RANK-ONE CONVEX ENERGY UNDER CERTAIN GEOMETRIC FLOWS

BAISHENG YAN

Abstract. In this paper, we generalize some of the interesting properties of energy $E(w) = \int_{\Omega} f(\nabla w) \, dx$ on maps w generated by equilibrium or gradient-like flows to the geometric flows $u_t \cdot \text{div}(Df(\nabla u)) = 0$ on $\Omega \times I$, where Ω is a bounded domain in \mathbb{R}^n and I is some interval containing 0 in \mathbb{R}. We show that for suitably defined Lipschitz weak flows u the map $w(x) = u(x, \theta(x))$ for any Lipschitz function θ vanishing on $\partial \Omega$ will have no lower energy than $u_0 = u(\cdot, 0)$ if f is rank-one convex.

1. Introduction

Given a function $f: M^{m \times n} \to \mathbb{R}$ on the space of $m \times n$ matrices, Morrey’s quasiconvexity condition for f at $0 \in M^{m \times n}$ requires that the following inequality

$$(1.1) \quad E(w) = \int_{\Omega} f(\nabla w(x)) \, dx \geq |\Omega| f(0) = E(0)$$

hold for all Lipschitz functions $w: \Omega \to \mathbb{R}^m$ with $w|_{\partial \Omega} = 0$. Here Ω is a bounded Lipschitz domain in \mathbb{R}^n and $\nabla w = (w^i_{x,a})$ is the Jacobi matrix of w defined pointwise on Ω.

There has been a considerable amount of work on Morrey’s quasiconvexity in the calculus of variations and nonlinear elasticity [3, 5, 8, 9, 10]. Integral estimates like (1.1) are also important for other problems in geometric mapping theory [2, 7], where some convexity (such as rank-one convexity) property of f may be known or easy to check. Recall that f is rank-one convex if, for any given $\xi \in M^{m \times n}$, $p \in \mathbb{R}^m$ and $a \in \mathbb{R}^n$, the function $h(s) = f(\xi + sp \otimes a)$ is a convex function of s on \mathbb{R}; here $p \otimes a$ stands for the matrix $(p'a_\alpha)$ in $M^{m \times n}$.

An important result of Sivaloganathan [11], following an earlier work of Ball [4], showed that if f is C^2 and rank-one convex then the inequality (1.1) holds for all maps w in the form of

$$(1.2) \quad w(x) = u(x, \theta(x)),$$

where $\theta \in C^1(\Omega)$ with $\theta(x) \in I$, some given interval containing 0, and $u(x, t)$, with $u(x, 0) = 0$, is a family of C^2-equilibria (also smooth in t) of energy E; that is,

$$(1.3) \quad \text{div} Df(\nabla u(x, t)) = 0 \quad \text{in} \ \Omega \ \text{for all} \ t \in I.$$
In particular, under the rank-one convexity of f, inequality (1.1) holds for all maps $w(x) = Q(\theta(x))x$ with any C^2 function $Q: I \to \mathbb{M}^{m \times n}$ such that $Q(0) = 0$ and $\theta \in C^1(I)$ with $\theta(x) \in I$.

Using similar computations to [4, 11], Evans [6] has observed some interesting properties of $E(w)$ for maps w of the form (1.2) generated by the smooth gradient flows $u(x,t)\theta$ of rank-one convex energy E; that is, (1.4)

$$u_t(x,t) = \text{div}(Df(\nabla u(x,t))).$$

The main steps in [4, 6, 11] are to consider the Lagrangian

$$L(x,t,a) = f(\nabla u(x,t)) + Df(\nabla u(x,t)) : (u_t(x,t) \otimes a)$$

and the action functional

$$A(\theta) = \int_\Omega L(x,\theta(x),\nabla \theta(x)) \, dx.$$

Note that $L_a(x,t,a) = L_a(x,t)$ is independent of a and $L = f(\nabla u) + L_a \cdot a$. If f, u are C^2, one can easily verify the following point-wise identity:

(1.5) $$L_t(x,\eta,\nabla \eta) - \text{div}(L_a(x,\eta)) = -u_t(x,\eta) \cdot [\text{div}(Df(\nabla u))](x,\eta)$$

for all $\eta \in C^1(\Omega)$. Therefore, if u satisfies the equilibrium flow (1.3) then it can be shown that the action $A(\theta)$ is a null-Lagrangian [11]: if u satisfies the gradient flow (1.4) then $L_t(x,\eta,\nabla \eta) - \text{div}(L_a(x,\eta)) \leq 0$ for all $\eta \in C^1(\Omega)$, which has been useful in [6].

