remark 2. Suppose « is a Jordan curve in D which disconnects E,f from F and
does not pass through any vertex of D®. Denote D ; the component of D \ « that has
Bj as part of boundary, j = 1, 2. We also suppose that yg through yj are in D;. Let
S be the set of vertex pair (v, w) such that v € D1, w € D,, and v ~ w. From the
fact that A psgr = 0 on V(D% N D, we conclude Z(v’w)es(gk(v) — gr(w)) =0.
Similarly, Z(U’w)es(qk(v) — gr(w)) = 2m.

Now suppose o1 and o are two disjoint Jordan curves in D such that & j discon-

nects a3 from Bj, j = 1,2.For j = 1, 2, let U; be the subdomain of D bounded
by a; and B, and V]‘? = V(D°)NU;.Let L° be the set of simple lattice paths of the

form w = (w_q, wo, ..., wg), k > 0 such that w_; € By, wo, ..., Wi € Vl‘s, and
there is some lattice path from the last vertex P(w) := wy to By without passing
wo, ..., Wkg—_1, and vertices on B;. For w € L9, denote

Egj = ES,] U{wg, ..., wg}, and NSJ =N§] \ {wo, ..., wi}.

Let g, be the g in Lemma 3.4 with G = D%, A = F®, B = EJ \ {P(w)}, and
x = P(w). Now define D, = D\ U’jzo[wj,l, w;]. Let u,, be the non-negative
harmonic function in D,, whose harmonic conjugates exist, and whose continuation
is constant 1 on Bj, and constant O on U];:()[wj_l, w;] U By except at P(w). The
existence of the harmonic conjugates implies that fa onltyds = 0 for any smooth
Jordan curve « that disconnects B from U];.:O[w j—1, w;] U By. It is intuitive to
guess that g, should be close to u,,. In fact, we have the following proposition.
The proof is postponed to Section 5.

Proposition 3.3. Given any ¢ > 0, there is §(¢) > O such thatif0 < § < §(¢) and
w e LS, then |gw (V) — uy (V)| < ¢, foranyv e VZ‘S.
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3.3. Convergence of the driving process

Fix some small § > 0. We write LERW on D% by y = (yo, ..., y) as in Section
3.2. Let y_; = 0. Extend y to be a map from [—1, v] into D such that y is linear
on[j—1, jlforeachO < j < wv.Itclear that y(—1, s], —1 < s < v, is a Loewner
chain in D on Bj. And y(—1, s] approaches By as s /' v. For —1 < s < v, let
T(s) = Cp,p,(y(—=1,5s]), then T is a continuous increasing function, and maps
[—1, v) onto [0, p), where p = M (D). Let S : [0, p) — [—1, v) be the inverse
of T. Let B(¢t) = y(S(t)), and K; = B(0,1], for 0 <t < p. Suppose W maps
D conformally onto A, so that W(0;) = 1, ie, W(x) - 1asx € R" and
x — 0. Then (W(K;),0 < t < p)is a Loewner chain in A, on Cp such that
Ca,.c,(W(K;)) = t. By Proposition 2.1, W(K;), 0 <t < p, are the standard
annulus LE hulls of modulus p driven by some continuous x;, 0 < ¢t < p, on
Co. Let (¢, 0 <t < p) be the corresponding standard annulus LE maps. Since
W(B()) —> last — 0, xo = 1. We may write x; = ‘¢ so that & =0, and & is
continuous in ¢. We want to prove that the law of (&;)o<;<p, which depends on 4,
converges to the law of (B(21))o<s<p-

Fora < b, letA,  be the annulus bounded by C, and Cp,. Forany 0 < g < p,
there is a smallest /(p, g) € (0, p) such that if K is a hull in A, on Cy with the
capacity (w.r.t. C,) less than ¢, then K does not intersect A;(, o), . Using the fact
that for any 0 < s < r, Re S, attains its unique maximum and minimum on A; , at
e~ and —e™*, respectively, it is not hard to derive the following Lemma.

Lemma3.6. Fix 0 < g < p, letr € (I(p,q), p). There are . € (0,1/2) and
M > 0 depending on p, q and r, which satisfy the following properties. Suppose
o1, 0 <t < p, are some standard annulus LE maps of modulus p driven by x;,
0 <t < p. Then we have |0;S,_;(¢:(z)/ x:)| < M, forallt € [0,qlandz € A, p.
Moreover,

Ap—t),p—t D 0:tArp) DAQ—yp—n).p—1» Yt €[0,q].

Now fix go € (0, p). Let ¢1 = (g0 + p)/2. Choose p1 € (I(p,q1), p), and
let p» = (p1 + p)/2. Denote o; = W_I(ij),j = 1,2. Then «; and oy are
disjoint Jordan curves in D such that a; disconnects a3 ; from B;, j = 1, 2. Let
neo = [S(qo)], where [x] is the smallest integer that is not less than x. Then n4
is a stopping time w.r.t. {F;}, where F; denotes the o-algebra generated by yg, yi,

ey Yinv- For 0 <k <ny — 1, T(k) < qo < q1, so from the choice of pj, we
see that W (yx) lies in the domain bounded by C,, and Cy, so yy lies in the domain
bounded by B; and «;. Note that y_1 = 0 € Bj. So for —1 < k < ny — 1, if
8 is small, then [yx, yx+1] can be disconnected from B, by an annulus centered at
vk with inner radius é and outer radius dist (1, Bz). So as § — 0, the conjugate
extremal distance between B> and [yi, Yk+1] in Dyk = D\ Uo<j<k[yj—1, y;] (the
extremal length of the family of rectifiable curves in D« that disconnect B from
[Vk, Yk+1], see [1]) tends to O, uniformly in —1 < k < ny — 1. It then follows
that T'(k + 1) — T'(k) and max{|& — &Erqy| : T(k) <t < T(k + 1)} tend to O as
8 — 0, uniformly in —1 < k < ny — 1. Since T (nc — 1) < go, we may choose
6 small enough such that T (ns) < g1. We now use the symbols in the last part
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of Section 3.2 for Jordan curves «; and oy defined here. For 0 < k < nqo, let
v = (y_1,v0,..., %) € L%. Then 8yt = &k. By Proposition 3.2, for any fixed
v e VZ‘S, gk(v), 0 < k < ny, is a discrete martingale w.r.t. {Fx}.

Now fix d > 0. Define a non-decreasing sequence (n;) ;>0 inductively. Let
no = 0. Let nj; be the first integer n > n; such that T(n) — T'(n;) > d?, or
&7 () — ET(nj)I > d, or n > ney, whichever comes first. Then n;’s are stopping
times w.r.t. { ¥}, and they are bounded above by n . If we let § be smaller than some
constant depending on d, then T'(n 1) — T (n;) < 2d? and [€7(5) — 1l <2d
foralls € [nj,njy1]and j > O.Let.?—'/" = ]—',,j.Thenforanyv € Vz‘s,{gnj(v) :0<
J < oo}isadiscrete martingale w.r.t. {F }}. Since ¢7x) o W maps D« conformally

onto A ,_7) and takes y; = P(yk) to x7(k), we have
uy(z) =ReSp_7w) (@rky © W)/ X1 K))-
By Proposition 3.3, for any z € W(VQ‘S) and 0 < j <k,

E[Re S, 70 (@100 (/XTI F ;1 = ReSp_1(0 ) (01 (D)) XT () + 05(1).

As § tends to 0, the set W(VZ‘S) tends to be dense in A, ,. So forany z € A, p,
there is some zg € W(Vz‘s) such that |z — zo| = 0s(1). Note that T'(n;) < T (ny) <
T(neo) < q1 for 0 < j < k. Using the boundedness of the derivative in Lemma
3.6 with g = g1 and r = p;, we then have that forallz € A, ,,

E[ReS,— 1) (0T (D) / XT )1 F ;1 = ReS p1n ) @1y (D) / X7 )) + 08 (1).

Now consider the maps in the covering space. We use the notations in Section
3.1. And let A, 5 be the preimage of A, ; under the map z — ¢'*. Then we have

E[Im S, 7(p) @7 (n) (2) — &7 n) 1 F]
=ImS)—7(n) @1 (@) — Erny)) + 05(1). 3.1)

In Lemma 3.6, let ¢ = g1 and r = p», then we have some ¢ € (0, 1/2) such that
Kt(p—t),p—t D& (sz,p) > K(l—t)(p—t),p—ta (3.2)

for0 <t <gq.

Proposition 3.4. There are an absolute constant C > 0 and a constant §(d) > 0
such that if 5 < 8(d), then for all j > 0,

E [67(nj41) — 1| F}1l < Cd®, and
E [E7 () — E10))* /2 — (T (1) — T )| Fill < Cd.
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Proof. Fixsome j > 0.Leta =T (n;) andb =T (njy1). Then0 <a <b < qi.
And if § is less than some §;(d), we have [b — a| < 2d? and |&. — &,| < 2d, for
any ¢ € [a, b]. Now suppose z € A, ,, and consider

=8, 5@(2) — &) — Sp—a(@a(2) — &a).
Then I = I1 + I, where

I =Sp 5@ (2) — &) — Sp—p@a(2) — &),

L =8,_5@a(2) — &) — Sp-a(@al2) — &a).
Then for some ¢y € [a, b], I} = I3 + I4 + I5, where

L:=8, 3. — £)[@ () — Fu(@) — & — £,

Is =S, (@) — EJ@(2) — Fa(2)) — (E — E)I*/2,
Is := 87 (@ (2) — &)@ (2) — Pal2)) — (& — £)1 /6.
And for some ¢; € [a, b], we have
b= —8S)-p(@a(2) — (b — @) + 828 p—c, @ (2) — E) (b — @)? /2. (3.3)

Now for some c¢3 € [a, b], we have

~

Pp(2) = @a(2) = 0r@c3 (2) (b — a) = Sp—c; (@3 (2) — &) (b — a). (3.4)

For some ¢4 € [c3, b], we have

Sy @es(2) = Ec3) = Spb @y (2) = Ec3) + 8-S pecy Fes (2) — E3) (b — €3).
3.5)

For some c5 € [a, c3], we have

Sp-b@e3(2) — £e3) = Spp(@a2) — 60) + S, (@5 (2) — £c)[(Fes (2)
~Pa(2)) — (Ees — £a)]. (3.6)

Once again, there is c¢ € [a, c3] such that

(Fﬁr:3 (z) — %(Z) = 3r<5c6(2)(63 —a)= Sp—C(,(acs(Z) - 506)(03 —a). (3.7

We have the freedom to choose d arbitrarily small. Now suppose d < (1 —
)(p —q1)/2. Then

p—a=<p—-b+2d<(p-b)+1—-0(p—q1) =2—-v(p—>b).
Thus foranym <M € [a,b], p —m < (2 —1)(p — M). By formula (3.2),

5m(2) —&p € At(p—m),p—m C AL(p—M),(2—t)(p—M)'
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So the values of §,,_M, 8,§p_M, 8,2§p_M, §;_M, g;;_M and §;/_M at @, (2) — &
are uniformly bounded. In formula (3.3), consider m = a and M = c¢;. Since
|b — a| < 2d?, we have

b =—8,S,_(@a(2) — £)(b — a) + O(d*).
Similarly, formula (3.7) implies
Pe3(2) — Pal2) = O(c3 —a) = O(d?).
This together with formulae (3.5),(3.6) and &.; — &, = O(d) implies that
Sp—e; @3 (2) — £c) = Sp—p(@a(2) — £a) + O(d).
By formula (3.4), we have
P5(2) — Ga(@) = Sp_p(@a(2) — £)(b — a) + O(d*) = 0(d?).
Thus Is = O(d?),
I =8 ,(@a2) — &) (& — £2)*/2+ O(d”), and
=S, (@) — £)ISp—5(@a(z) — £) (b — @) — (& — E)] + O(d°).
Note that I = I, + I3 + 14 + Is. Using Lemma 3.1, we get
1=8)_ @) — &)l — £%/2 — (b — a)]
8, (#a(2) — E) b — £2) + O ).

By formula (3.1), if § is smaller than some 82 (d), then the conditional expectation
of

S, ,(@a(2) — £ — /2 — (0 — )] = ImS,_,(Fu(2) — £a)[Ep — £

W.LL. }"} is bounded by C;d°>.
By formula (3.2), for any w € K(l_t)( p—a), p—a- the conditional expectation of

mS, ,(w)[(E —£)?*/2— (b —a)] —ImS,_,(w)E —&] (3.8

w.r.t F ; is bounded by C;d>, if § is small enough (depending on d).
Now suppose d < (p — q1)t/(4 —4¢). Then

I-0(p—a)<A-1/2)(p—b) <p—a.
Thus i(1 — t/2)(p — b) € A(—i)(p—a). p—a- We may check
ImS’_, (1 —/2)(p—b)) >0, and ImS’,_,(i(1 —1/2)(p — b)) = 0.

So we can find C; > 0 such that for all b € [0, 1. ImS),_,(i(1 —1/2)(p — b)) >
Cy.Letw =i(1 —¢/2)(p — b) in formula (3.8), then we get

[E[(& —&)%/2— (b—a)|Fj]| < C3d°.
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Since Imgg_b(w) is uniformly bounded on 6(1_1/2)(1,_;,), so for all w €
Ca—vy2(p-b)s

ImS),_,(w)[E[£ — &7}l < Cad. (3.9)
We may check that
xp = ISy (r +i(1 = 1/2)(p = b)) = ImS, (1 = /2)(p b)) > 0.

So xp is greater than some absolute constant Cs > 0 for b € [0, g1]. Then there
exists wp € C(1—/2)(p—b) such that

S, _,, (wp)| = 18:ImS),—p(wp)| = xp/7 = Cs /.
Plugging w = wy, in formula (3.9), we then have |E [§, — §a|.7-"j’.]| < Ced>. |

The following Theorem about the convergence of the driving process can be
deduced from Proposition 3.4 by using the Skorokhod Embedding Theorem. It is
very similar to Theorem 3.6 in [8]. So we omit the proof.

Theorem 3.1. For every qo € (0, p) and & > O there is a 8o > 0 depending on qo
and € such that for § < & there is a coupling of the processes & and B(2t) such
that

Plsup{|§; — B(21)}| : 1 € [0, q0]} > €] < &.
3.4. Convergence of the trace

In this subsection, we will prove Theorem 1.2. We use symbols y®, 8%, K® and x°
to emphasize the fact that they depend on §. Let (K [0, 0 <t < p) be the annulus
SLE; in D from O4 to B;. Let ;‘30 : (0, p) — D be the corresponding trace.

First, we need two well-known lemmas about simple random walks on §Z2. We
use the superscript # to denote the spherical metric.

Lemma 3.7. Suppose v € 87> and K is a connected set on the plane that has
Euclidean (spherical, resp.) diameter at least R. Then the probability that a simple
random walk on 872 started from v will exit B(v; R) (B#(v; R), resp.) before using
an edge 0f8Z2 that intersects K is at most Co((§ + dist (v, K))/R)C1 (Co((§ +
dist*(v, K))/R)Cl, resp.) for some absolute constants Cy, C; > 0.

Lemma 3.8. Suppose U is a plane domain, and has a compact subset K and a
non-empty open subset V. Then there are positive constants 8y and C depending
on U, V and K, such that when § < &, the probability that a simple random walk
on 87 started from some v € 8Z* N K will hit V before exiting U is greater than
C.

The following lemma about simple random walks on D? is an easy consequence
of the above two lemmas and the Markov property of random walks.
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Lemma 3.9. For every d > 0, there are 8o, C > 0 depending on d such that if
8 < 89 and v € 8Z* N D is such that dist* (v, B) > d, then the probability that a
simple random walk on D® started from v hits By before By is at least C.

Lemma 3.10. Foreveryq € (0, p) and ¢ > 0, there are d, 59 > 0 depending on q
and & such that for § < 8, the probability that dist* (8°[q, p), B1) > d is at least
1—e

Proof. Fork =1,2,3,let Jy = W’I(Cq/k). Then Jy, J2, J3 are disjoint Jordan
curves in D that separate By from Bj. And J; lies in the domain, denoted by A,
bounded by J; and J3. Moreover, the modulus of the domain bounded by J; and
By is p —q/k. Let t° be the first n such that the edge [yfif1 , yg] intersects J>. Then
79 is a stopping time. If § is smaller than the distance between J; U J3 and J,, then
)’fa € A and y®[—1, 7] does not intersect J;. Thus M (D \ y’(—1,7%]) > p — ¢,
and so T(t?) < g¢. So it suffices to prove that when & and d are small enough,
the probability that y? will get within spherical distance d from B after time 7° is
less than ¢. Let RW® denote a simple random walk on D? stopped on hitting 8 D,
and CRW? denote that RW? conditioned to hit B, before B;. Let RW? and CRW?
denote that RW?® and CRW?, respectively, started from v. Since y? is obtained by
erasing loops of CRW?, it suffices to show that the probability that CRW§ will get
within spherical distance d from Bj after it hits A, tends to zero as d, § — 0. Since
CRW? is a Markov chain, it suffices to prove that the probability that CRW‘E) will
get within spherical distance d from B; tends to zero as d, § — 0, uniformly in
v e 87 N A. By Lemma 3.9, there is a > 0 such that for § small enough, the
probability that RW‘E hits B, before B is greater than a, for all v € 872N A. By
Markov property, for every v € §Z? N A, the probability that CRW;S} will get within
spherical distance d from Bj is less than

1
— - sup{P [RW?’ hits B, before Bi]: w € V(D°) N D and dist" (w, By) < d},
a

which tends to 0 as d, § — 0 by Lemma 3.7. So the proof is finished. O

Lemma 3.11. For every q € (0, p) and &€ > O, there are M, 59 > O depending on
g and ¢ such that for § < 8, the probability that B°[q, p) C B(0; M) is at least
1—e

Proof. We use the notations of the last lemma. It suffices to prove that the prob-
ability that RW‘E ¢ B(0; M) tends to zero as § — 0 and M — oo, uniformly in
veSZENA. Let K =C \ D, then K is unbounded, and the distance between
v € A and K is uniformly bounded from below by some d > 0. Let r > 0 be such
that A C B(0; 7). For M > r,let R = M — r, then for v € 8Z> N A, RW? should
exit B(v; R) before B(0; M). By Lemma 3.7, the probability that RW?) Z B(0; M)
is less than Co((8 + d)/(M — r))€", which tends to 0 as 8§ — 0 and M — oo,
uniformly in v € §Z% N A. O

Lemma 3.12. For every ¢ > 0, there are g € (0, p) and 8o > 0 depending on &
such that when 8 < 8, with probability greater than 1 — ¢, the diameter of (g, p)
is less than e.
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Proof. The idea is as follows. Note that as ¢ — p, the modulus of D \ (0, ¢]
tends to zero. So for any fixed a € (0, p), the spherical distance between ,35[61, ql
and B, tends to zero as ¢ — p. By Lemma 3.11, if M is big and § is small, the fact
that ﬂa[a, q] does not lie in B(0; M) is an event of small probability. Thus on the
complement of this event, the Euclidean distance between °[a, ¢] and B, tends
to zero, which means that 8% gets to some point near B, in the Euclidean metric
before time g. By Lemma 3.7, RW‘E does not go far before hitting d D if v is near
B;. The same is true for CRW% because by Lemma 3.9, RW% hits B before B;
with a probability bigger than some positive constant when v is near B,. Since y°
is the loop-erasure of CRW?, y‘S does not go far after it gets near B,, nor does ,3‘3.
So the diameter of 8°[g, p) is small. O

Definition 3.1. Let z € C, r,e > 0. A (z, r, €)-quasi-loop in a path w is a pair
a,b € wsuchthata,b € B(z;r), la — b| < &, and the subarc of w with endpoints
a and b is not contained in B(z; 2r). Let L3(z, r, &) denote the event that ﬂB[O, )
has a (z, r, €)-quasi-loop.