In this paper, we try to extend the similar calculations to maps w of form (1.2) generated by certain geometric flows $u(x,t)$ that may not satisfy smoothness requirements. Assume here f is only C^1 and rank-one convex and, motivated by identity (1.5), we focus on the following geometric flow:

(1.6) $$u_t(x,t) \cdot \text{div} Df(\nabla u(x,t)) = 0 \quad \text{on } \Omega \times I.$$

This generalizes the equilibrium flow (1.3). Note that (1.6) can be written as a divergence form in the (x,t)-space as follows:

(1.7) $u_t \cdot \text{div} Df(\nabla u) = \text{div}(u_t \cdot Df(\nabla u)) - (f(\nabla u))_t = 0.$

Also, in order for the action functional $A(\theta)$ to be well-defined, it is necessary that the Lagrangian $L(x,t,a)$ be at least Carathéodory, that is, measurable in x and continuous in (t,a). Therefore, we will define weak solutions of flow equation (1.6) as follows.

Definition 1.1. Let $\Omega_I = \Omega \times I$ and $u \in W^{1,\infty}(\Omega_I;\mathbb{R}^m)$. We say u is a Lipschitz weak solution to (1.6) or simply a weak flow provided that $\nabla u(x,t)$ and $u_t(x,t)$ are continuous in $t \in I$ for almost every $x \in \Omega$ and that, for any bounded Lipschitz domain $U \subseteq \Omega_I$ and for any $\zeta \in W^{1,\infty}_0(\Omega_I)$, it follows

(1.8) $$\int_U [Df(\nabla u) : (u_t \otimes \nabla \zeta) - f(\nabla u)\zeta] \, dxdt = 0.$$

We shall see that under some mild regularity assumption any weak solution to the equilibrium flow (1.3) will be a weak flow for (1.6).

The main result of this paper is the following theorem whose proof will be given in Section 3.
Theorem 1.1. Let f be C^1 and rank-one convex and $u \in W^{1,\infty}(\Omega;\mathbb{R}^m)$ be a weak flow of (1.6) with $u(x,0) = u_0(x)$. Given any Lipschitz function $\theta \in W^{1,\infty}_0(\Omega)$ with $\theta(x) \in I$ for all $x \in \Omega$, let $w(x) = u(x,\theta(x))$. Then $w - u_0 \in W^{1,\infty}_0(\Omega;\mathbb{R}^m)$ and $E(w) \geq E(u_0)$.

Remark 1.1. (a) The flow equation (1.6) is under-determined in the sense that there are m unknown functions u' in u and, in general, existence of weak flows for (1.6) is not known. One can try to study many simple flows that satisfy (1.6). For example, let P be any constant matrix such that $P + P^T = 0$; then the flow

$$u_t = \text{div}(PDf(\nabla u)).$$

will satisfy (1.6). In the case when $m = 2$, $f(\xi) = \frac{1}{2}||\xi||^2$ and constant matrix function $P = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, the equation (1.9) for $u = (v, w)$ becomes $v_t = \Delta w$, $w_t = -\Delta v$, which reduces to the beam equation $v_{tt} + \Delta^2 v = 0$ in linear elasticity.

(b) Certain special weak flows of (1.6) for general rotation-invariant functions f will be studied later. Note that the functions studied in [1] are rotation-invariant. It will be shown that any Lipschitz critical points of the functional

$$\int_{\Omega} \left(f(\nabla v(x)) + \frac{\lambda(x)}{2} |v(x)|^2 \right) \, dx,$$

where $\lambda \in L^1(\Omega)$ is any given function, will generate a weak flow of (1.6); see Section 4.