Lemma 3.13. IfB(z; 2r) N B; = @, then lim,_,oP[L%(z, r, £)] = 0, uniformly in
8.

Proof. This lemma is very similar to Lemma 3.4 in [16]. There are two points of
difference between them. First, here we are dealing with the loop-erased conditional
random walk. With Lemma 3.9, the hypothesis B(z; 2r) N B; = {J guarantees that
for some v near dB(z; 2r), the probability that RW‘E, hits B, before B; is bounded
away from zero uniformly. Second, our LERW is stopped when it hits B>, while in
Lemma 3.4 in [16], the LERW is stopped when it hits some single point. It turns
out that the current setting is easier to deal with. See [16] for more details. |

Proposition 3.5. For every g € (0, p) and ¢ > 0, there are 8y, ap > 0 depending
on q and € such that for 8 < 8y, with probability at least 1 — ¢, B® satisfies the
following property. If ¢ <t < to < p, and |B%(t;) — B%(t2)| < ao, then the
diameter of,B‘S[tl, 1] is less than ¢.

Proof. Ford, M > 0,let A4 p denotethe setof z € B(0; M) suchthatdist#(z, B))
> d, and Af,,M denote the event that ,35[61, p) C Ag.m. By Lemma 3.10 and 3.11,

there are dy, My, 5o > 0O such that for § < &, P[AZO,MO] > 1 — g/2. Note
that the Euclidean distance between Ay, », and By is greater than dp/2. Choose
0 < r < min{e/4, dp/4}. There are finitely many points z1,...,2, € Agy, M,
such that Agy pmy, C U[B(zj;7/2). Fora > 0,1 < j < n, let Bi‘,a denote the
event that ,33[0, p) does not have a (z;, r, a)-quasi-loop. Since r < do/4, we have
B(z;;2r) N By = . By Lemma 3.13, there is ag € (0, r/2) such that P [B;S‘,ao] >
l1—g/@n)forl < j < n.LetC® = m’;B?aomAjo,Mo.ThenP[c@] > 1—¢if8 < 8.
And on the event C®, if there are 1) < 1, € [g, p) satisfying |,35 () — ﬁ‘s ()| < ag,
then 8% (#1) lies in some ball B(zj;r/2), so B(t) € B(z;;r) as ap < r/2. Since
ﬁ‘s does not have a (z, r, ap)-quasi-loop, ,B’S[tl, 2] C B(zj; 2r). This then implies
that the diameter of ﬂ‘s[tl, t2] is not bigger than 4r, which is less than ¢. |



364 D. Zhan

Before the proof of Theorem 1.2, we need the notation of convergence of plane
domain sequences. We say that a sequence of plane domains {€2,} converges to a
plane domain €2, or 2, — €, if

(i) every compact subset of 2 lies in €2, for n large enough;
(i1) for every z € 92 there exists z, € €2, for each n such that z,, — z.

Note that a sequence of domains may have more than one limits. The following
lemma is similar to Theorem 1.8, the Carathéodory kernel theorem, in [13].

Lemma 3.14. Suppose 2, — 2, f, maps 2, conformally onto G, and f, con-
verges to some function f on Q uniformly on each compact subset of Q2. Then either
f is constant on Q, or f maps Q2 conformally onto some domain G. And in the
latter case, G, — G and fn_1 converges to ' uniformly on each compact subset

of G.

Proof of Theorem 1.2. Suppose (Xto, 0 <t < p)isthedriving function of(W(K,()),
0 <t < p). By Theorem 3.1, we may assume that all x° and x° are in the same
probability space, so that for every ¢ € (0, p) and ¢ > O there is an §o > O
depending on g and ¢ such that for § < do,

Plsup{lx’ — x) : 1t €[0,q]) > ] < e.

Since A% and B0 are determined by x® and x©, respectively, all 8% and 8° are also
in the same probability space. For the first part of this theorem, it suffices to prove
that for every ¢ € (0, p) and ¢ > O there is §o = do(g, €) > 0 such that for § < do,

Psup{|8°(t) — B°(1)| : t € [q, p)} > el < . (3.10)

Now choose any sequence 8, — 0. Then it contains a subsequence §,, such that
for each g € (0, p), X‘S”k converges to x uniformly on [0, ¢] almost surely. Here
we use the fact that a sequence converging in probability contains an a.s. converging
subsequence. For simplicity, we write 8, instead of 8,,, . Let (pf " ((plo ,resp.),0 <t <
p, be the standard annulus LE maps of modulus p driven by xf " ( X,O, resp.), 0 <
t < p.Let Q) :=A,\ W(B*(0,1]),and Q0 := A, \ W(B°[0, ]). Fix ¢ € (0, p).
Suppose K is a compact subset of Qg. Then for every z € K, gpto(z) does not blow
up on [0, g]. Since the driving function X‘S” converges to XO uniformly on [0, ¢], so
if n is big enough, then for every z € K, <p,‘S "(z) does not blow up on [0, g], which
means that K C Qg”. Moreover, gog" converges to (p(q) uniformly on K. It follows
that Qg” N 522 — Qg as n — oo. By Lemma 3.14, ((,02”)_1 converges to (gog)_l
uniformly on each compact subset of A, 4, and so 9181" = ((pq")_l(A,,_q) —
@)1 Ap—g) = Q). Now we denote D" := D\ (0,11 = W=1(@}"), and
DY := D\ 20, 1] = W~H(QV). Then we have Dg" — Dg for every g € (0, p).

Fixe > 0andq; < g2 € (0, p).Letqy = q1/2 and g3 = (g2 + p)/2. By Prop-
osition 3.5, there are n; € Nanda € (0, £/2) such that for n > n, with probability
at least 1 — &/3, g% satisfies: if g9 < t; < 1o < p, and | (1)) — B ()| < a,
then the diameter of ,35" [t1, t2] is less than /3. Let A,, denote the corresponding
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event. Since ﬂo is continuous, there is b > 0 such that with probability 1 — /3,
we have |8(11) — BO(12)| < a/2if 11, 12 € [qo, g3] and |t; — 12| < b. Let B denote
the corresponding event. We may choose gop < fo < t] = q1 < -+ < ty—] =
@2 <tm <gzsuchthatt; —t;_y <bfor1 < j <m.Since BO(t;) ¢ B°(0, t;_1]
for 1 < j < m,thereisr € (0, a/4) such that with probability at least 1 — /3,
B(,Bo(tj); r) C D?FI for all 0 < j < m. We now use the convergence of Df" to

D0 fort =1y, ..., t,. There exists ny € N such that forn > n;, with probability at
least 1 — ¢/3, B(,Bo(t] r) C D, 8n , and there is some z € aD 8 B(ﬂo(tj) r),
foralll < j < m. Let Cy denote the corresponding event Then on the event Cy,
Z” € oD ”\8D l,soz = pon (s”)forsomesj € (tj—1,tjl.LetD, = A,NBNC,.
Then P[D 1> 1 —&, forn > nq + no. And on the event D,,,

=2t <2r +18%) — B2l <2r +aj2 <a, V1< j<m—1,

as |t; — tj11| < b. Thus the diameter of B [s;?, S7+1] is less than ¢/3. It follows
that for any 7 € [sl /+1] Cltj-1, tj11],

18°(t) — B ()] < 1B%() — B°()I +18°t)) — 21 + |2 — B ()]
<a/2+r+¢/3<e.

m— ][

" ], we have now proved that for n big

Since [q1, q2] = [t1, tm—1] C Ui [s7, 8741
enough, with probability at least 1 —e¢, |,36 (1) — ,BO(t)| < ¢ forall ¢ € [q1, q2].
By Lemma 3.12, for any ¢ > 0, there is g(¢) € (0, p) such that if n is big enough,
with probability at least 1 — &, the diameter of % [g(e), p) is less than &. For any
S € [g(¢), p), by the uniform convergence of 8% to 80 on the interval [¢(¢), S], it
follows that with probability at least 1 — ¢, the diameter of B%[q(e), S) is no more
than &, nor is the diameter of 8°[¢(¢), p). Now for fixed ¢ € (0, p) and ¢ > 0,
choose g1 € (g, p)N(q(e/3), p). Then with probability at least 1 — /3, the diame-
ter of 8°[q1, p) is less than &/3. And if n is big enough, then with probability at least
1 — /3, the diameter of 8% [g1, p) is less than £/3. Moreover, if n is big enough,
we may require that with probability at least 1 — &/3, | B (1) — BO(1)| < &/3 for
allt € [g, q1]. Thus |B% (t) — ()| < e forallt € [¢, p) with probability at least
1 — ¢, if n is big enough. Since {§, } is chosen arbitrarily, we proved formula (3.10).

Now suppose that the impression of 0. is the a single point, which must be 0.
From [13], we see that W ! (z) > 0asz € A, and z — 1. From above, it suffices
to prove that for any ¢ > 0, we can choose g € (0, p) and §9 > O such that for
8 < &p, with probability at least 1 — ¢, the diameters of /35(0, q] and /30(0, q] are
less than ¢. Since W~! is continuous at 1, we need only to prove the same is true
for the diameters of W(,B‘S (0, g]) and W(,BO(O, q]). Note that they are the standard
annulus LE hulls of modulus p at time g, driven by Xf and X,O , respectively. By
Theorem 3.1, if § and ¢ are small, then the diameters of x°[0, ¢] and x°[0, ¢] are
uniformly small with probability near 1, so are the diameters of W (8°(0, ¢]) and
W (B°(0. qD). O

Corollary 3.1. Almost surely lim;_, , BO(t) exists on By . And the law is the same
as the hitting point of a Brownian excursion in D started from 04 conditioned to
hit B».
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A Brownian excursion in D started from 04 conditioned to hit B, is a random
closed subset of D whose law is the weak limit as ¢ — 0 of the laws of Brownian
motions in D started from ¢ > 0 stopped on hitting d D and conditioned to hit Bj.

Proof of Corollary 1.1. Now we consider the Riemann surface R, = (R/(277Z)) x
0, p).Let Xg = R/ (27 Z)) x {0} and X, = (R/(2nZ)) x {p} be the two bound-
ary components of R,. Then (x, y) +> e~>* is a conformal map from R, onto
A, and it maps X¢ and X, onto Cy and C,, respectively. So it suffices to prove
this corollary with A ,, C,, and C replaced by R, X, and Xy, respectively.
Forn € N, let G, be a graph that approximates R . The vertex set V(G,) is

(Qkn/n,2mm/n): 1 <k <n,0<m =< [pn/Qn)|}U{(2kr/n, p):1 =<k <n},

where | x| is the maximal integer that is not bigger than x. And two vertices are
connected by an edge iff the distance between them is not bigger than 27 /n. If
n > 2w/ p, then for every vertex v on Xo or X, thereis aunique u € V(G,) N R,
that is adjacent to v. We write u = N (v). For v € V(G,) N Xy, let RW be a simple
random walk on G, started from N (v) and stopped on hitting XU X ,,. Let CRW be
that RW conditioned to hit X, before X¢. Take the loop-erasure of CRW, and then
add the vertex v at the beginning of the loop-erasure. Then we get a simple lattice
path from v to X ,. We call this lattice path the LERW from v to X ,. Similarly, for
each v € X, we may define the LERW from v to X¢. Suppose v € V(D% N Xo
and u € V(D*) N X,. Let Py, be the LERW from v to X, conditioned to hit u,
and P, , be the LERW from u to Xy, conditioned to hit v. By Lemma 7.2.1 in [4],
the reversal of P, , has the same law as P, ,. Now we define the LERW from X
to X, to be the LERW from a uniformly distributed random vertex on Xg to X .
Similarly, we may define the LERW from X, to X. Itis clear that the hitting point
at X, of the LERW from Xy to X, is uniformly distributed. So the reversal of the
LERW from X to X, has the same law as the LERW from X, to X(. Using the
method in the proof of Theorem 1.2, we can show that the law of LERW from Xg
to X, converges to that of annulus SLE; in R, from a uniform random point on
X towards X ,. The same is true if we exchange X( with X ,. This ends the proof.

O

4. Disc SLE

In this section, we will define another version of SLE: disc SLE, which describes a
random process of growing compact subsets of a simply connected domain. Sup-
pose €2 is a simply connected domain and x € 2. Recall that a hull, say F, in
Q w.rt. x, is a contractible compact subset of €2 that properly contains x. Then
Q\ F is a doubly connected domain with boundary components d€2 and 9 F'. We
say that (Fy,a <t < b) is a Loewner chain in Q w.r.t. x, if (i) each F; is a hull in
Q wrt. x; (i) F; ; F, whena < s < t < b; and (iii) for any fixed #y € (a, b),
(Fi \ Fyy, to <t < b) is a Loewner chain in Q \ F;, on 9 F;,.

Proposition 4.1. Suppose x : (—o0, 0) — Cy is continuous. Then there is a Loew-
ner chain (Fy, —oo <t < 0), in D w.r.t. 0, and a family of maps g;, —oo <t < 0,
such that each g; maps D \ F; conformally onto A, with g;(Co) = Cy;|, and
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0:8:(2) = &(2)S11(& (@) /x1), —00 <t <0 (4.1)
limt_)_oo el/gt(Z) =2, VZ S ]D) \ {O} ’

Moreover, such F; and g; are uniquely determined by x;. We call F; and g;, —oo0 <
t < 0, the standard disc LE hulls and maps, respectively, driven by x;, —oo < t < 0.

Proof. For fixedr € (—00,0), let ¢/, r <t < 0, be the solution of

dpr (2) = @1 DSy (@7 )/ x1), ¢ (2) = z. (4.2)

Forr <t < 0, let K] be the set of z € A} such that ¢} (z) blows up at some
time s € [r,t]. Then (K[,r <t < 0) is a Loewner chain in A|;| on Cop, and
@; maps A}, \ K] conformally onto A, with ¢; (C|;|) = C;. By the unique-
ness of the solution of ODE, if t{ < 1, < 3 < 0, then (pff o go,’zl (z) = <ptt31 (z), for
Z €A \Kt Fort < 0, define R;(z) = e’ /z. Then R, maps Alt\ conformally onto
itself, and exchanges the two boundary components. Define ¢ = R0 ¢; o R, and
K’ = R, (K/).Then K’ isahullinAj,  on C\rl and ©, mapsA|r| \K’ conformally
onto A with @} (Co) = Cop. We also have @' (p,3 o<p,2 (z) = (p,3 (z),forz € Ay \K3,
iftyy <t <13 <0.And @/ satisfies

8] (@) = & @81 @ /% FL (@) =z,
where §p (z) =1—=S8,(e"?/z) for p > 0. A simple computation gives:
Sp@)] < 8e7P/lzl, ifde™” < 2| < 1.
We then have
|9/ (z) —z| <8¢, if r <t <0, and 12¢' <|z| < 1. 4.3)

Now let 1//‘t be the inverse of ¢! . If n <t <1t3,then Wtz o w (2) = 1//;31 (2), for
any z € Ay,). For fixed t € (—00, 0), {Wz r e (—oo,t]}is afamlly of uniformly
bounded conformal maps on Ay, so is a normal family. This implies that we can
ﬁnd a sequence r, — —oo such that for any m € N, {1//” } converges to some
l/f_m, uniformly on each compact subset of A,,. Let 8, = w T 'n(Ciny2). Then B, is
a Jordan curve in A, \ K™ n that separates the two boundary components. So 0 is
contained in the Jordan domam determined by §,,. Note that {wr” } maps A, /2 onto
the domain bounded by 8, and Cp, whose modulus has to be m /2. So §, is not con-
tained in B(0; e~/?). This implies that the diameter of 8, is not less than e /2. So
1?7 m can’t be a constant. By Lemma 3.14, 1//} _m Maps A conformally onto some
domain D_,,, and " (A,) — D_m Since ¥ (Ap) = A\ K™ cD\{0},

D_,, C D\ {0}. Since M (A, \ K" ') = m, there is some a,, € (0, 1) such that
B(0; ¢') ern) UK r" C B(0; e7%) for all r,. So A,,, contains no boundary points of
A, \ K r” = 1//” (A,). Since these domains converge to D_,, as n — 00, SO
A, contams no boundary pomts of D_,,, which means that either A, C D_,, or
Ay, N D_p = 0. Now let y,, = w fn 'n(Ca,,2). For the same reason as ,Bn, we have
Yu  B(0; e=9n/2) Sothereis z, € C,,, /2 such that |[¢" m(Zn)| = e~9m/2 Letzobe
any subsequential limit of {z,}, then zo € Cq,, 2 C Ap and |I/f m(z0)| > e —am/2
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50 Y_m(20) € Ag,- Thus D_, NA,, # ¥, and so A,, C D_p. Hence D_m has
one boundary component Cy. Usmg similar arguments we have w,(Co)

If r, < —m; < —my, then 1/f_ml o 1//_m = 1//_m2, which implies 1/f_m1 o

,’,'112] @\_mz. Fort € (—o0,0), choose m € N with —m < ¢, define @, =
W—m o % and D, = {ﬁ\; (Ajs))- Itis easy to check that the definition of 17}, is inde-
pendent of the choice of m, and the following properties hold. For all ¢ € (—o0, 0),
D, is a doubly connected subdomain of D \ {0} that has one boundary component
Cp, and Iﬂt (Co) = Cy; 1//, converges to 1//,, uniformly on each compact subset of
Ay Ifr <t <0, then ¥, = ¥, o W;,Dt S Dy, and D, \Dt _wr(K ).

Let ¢; on D, be the inverse of w, By Lemma 3.14, ;" converges to @; as
n — oo, uniformly on each compact subset of D;. Thus from formula (4.3), we
have |@;(z) — z| < 8, if 12¢' < |z| < 1. It follows that lim,_, o, @;(z) = z, for
any z € D\ {0}. We also have ¢;(z) = @; " 0 9 (2),if —m <t < Oand z € D;.
Let g = R; o ¢y on D;. Then g; maps D, conformally onto A, takes Cy to Cyy|,
and

lim e'/g/(z) = lim @(z) =z, foranyz € D\ {0}.
——00 ——00

If —m < t,then g(z) = ¢; " o R_jy 0 9—_m(2), Yz € D;. By formula (4.2), we
have

0:8:(2) = & @S (g: (@) /x:1), —m <t <0.