(c) This result may provide a new way of establishing quasiconvexity for certain rank-one convex functions. Given any $w \in W^{1,\infty}_0(\Omega;\mathbb{R}^m)$, let $u(x,t) = w(x) + (t - w^m(x))v(x,t)$, where $v(x,t)$ with $v^m \equiv 1$ is to be determined. Then $w(x) = u(x, w^m(x))$ and $u_0 = u(x,0) = (\tilde{w}^1, \ldots, \tilde{w}^{m-1}, 0)$, where $\tilde{w}^i(x) = w^i(x) - w^m(x)v^i(x,0)$. Therefore, if one could solve (1.6) for such a u to determine $v^i(x,t)$ ($i = 1, \ldots, m-1$) then $E(w) \geq E(u_0)$; repeating in this way, one would obtain $E(w) \geq \cdots \geq E(u_{w,m-1}) = E(0)$; this would prove the quasiconvexity of f at 0. However, in view of Šverák’s well-known example [12], this procedure will certainly fail in general.

2. **LAGRANGIANS GENERATED BY WEAK FLOWS**

Let $f: \mathbb{M}^m \to \mathbb{R}$ be a C^1 function. We define its derivative map $Df: \mathbb{M}^{m \times n} \to \mathbb{M}^{m \times n}$ by $Df(\xi) = (\frac{\partial f}{\partial \xi})$ for all $\xi \in \mathbb{M}^{m \times n}$. For $\xi, \eta \in \mathbb{M}^{m \times n}$, write $\xi: \eta = \text{tr}(\xi \eta)$.

If $p \in \mathbb{R}^m$, $\xi \in \mathbb{M}^{m \times n}$ then denote $b = p \cdot \xi = \xi^T p$ to be the vector in \mathbb{R}^n with $b_\alpha = \sum_{i=1}^m p^i \xi^i_\alpha$ for $\alpha = 1, \ldots, n$. So we have $\xi: (p \otimes a) = (p \cdot \xi) \cdot a$.

Let Ω be a bounded Lipschitz domain in \mathbb{R}^n and I be an interval containing 0. Let $\Omega_I = \Omega \times I$ and $u \in W^{1,\infty}(\Omega_I;\mathbb{R}^m)$. Assume that $\nabla u(x,t)$ and $u_t(x,t)$ are continuous in $t \in I$ for almost every $x \in \Omega$. Define the Lagrangian

$$L(x,t,a) = f(\nabla u(x,t)) + Df(\nabla u(x,t)) : (u_t(x,t) \otimes a)$$

for $x \in \Omega$, $t \in I$ and $a \in \mathbb{R}^n$, which is a Carathéodory function in the sense that $L(x,t,a)$ is measurable in x for all (t,a) and is continuous in (t,a) for almost every x. Define then the total action functional

$$A(\theta) = \int_{\Omega} L(x,\theta(x),\nabla \theta(x)) \, dx.$$
Given any \(\theta \in W^{1,\infty}(\Omega; I) \), define a function \(g : [0,1] \to \mathbb{R} \) by
\[
g(s) = A(s\theta) = \int_{\Omega} L(x, s\theta(x), s\nabla \theta(x)) \, dx.
\]
Let \(\Omega_0 = \{ x \in \Omega \mid \theta(x) \neq 0 \} \) and
\[
U_0 = \{ (x,t) \in \Omega_I \mid x \in \Omega_0, \ 0 < t < \theta(x) \ or \ 0 > t > \theta(x) \}.
\]
Then \(U_0 \) is a bounded Lipschitz domain in \(\Omega_I \). For any \(\epsilon > 0 \), let \(\rho_\epsilon : \mathbb{R} \to \mathbb{R} \) be defined by
\[
\rho_\epsilon(t) = \begin{cases} 1 & \text{if } |t| \geq 2\epsilon \\ \frac{|t|}{\epsilon} - 1 & \text{if } \epsilon \leq |t| \leq 2\epsilon \\ 0 & \text{if } |t| \leq \epsilon. \end{cases}
\]
Then we have the following result.