Since we may choose m € N arbitrarily, formula (4.1) holds.

Let F; =D\ D;. Since Dy is a doubly connected subdomain of D \ {0} with a
boundary component Cy, F; is a hull in D w.r.t. 0. If 1; < £, < 0, then Ffl,\;%ffz’
as Dy, 2 Dy,. Fix any r € (=00,0). Fort € [r,0), F; \ Fr = D, \ Dy = ¥, (K).
From Proposition 2.1 and the conformal invariance, (¥, (K/),r <t < 0)isa
Loewner chain in D, on 0 F,. Thus (F;, —oo < t < 0) is a Loewner chain in D
w.r.t. 0.

Suppose F*, —oo < t < 0,is afamily of hullsinDon0,and g}/, —o0 <t < 0,
is a family of maps such that for each ¢, g maps D \ F;* conformally onto A ;| and
formula (4.1) holds with g, replaced by g/. By the uniqueness of the solution of
ODE, we have g = ¢/ o g*,ifr <t < 0.S0 R; 0 g = ¢} o R, o g. Now choose
r =ryandletn — ooc. Since Ry, o gf — id by formula (4.1) and g;" — @;, s0
R; 0 gF = @, from which follows that g* = R, o ¢y = g; and F;* = F}. ]

Proposition 4.2. Suppose (F;, —oco < t < 0) is a Loewner chain in D w.r.t. 0 such
that M (D\ Fy) = |t| for eacht. Then there is a continuous x : (—oo, 0) — Co such
that Fy, —oo < t < 0, are the standard disc LE hulls driven by x;, —oo <t < (.

Proof. For each t < 0, choose ¢} which maps D \ F; conformally onto A, so
that (1) = 1. Let gF = R, o ¢F, where R;(z) = €'/z. Then g* maps D \ F,
conformally onto Ay, with g;(Co) = Cj, and g/ (1) = ¢'. Forany r <t < 0,
let K, = g;(F; \ Fy). Then for fixed r < 0, (K,,r <t < 0) is a Loewner
chain in A};| on Co. Now g7 o (g/)~! maps A, \ K* -+ conformally onto A, and
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satisfies g/ o (g;")_l (") = ¢'. From the proof of Proposition 2.1, there exists some
continuous xjf, . [r,0) - Cp such thatforr <t <0,

gl o (g T (w) = g o(gh) (WIS (gf o (g) " (w)/x}) —iImSyy (e /% 1.

It then follows that

g7 (2) = g/ (@IS (g @)/ x7) — ilm Sy (e’ /x ), r =t <O.

So x; .+ = X, if r1,r2 < t. We then have a continuous x* : (—00,0) — Co,
such that

387 (2) = g @ISy (& @)/ %) — ilm Sy (e /x)], —oo <t <.

Consequently,

397 (2) = 9F IS (@) (@) /%) — im Sy ()], —oo <1 <0.

Since |§|”(z)| < 8¢’ when 4e’ < |z| < 1, |Im§|,|(xt*)| decays exponentially as
t - —oo.Letf(t) = fioo Im S5 (x)ds, 91 (2) = D g¥(z),and x; = e =100 .
Then ¢; maps D \ F; conformally onto A, with ¢;(Cp) = Co, and

3 Ing(2) = 8 Ing} (@) +i0'(t) = Sy (9} /%) = St (@1 /%0)-
Thus 0;¢:(2) = ¢ (Z)§|,| (¢:(2)/Xz). From the estimation of §It\’ we have
lor(z) — @r (@) < 8e€', if 12¢' <|pr(z)| <1, and r <1 < 0.

Since F; contains 0 and M (D \ F;) = |¢|, the diameter of F; tends to zero
ast — —oo. Let D; = D\ F;. Then for any sequence t, — —oo, we have
D;, — I\ {0}. Since ¢;, is uniformly bounded, there is a subsequence that con-
verges to some function ¢ on D\ {0} uniformly on each compact subset of D \ {0}.
By checking the image of C; under ¢;, similarly as in the proof of Proposition 4.1,
we see that ¢ cannot be constant. So by Lemma 3.14, ¢ maps D \ {0} conformal-
ly onto some domain Dy which is a subsequential limit of Aj;,| = ¢, (D, ). Since
t, = —00, Do hastobe D\ {0} and so ¢(z) = xzforsome y € Cp. Now this x may
depend on the subsequence of {z,}. But we always have lim;_, _~ |¢;(z)| = |z| for
any z € D\ {0}. Now fix z € D\ {0}, there is s(z) < Osuchthatwhenr <t < s(z),
wehave 12’ < |, (z)| < 1.Therefore |¢; (z)—¢,(z)| < 8e’ forr <t < s(z). Thus
lim;_, _ o ¢ (z) exists for every z € D \ {0}. Since we have a sequence f, - —o0
such that {¢;, } converges pointwise to z — x*z on D \ {0} for some x* € Cop, so
lim;— oo 91 (z) = x*z, forall z € D\ {0}. Finally, let g;(z) = R; o (z/x™). Then
g+ maps D\ F; conformally onto A, takes Cy to Cy;|, and satisfies (4.1). |

We still use B(¢) to denote a standard Brownian motion on R started from 0.
Let x be some uniform random point on Cy, independent of B(¢). For k > 0 and
—00 < t < 0, write x* = xe!B*l'D The process (x*) is determined by the fol-
lowing properties: for any fixed r < 0, (x//x/,r <t < 0) has the same law as
(e!B&(=r) 'y <t < 0) and is independent from x*. If F; and g;, —00 < t < 0,
are the standard disc LE hulls and maps, respectively, driven by x/, —oo <t < 0,
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then we call them the standard disc SLE, hulls and maps, respectively. From the
properties of x/, we see that for any fixed r < 0, g-(Fr4+ \ F), 0 <t < |r|,
is an annulus SLE, (A|; xX — Cjr|). The existence of standard annulus SLE,
trace then implies the a.s. existence of standard disc SLE, trace, which is a curve
y : [—00,0) — D such that y(—o0) = 0, and for each t € (—00, 0), F; is the
hull generated by y[—o0, t], i.e., the complement of the unbounded component of
C\ y[—o0,t]. If k < 4, the trace is a simple curve; otherwise, it is not simple.
Suppose D is a simply connected domain and a € D. Let f map ID conformally
onto D so that f(0) = a and f/(0) > 0. Then we define f(F;) and f(y(¢)),
—00 <t < 0, to be the disc SLE, (D; a — 0D) hulls and trace.

The next theorem is about the equivalence of disc SLE¢ and full plane SLEg.
First, let’s review the definition of full plane SLE. It was proved in [12] that for any
continuous y : (—o0, 4+00) — Cp, thereisaLoewner chain (F;, —0o0 < t < +00),
in C W.L.L. 0, and a family of maps g;, —00 < t < +00, such that for each ¢, g;
maps C \ F; conformally onto D with g;(co0) = 0, and

0:8:(z) = g:(z)%, —00 <t < 400;
lim;—, _oo €' /g1(2) = z, vz € C\ {0}).

Such F; and g;, —00 < t < +00, are unique, and are called the full plane LE hulls
and maps, respectively, driven by x;, —00 < t < +oo. The diameter of F; tends
to 0 ast — —o0; and tends to oo as t — +00.

The driving process of full plane SLE, is an extension of x/ to R defined as
follows. Choose another standard Brownian motion B’(¢) on R started from O,
which is independent of B() and x. For ¢ > 0, let ¥ = xe/®'®. Then for any
fixed r € R, x//xf, r <t < 400, have the same distribution as e Blk(t=r)
r <t < +o0. This implies that for full plane SLE, hulls F;, ¢ € R, and any fixed
r € R, (g (Fr4: \ F;)) has the same law as radial SLE, (ID; x,* — 0).

Suppose 2 is a simply connected plane domain that contains 0. Let 7 be the
first ¢ such that full plane SLE, hull F; ¢ 2. Then as ¢ 7 1, F; approaches 9€2,
and (F;, —oo <t < 1) is a Loewner chainin Q w.r.t. 0. Letu(z) = —M(Q\ F}),
for —oo <t < 7. Then u is a continuous increasing function, and maps (—oo, 7)
onto (—o00, 0). Let v be the inverse of u, and choose f that maps D onto Q2 with
f(0) = 0and f'(0) > 0. Then f_l(Fv(S)), —o0 < § < 0, are the standard disc
LE hulls driven by some function. Using the same method in the proof of Theorem
1.1, we can prove that this driving function has the same law as ( Xf),oo<t<o. So
we have

Theorem 4.1. Suppose Q2 is a simply connected domain that contains 0. Let
(K¢, —00 < t < 4+00) be full plane SLEg hulls, and (Ls, —00 < s < 0) be the
disc SLE¢(S2; 0 — 0S2). Let T be the first t that K; ¢ 2. Then up to a time-change,
(K;, —00 < t < 1) has the same law as L;, —00 < s < 0.

Corollary 4.1. The distribution of the hitting point of full plane SLE¢ trace at 902
is the harmonic measure valued at 0.
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An immediate consequence of this corollary is that the plane SLEg hull stopped at
the hitting time of <2 has the same law as the hull generated by a plane Brownian
motion started from 0 and stopped on exiting 2. See [19] and [9] for details.

Disc SLE; is also interesting. Suppose €2 is a simply connected domain that
contains 0. Let RW be a simple random walk on ©? started from 0, and stopped on
hitting 0<2. Let LERW be the loop-erasure of RW. Then LERW is a simple lattice
path from O to 92. Write LERW as y = (yp, ..., yy) With yo = 0 and y,, € 9RQ2.
We may extend y to be defined on [0, v] so that it is linear on each [j — 1, j] for
1 < j < wv.Thenitis clear that (y(0, s],0 < s < v) is a Loewner chain in Q2 w.r.t.
0.Let T(s) = —M(Q2\ y(0,s]), for 0 < s < v. Then T is a continuous increas-
ing function, and maps (0, v) onto (—oo, 0). Let S be the inverse of 7. Define
B2(t) = y(S(1)), for —oo < t < 0, and B%(—o0) = 0. Let B2 : [—o0, 0) — Q be
the trace of disc SLE,(2; 0 — 9%2).

Theorem 4.2. For any ¢ > 0, there is 5o > 0 such that for § < 8y, we may couple
B with B° so that

P [sup{|°(1) — B°(1)| : —00 <t < 0} > ¢] <e.

Proof. Note that 2° may not be connected, we replace it by its connected compo-
nent that contains 0. Let gg be constant 1 on V(Q%). For 0 < J < vs, let g;j be
the g in Lemma 3.4 with A = VQH N, B = {»o,...,yj—1},and x = y;.
Similarly as Proposition 3.2 and 3.3, g;’s are observables for the LERW here, and
they approximate the observables for disc SLE;. We may follow the process in
proving Theorem 1.2. O

Corollary 4.2. Suppose Q2 is a simply connected plane domain, and a € 2. Let
B(s), —oo < s < 0, be the disc SLE>(2; a — 0X2) trace. Let y (t), 0 < t < 00, be
the radial SLE,>(2; x — 0) trace, where X is a random point on 92 with harmonic
measure at a. Then the reversal of B has the same law as y, up to a time-change.

Proof. This follows immediately from Theorem 4.2, the approximation of LERW
to radial SLE; in [8], and the reversibility property of LERW in [4]. O

5. Convergence of the observables

This is the last section of this paper. The goal is to prove Proposition 3.3. The proof
is sort of long. The main difficulty is that we need the approximation to be uniform
in the domains. The tool we can use is Lemma 3.14. However, the limit of a domain
sequence in general does not have good boundary conditions, even if every domain
in the sequence has. Prime ends and crosscuts are used to describe the boundary
correspondence under conformal maps. Some ideas of the proof come from [8].

We will often deal with a function defined on a subset of 8Z2. Suppose f is
such a function. For v € §Z2 and z € Z2, if f(v) and f (v 4 8z) are defined, then
define

V) = (f(v+82) — f(v)/8,
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We say that f is 8-harmonic in @ C C if f is defined on 8Z> N Q and all v € §Z>
that are adjacent to vertices of 872 N so that for all v € §Z2 N L,

f@+8)+fv=8+ fv+id)+ f(v—id) =4f(v).

The following lemma is well known.

Lemma 5.1. Suppose 2 is a plane domain that has a compact subset K. Forl € N,
letz1,...,21 € 72. Then there are positive constants 8o and C depending on 2,
K,and z1, ..., z;, such that for § < o, if f is non-negative and §-harmonic in <2,
then for all vy, vy € 872N K,

Vfl --~Vf,f(v1) < Cf(v).

This is also true for | = 0, which means that f(v1) < Cf(v2).

For a, b € §Z, denote
Sﬁ,b ={x,y):asx=<a+d,b=<y=<b+i4}

Suppose A is a subset of 8§72, let Si be the union of all Sg » Whose four vertices

are in A. If f is defined on A, we may define a continuous function CE® f on §%,
as follows. For (x, y) € 53,1; C Sf\, define

CE’f(x,y) =1 —s)1 =0 f(a,b)+ (1 —s)tf(a,b+35)
+s(1—1t)f(a+5,b)+stf(a+68,b+9),

wheres = (x—a)/8andt = (y—b)/8.Then CE? f is well defined on S% , and agrees
with f on Sf‘ N A. Moreover, on Sgy b CE’ f has a Lipschitz constant not bigger

than two times the maximumoﬂVfl’o)f(a, b)|, |Vf0’1)f(a, b)|, |V?1,O)f(a’ b+9)|,
|st0 pyJf(a+é,b)|. And forany u € 72,

CE’VS f(z) = (CE® f (z + 8u) — CE? £(2)) /8.

when both sides are defined.

Proof of Proposition 3.3. Suppose the proposition is not true. Then we can find
g0 > 0, a sequence of lattice paths w, € L% with 8, — 0, and a sequence of
points v, € VZ‘S”, such that | gy, (vy) — uyw, (vy)| > &o for all n € N. For simplic-
ity of notations, we write g, for gy, u, for uy,, and D, for Dy, . Let p, be the
modulus of D,,. The remaining of the proof is composed of four steps.

5.1. The limits of domains and functions

By comparison principle of extremal length, we have p > p, > M(U;) > 0.
By passing to a subsequence, we may assume that p, — po € (0, p]. Then
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A,, — Ay Let O, map D, conformally onto A, so that Q,(z) — lasz € D,
and z — P(w). Then u, = ReS,, o Q,. Now Q; ! maps A, conformally onto
D, C D. Thus {Q;]} is a normal family. By passing to a subsequence, we may
assume that Q,; ! converges to some function J uniformly on each compact subset of
A . Using some argument similar to that in the proof of Theorem 1.2, we conclude
that J/ maps A ,,, conformally onto some domain Dy, and D,, — Dy.Let Qg = J -1
and ug = Re S, o Qp. Then Q, and u, converge to Qg and u, respectively, uni-
formly on each compact subset of Dy. Moreover, we have U, Uay C Dy C D.
Thus B3 is one boundary component of Dy. Let B} and B(l) denote the boundary
component of D, and Dy, respectively, other than B,.

Let {K,,} be a sequence of compact subsets of Dg such that Dy = U, K,,, and
foreach m, K, disconnects B? from By and K,, C int K, 1. Let K], = K, N8, Z2.
Now fix m. If n is big enough depending on m, we can have the following prop-
erties. First, K, C D, and K], C V(D%), so gn 18 &, -harmonic on K,,. Second,
K disconnects all lattice paths on D% from B, to B?. Now let RW? be a simple
random walk on D% started from v € V(D%), and 7,2 the hitting time of RW
at B, U K. By the properties of g, if v is in D and between K,, and B>, then
(8. (RW%(j)), 0 < j < 1)) is a martingale, so g,(v) = E[g,(RW}(z)"))]. Now
suppose g, (v) > 1forallv € K]"". Choose vy € V(D®)ND thatis adjacent to some
vertex of F¥ = V(D% )N B,. Then g, (vo) = E [g,(RW,(z/"))] > 1. The equality
holds iff there is no lattice path on D% from v to K . By the definition of D%, we
know that the equality can not always hold. It follows that ), . s, A pen 80 () > 0,
which contradicts the definition of g,. Thus there is v € K] such that g,(v) < 1.
Note that g, is non-negative. By Lemma 5.1, if n is big enough depending on

m, then g, on K is uniformly bounded in n. Similarly for any z, ...,z € 72,
8

Vil Vg” gn on K is uniformly bounded in #, if n is big enough depending on
m,and z1, ...,z € Z2.

We just proved that for a fixed m, if n is big enough depending on m, then
gn on K} | is §,-harmonic and uniformly bounded in n. We may also choose n
big such that every lattice square of 8,77 that intersects K, is contained in K m+15
and so CE% g, on K,, is well defined, and is uniformly bounded in . Using the
boundedness of V,’z" gnon K 41 foru € {1,i}, we conclude that {CE’g,} on
K, is uniformly continuous. By Arzela-Ascoli Theorem, there is a subsequence
of {CE® g,}, which converges uniformly on K,,. By passing to a subsequence,
we may assume that CE* gn converges uniformly on each K. Let go on Dy be
the limit function. Similarly, for any z1,...,7; € 72, there is a subsequence of
{CE? Vf}’ e Vf,” gn} which converges uniformly on each K,,. By passing to a sub-
sequence again, we may assume that for any z1, ...,z € Z?, CE®* V?;’ e Vfl" &n
converges to gél """ " on Dy, uniformly on each K. It is easy to check that

g5 = (a10x + b1dy) - - (@;0x + bydy) g0,
ifz; =(aj,bj),1 < j <1 Since g, is §,-harmonic on K, for n big enough, we

have (Vf” Va_"l + Vf” Vi”l.)g,, = 0Oon K], Thus (83 + ag)go = 0, which means that
8o is harmonic.
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Now suppose x, € V(D%)N D — B, in the spherical metric. Since the spher-
ical distance between K| and B; is positive, the probability that a simple random
walk on D% started from x, hits K| before B, tends to zero by Lemma 3.7. If n
is big enough, K is a subset of D, and disconnects B; from B}'. We have proved
that g, is uniformly bounded on 8,Z? N K1, if n is big enough. And by definition
gn = 1on V(D%) N B,. By Markov property, we have g, (x,) — 1. Since gg is
the limit of CE% gn, this implies that go(z) — 1 asz € Dg and z — B in the
spherical metric. Thus gg o J(z) —> lasz € Ay and z — C.

Now let us consider the behavior of u,, and ug near B,. If z € D,, and z — B
in the spherical metric, then Q,(z) — C,,, and so u,(z) =ReS,, 0 0,(z) — 1.
Using a plane Brownian motion instead of a simple random walk in the above
argument, we conclude that u,(z) — 1 as z € D, and z — B, in the spherical
metric, uniformly in 7.

Suppose {v,}, chosen at the beginning of this proof, has a subsequence that
tends to B in the spherical metric. By passing to a subsequence, we may assume
that v, — B in the spherical metric. From the result of the last two paragraphs,
we see that g,(v,) — 1 and u,(v,) — 1. This contradicts the hypothesis that
|gn(vy) —uy(vy)| > €o. Thus {v,} has a positive spherical distance from B,. Since
the domain bounded by & and «; disconnects U, from B?, and {v,} C U, so
{v,} has a positive spherical distance from Bj too. Thus {v,} has a subsequence
that converges to some zp € Dy. Again we may assume that v, — zo. Then
uo(zo) = limuy (v,) and go(zo) = lim g, (v,), and so |uo(z0) — go(zo)| = 0. We
will get a contradiction by proving that go = ug in Dy.

Note that go is non-negative, since each g, is non-negative. We can find a Jordan
curve f in Do which satisfies the following properties. It disconnects B, from B?;
it is the union of finite line segments which are parallel to either x or y axis; and
it does not intersect U5, Z2. By Remark 2 in Section 3 and the uniform conver-
gence of Vf” gn t0 0y g0, and Vf " gn to dygo on some neighborhood of B, we have
/ 8 dngods = 0, where n is the unit norm vector on 8 pointed towards Bj. Thus gg
has a harmonic conjugate, and so does gg o J. We will prove goo J = Re S, from
which follows that go = uo. We have proved that ggoJ (z) — 1asA,, 3 z — Cp,.
It suffices to show that go o J(z) — 0asA,, \ U 3 z — Cy for any neighborhood
U of 1.

5.2. The existence of some sequences of crosscuts

For a doubly connected domain 2 and one of its boundary component X, we say
that y is a crosscut in 2 on X if y is an open simple curve in D whose two ends
approach two points (need not be distinct) of X in Euclidean distance. For such
¥, €\ y has two connected components, one is a simply connected domain, and
the other is a doubly connected domain. Let U (y) denote the simply connected
component of D \ y. Then dU(y) is the union of y and a subset of X.

Now Q¢ maps Dy conformally onto A, and QO(B?) = Cy. Similarly as The-
orem 2.15 in [13], we can find a sequence of crosscuts {yk} in Dy on B? which
satisfies
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(i) foreach k, yk+t1 N yk = gand U(y*) c U5,
(i) Qo(y%),k e N, are mutually disjoint crosscuts in A ,, on Cop; and
(i) U(Qo(y*)), k € N, forms a neighborhood basis of 1in A .

Note that U(Qo(y")) = Qo(U(¥*)), so U(Qo(y*™)) € U(Qo(y*)), for all
k € N. We will prove that there is some crosscut y,f in each D, on B} such that
y,f and Q, (y,{‘) converge to y* and Qg(y*), respectively, in the sense that we will
specify.

Now fix k € N and ¢ > 0. Parameterize y*¥ and Qo(y*) as the image of
the function a : [0,1] - DU B? and b : [0, 1] — A, U Cy, respectively, so
that b(t) = Qo(a(t)), for + € (0,1). We may choose s; € (0, 1/2) such that
the diameters of a[0, s;] and a[l — sy, 1] are both less than ¢/3. There is r; €
(0, )N (0, (1 —e~P0)/2) such that the curve b[s1, 1 — s1] and the balls B(b(0); r1)
and B(b(1); r1) are mutually disjoint. Suppose yk is contained in B(0; M) for
some M > ¢. There is Cyp; > 0O such that the spherical distance between any
21, 22 € B(0; 2M) is atleast Cps|z1 —z2|. So for every smooth curve y in B(0; 2M),
we have L#(y) > Cpy L(y),where L and L* denote the Euclidean length and spher-
ical length, respectively. Let r» = ry exp(—7272/ (C,zwsz)). Then we may choose
52 € (0, s1) such that b[0, s2] C B(b(0); r2) and b[1 — 52, 1] C B(b(1); r2).

For j =0, 1, let I'; be the set of crosscuts y in A, on Cp such that

BMb(j); ) ND C U(y) CBB(): ).
Then the extremal length of I'; is less than
27/(Inry —Inry) = C3,e?/(367).

If n is big enough, then B(b(j); r1) NID C A, ,soall y € I'; are in A, . Then
the extremal length of O, I j) is also less than CZZVISZ /(361). Since the spherical
area of O, laA pn) 18 not bigger than that of C, which is 4, there is some B, ; in
Q;l (I";) of spherical length less than Cys¢/3. Since

J(bls2, 1 — $2]) = als2, 1 —s2] € y* € BO; M),

and Q, 1 converges to J uniformly on b[sp, 1 — s7], so if n is big enough, then
Q;l(b[sz, 1 —s2]) C B(0; 1.5M). Every curve in I'; intersects b[s2, 1 — s2],
so Bn,j € Q;l(FA/) intersects Q;l(b[sz,l —s52]) C BO;1.5M). If B,; ¢
B(0; 2M), then thereis asubarc y of B, ; thatis contained in B(0; 2M) and connects
OB(0; 1.5M) with dB(0; 2M). So L¥(y) > Cy L(y) > Cpy M /2. This is impossi-
ble since L*(y) < L*¥(B4,j) < Cme/3 < CyyM/2.Thus B, ; C B(0; 2M), and so
L(Bn,j) < L#(,Bn,j)/CM < &/3. Since B, ; has finite length, it is a crosscut in D,
on Bf. Let s, o be the biggest s such that Qn_1 (b(s)) € Bn.0, and sy,1 the biggest
s such that Q;l(b(l —5)) € Bn.1. Then s,.0, 50,1 € [s2,51]. Let ,3,’!,0 and ,3,’,,1
denote any one component of 8,0\ { Q" (b(s1,0))} and B, 1 \{Q; " (b(1 = 50,1},
respectively. Let

v = 0, Blsno0, 1 = 51D U B0 U B, -
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Then yn is a crosscut in D, on B}. As r| < &, the symmetric difference between
O (y ) and Qg (y¥) is contained i 1n B((0); &) UB(b(1); ¢). Since b[sp,0, 1 —$n.1]
is contained in b[s, 1 — s2], which is a compact subset of Dy, so if n is big enough,
then the Hausdorff distance between Q;l (blsn,0. 1 — sp1]) and alsp.0, 1 — su.1]
is less than e /3. Now the Hausdorff distance between O, 1(b[s,,,(), 1 —s,,1]) and
yn is not bigger than the bigger diameter of ,Bn o and ﬂn |» Which is less than £/3.
And the Hausdorff distance between a[s, o, 1 — s,,1] and yk is not bigger than
the bigger diameter of a[0, s, 0] and a[l — s,.1, 1], which is also less than &/3.
So the Hausdorff distance between y,{‘ and yF is less than e. Now we proved that
we can choose crosscuts y,X in D, on BY such that yX converges to y*, and the
symmetric difference of Q, (y ) and Qo(yk) converges to the two end points of
Q0(y"), respectively, both in the Hausdorff distance, as n tends to infinity.

5.3. Constructing hooks that hold the boundary

Now fix k > 2. We still parameterize y*¥ and Qo (y*) as the image of the func-
tiona : [0,1] > DU B? and b : [0, 1] — A, U Cy, respectively, such that
b(t) = Qo(a(t)), for t € (0, 1). Let Q% denote the domain bounded by Qg (y*~1)
and Qo(yk+1) 1nA Then a0k is composed of Qo(yk b, Qo(yk‘H) and two
arcs on Cyp. Let po and ,01 denote these two arcs such that b(j) € p] j =01

If n is big enough, from the convergence of O, (ynil) to Qo(ykil), we have
Qi N Qu(ra ™) =0, and U(Qu (1) € U(Qu(yE™). Let QF denote
the domain bounded by Q, (;/,’f_1 )and Q, ()/,’frl )in A, . Then the boundary of Q’,‘l
iscomposed of O, (y,]l‘_l), Qo ()/,f*‘l ), and two disjointarcs on Cy. If n is big enough,
then each of these two arcs contains one of »(0) and b(1). Let ,0,]:70 and ,o,]f,l denote

these two arcs so that b(j) € p,]f’j,j =0, 1. Now suppose ¢ : (—1, +1) — QFisa
crosscut in Q% with c(£1) € Qo(y**!). Then c(—1, +1) divides Q¥ into two parts:
QF and Q’;,sothatpk C aszk j =0, 1.If nis bigenough, then c(£1) € Q,,(ykil)
and c(—1, +1) C Qk Thus c(—1, 4+1) also divides Qk into two parts: Q2 0 and
Qﬁ 1» so that ,o ; C 8Qk . Let A (A,,}, resp.) be the extremal distance between
Qo(y*™H (Qn(J/n 1), resp.) and Qo()/k+1) (On(yyt), resp.) in @4 (2, resp.),
J = 0,1.Itis clear that A, ; — Aj asn — 00, and A; < 0. Thus {An,j} s
bounded by some /i > 0.

Since yk N yk£l = @ and ykil converges to y ! in the Hausdorff distance,
there is d; > 0 such that the distance between y* and yki] is greater than dy,
if n is big enough. For x € Dg and r > 0, let Bo(x r) and B, (x; r) denote
the connected component of B(x;r) N Dy and B(x; r) N D,, respectively, that
contains x. Since D, — Dy, it is easy to prove that ﬁn (x;r) —> ﬁo(x; r). Let
ey = dy exp(—2m Ii). Suppose so € (0, 1) is such that the diameter of a (0, so) isless
than e;. By the construction of yn , we have Qk — QK so 0, 1(Q )= Qf (Qk)
Now a(sp) € y* C [N (Qk) Hence a(so) € O, 1(Qk) if n is big enough. Since
the distance from a(sg) to ykil is bigger than di > e, B, (a(so); ex) is contained
in 0, 1(QF). We claim that Bn (a(so); ex) C Q; (2t (0)» if 72 is big enough.
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Since a(0) € 30, (2F), [a(0) — a(so)| < ek, and Q; (k) — 051 (@),
so the distance from a(sg) to BQ’l(Qk)) is less than ey, if n is big enough.
Now choose 7 € 90, 1(Qk) that is the nearest to a(sp). Then the line segment
la(sg), zn) C Bn (a(so); er). Hence Qpla(so), zn) is a simple curve in Qk such
that 0, (z) tends to some z,, € 852]‘, as z € [a(sg),zn) and 7z — z,. Since
& yk:tl’ Z ¢ Qn(ylfil). Thus z), is on pfl’j for some j € {0, 1}. Since

0, (B (a(so); ex)) — QoBo(also); ex)) > b(so), and b(so) € Q’;,o, soif n is
big enough, Q,,(]~3n (a(sp); er)) intersects Qk (- For such n, if z), € p,]fyl, then all
curves in Q; I(Q” o) that go from yn 1 to yk I will pass ﬁn (a(sg); er). And so
they all cross some annulus centered at a(sg) with inner radius e, and outer radius
greater than d. So the extremal distance between y*~! and y*!in Q! (in j)is
greater than (Indy — Iney)/(27w) = Ix. However, by conformal invariance, this ex-

tremal distance is equal to A, ;, which is not bigger than Iy if n is big enough Thus

7, € ,0,]; o for n big enough. Similarly, z), € ,o” pand O, (B (a(so); ex)) N Qn | £ D
can not happen at the same time when n is big enough. So if n is big enough,
0,B,(a(so); ex)) is contained in Qk 0 Similarly, we let s1 € (sp, 1) be such that
the diameter of a(sy, 1) is less than ¢, then Q,, (B,, (a(s1); ex)) C QF
enough.

For j = 0,1, a(s;) and a(j) determine a square of side length /; = |a(j) —
a(s;)| with vertices vo ; := a(s;), v2 j, v1,j, and v3 j, in the clockwise order, so
that a(j) is on one middle line [(vo ; + v3,;)/2, (v1,j + v2,;)/2]. This square is
contained in B(a(s;); \/Elj) C B(a(s;); 0.8ex), since I; < e, /2. And the union of
line segments [vg,;, v1 ], [v1,}, v2,j] and [vy,;, v3, ;] surrounds B(a(j); 1;/8).

For j =0, 1, let N; be the [; /20-neighborhood of [vo, ;, vy, ;] U [vy,, v2, ;1 U
[v2,/, v3,j].Thean C B(a(s;); ex).Chooseq; € (0,1;/30) suchthatB(a(s;); g;)
C Oy 1(@K). Form =0, 1,2, 3, let W, m,j = B(vm,j; q;). When n is big enough,
Wo,; C O, l(SZ ),and B(a(j); [;/30) intersects  Q;; 1(Qk) Suppose B; is a curve
in N; which starts from Wy ;, and reaches Wy j, W> ; and W3 ; in the order. Then
Bj disconnects a subset of E)Q;l (Qﬁ) from oo, if n is big enough. Since Q_l(SZ )
is a simply connected domain, §; Bi hits 00, 1(Q ). Let ,8” be the part of B; before
hitting 8 Q;, ' (Q2F). Then B C B.(a(sj); er) C Q; (ok ;) if n is big enough. So

Qn(,B") is a curve in Qk that tends to some point of 8Qk n,j atone end. This point
k+1 5

if n is big

n,1°

isnoton Q,(y, kel because the distance between y* and Vi
Hence Q, (ﬂ;’) intersects ,on’ i

Suppose I is a closed ball in Q (Qk) For j =0, 1, let I1; be a subdomain
of Qg (Qk) that contains / U Wy _; such that H is a compact subset of Qg (Qk)
Then I1; is contained in O l(Q]‘) for n big enough For x € 8,Z* N I, let Ax’
be the set of lattice paths of §, 72 that start from x, and hit Wo,j,» W1, W2 j and
W3, j in the order before exiting I1; U Nj. We may view B € A; ; as a continuous
curve. Let 8P denote the part of 8 € Aﬁ, j before exiting Q, 1(Qﬁ). Then BP»
can be viewed as a lattice path on D’S" We proved in the last paragraph that if n is
big enough, Q,(BPn) intersects ,on o forany g € A} ., X E SnZ2N1I,j=0,1.

is greater than ey.
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Thus for any Bp € A; o and B1 € A; |, By" U By disconnects yk=1 from yf+!
in 0, 1(%2}).

5.4. The behaviors of go o J outside any neighborhood of 1

Let P,f’ j be the probability that a simple random walk on 8,7 started from x
belongs to Az’ j By Lemma 3.8, if n is big enough, then P,i j is greater than some

ar > O forall x € 8,,Z2 N1, j = 0,1. We may also choose n big enough such
that V(D%) N1 is non-empty, and g, (x) is less than some by € (0, oo) for all
x € 8,Z% N I. We claim that if n is big enough, then g,(x) < max{by/ag, 1}
for every x € 8,Z> N (D, \ U (y,ﬁ‘_l)). Suppose for infinitely many n, there are
Xp € 8,22 N Dy \ U(y*~") such that g, (x,) > M > max{by/a, 1}. Since g,
is discrete harmonic on 8,72 N D, and gn < 1 on the boundary vertices of D,
except at P(w,), the tip point of w,, so there is a lattice path B, in D, that goes
from x, to P(w,) such that the value of g, at each vertex of B, is not less than
M. By the construction of y k+1 , if n is big enough, then U(Q,,(y,f“)) is some
neighborhood of 1 in A, and so U (y,{‘“) is some neighborhood of P(w,) in

D,,. Thus B, intersects both yk ! and y,{‘“. Choose vy € 6nZ2 N I. For every

oo € A 00 and pn 1 € .An |» the path pD" U plf)" disconnects 7/ =1 from yk‘H

Therefore ,on ,o | intersects B,,. This implies that for some j, € {0, 1}, for every
p e An J’
walk on 8,72 started from vy hits B, before d D, is greater than ay. Let t,, be the
first time this random walk hits 8, U @ D,,. Since g, is non-negative, bounded, and
discrete harmonic on §,Z% N D,,, so gn(vo) = Elg, (RWT,O (t))] = axM > by,
which is a contradiction. So the claim is proved.

By passing to a subsequence depending on k, we can now assume the following.
U(y,f“) is some neighborhood of P (w,) in D,; the value of g, on §,Z> N D, \
U (y**1) is bounded by some Mk > L Uy c U(y)) c Uyf1); the spheri-
cal distance between yn and X~ ! is greater than some R > 0; and the (Euclidean)
distance between y and yk+1 is greater than §,,. Since the end points of y,’f and
y,’f I are on BY, the spherical diameter of B is at least R. Let R be the spherical
distance between B; and ap. Then the spherical distance between B, and By is at
least R, as ap disconnects B from BY. Suppose v € V(D%) N D, \ U(y,f_l),
and dist*(v, BY') = d < R/2. Then dist*(v, B;) > R/2. Let RW” be a simple
random walk on 8,72 started from v, and l'k be the first time that RW” leaves

D, \ U(yk) Then RW? (rk) is either on By, oron By, orin U (y, k) In the ﬁrst case,
gn(RW?” (rk)) = 1, and v should first exit B* (v, R/ 2) before hitting B,. In the sec-
ond and th1rd cases, since RW” (t —1)e D,\U (y ), and the Euclidean distance
between yn and y, k+1 is greater than 6 by construction, so [RW”(‘L’ —1),RW? (‘L’k)]
does not 1ntersect yk“ Thus in the second case, RW” (l’k) #* P(wy), and SO
2n(RW" (X)) = 0.In the third case, RW" (t¥) € D, \U(y,f“) 50 gn (RW" (t5)) <
My; and RW” first uses some edge that intersects X!, then uses some edge that
intersects yX at time t¥. So the spherical diameter of RWﬁ [0, T¥7 is at least Ry.
This implies that RW” should first exit B*(v; Ry/2) before hitting U (y¥). Let

v

we have ,0 Dn intersects f3,. Thus the probability that a simple random
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R} = min{R/2, Ry /2}, then by Lemma 3.7,
P[RW" (}) & BI'l < Co((8, + d)/R})C",

for some absolute constants Cp, C1 > 0. So we have g,(v) < MyCo((8, +
d)/R,/{)Cl.

Suppose z € Dy \ U(yk’l) \ yk’l, and dist#(z, B?) = d < R/4. Choose
r € (0, d/2) such that B¥(z, r) is bounded and B (z; r) € Do \ U(y*~1) \ y*~1.
If n is big enough, then B*(z; r) ¢ D, \ U ()/,f_l), and the spherical distance from
every v € B¥(z;r) to By is less than 2d < R/2. Thus

gn(v) < MyCo((8, +2d)/R)CY, Vv € 8,2 NB*(z; 7).

Since gg is the limit of g,,, go(z) < MkC()(2d/R)C1 . Thus forevery k > 2, go(z) —
0,as z € Do\ U(yk’l) \ yk’l, and z — Bj in the spherical metric, and so
g00J(@ — 0asz € Ay \ U(Qo(y* 1), and z — Cy. Since U(Qo(y")),
k € N, forms a neighborhood basis of 1 in A, so forany r > 0, go o J(z) — Oif
z €Ay, \B(1,7) and z — Cy. This is what we need at the end of 5.1. m|
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