Proposition 2.1. Function \(g \) is continuous on \([0,1]\). Moreover, for all \(\phi \in C^\infty_0([0,1]) \),
\[
\int_0^1 g(s)\phi'(s) \, ds = \lim_{\epsilon \to 0^+} \int_{U_0} L \left(x,t, \frac{t\nabla \theta(x)}{\theta(x)} \right) \phi' \left(\frac{t}{\theta(x)} \right) \rho_\epsilon(\theta(x)) \, dx
\]

Proof. The continuity of \(g \) follows from the Carathéodory property of Lagrangian \(L \). We now prove the limit identity. Let \(N = \{ x \in \Omega \mid \theta(x) = 0 \} \). Then \(g(s) = \int_{\Omega_0} L(x, s\theta, s\nabla \theta) \, dx + c \), where \(c = \int_N L(x,0,0) \, dx \). Let
\[
g_\epsilon(s) = \int_{\Omega_0} \rho_\epsilon(\theta(x)) L(x, s\theta(x), s\nabla \theta(x)) \, dx.
\]
Then
\[
\int_0^1 g(s)\phi'(s) \, ds = \lim_{\epsilon \to 0^+} \int_0^1 g_\epsilon(s)\phi'(s) \, ds.
\]
By Fubini’s theorem,
\[
\int_0^1 g_\epsilon(s)\phi'(s) \, ds = \int_{\Omega_0} \left(\int_0^1 L(x, s\theta, s\nabla \theta)\phi'(s) \, ds \right) \rho_\epsilon(\theta(x)) \, dx
\]
\[
= \int_{\Omega_0} \left(\int_0^{\theta(x)} L \left(x,t, \frac{t\nabla \theta(x)}{\theta(x)} \right) \phi' \left(\frac{t}{\theta(x)} \right) \, dt \right) \rho_\epsilon(\theta(x)) \, dx
\]
\[
= \int_{\Omega_0} L \left(x,t, \frac{t\nabla \theta(x)}{\theta(x)} \right) \phi' \left(\frac{t}{\theta(x)} \right) \rho_\epsilon(\theta(x)) \, dx \, dt.
\]
This completes the proof. \(\square \)

3. PROOF OF THE MAIN THEOREM

Let \(f \) be a \(C^1 \) rank-one convex function and \(u \) be a weak flow for (1.6) defined as above. The rank-one convexity of \(f \) is equivalent to that the inequality
\[
(3.1) \quad f(\xi + p \otimes a) \geq f(\xi) + Df(\xi) : (p \otimes a)
\]
holds for all \(\xi \in M^{m \times n}, \ p \in \mathbb{R}^m, \ a \in \mathbb{R}^n \).

Assume \(\theta \in W^{1,\infty}_0(\Omega; I) \) and let \(w(x) = u(x, \theta(x)) \). Then it can be shown that \(w \in W^{1,\infty}(\Omega; \mathbb{R}^m) \) and
\[
\nabla w(x) = (\nabla u)(x, \theta(x)) + u_t(x, \theta(x)) \otimes \nabla \theta(x), \quad \text{a.e. } x \in \Omega.
\]
From the rank-one convexity of \(f \), it follows that
\[
f(\nabla w(x)) \geq f(\nabla u(x, \theta(x))) + Df(\nabla u(x, \theta(x))): [u_t(x, \theta(x)) \otimes \nabla \theta(x)]
\]
\[
= L(x, \theta(x), \nabla \theta(x))
\]
for almost every \(x \in \Omega \), where \(L(x, t, a) \) is the Lagrangian defined above. Hence it follows that
\[
E(w) = \int_{\Omega} f(\nabla w(x)) \, dx \geq A(\theta),
\]
where \(A(\theta) \) is the total action of \(L \) defined above. Note that \(A(0) = E(u_0) \), where \(u_0(x) = u(x, 0) \). Therefore, in view of (3.2), Theorem 1.1 is proved once we prove the following result.

Proposition 3.1. As before, let \(g(s) = A(s\theta) \) for \(s \in [0, 1] \). Then \(g \) is a constant on \([0, 1]\).

Proof. It is enough to show \(\int_0^1 g(s) \phi'(s) \, ds = 0 \) for all \(\phi \in C^1_0([0, 1]) \). We use the same notation as above. By Proposition 2.1, it suffices to show
\[
\lim_{\epsilon \to 0^+} \int_{U_0} L(x, t, \frac{t\nabla \theta(x)}{\theta(x)}) \phi'(\frac{t}{\theta(x)}) \rho_\epsilon(\theta(x)) \, dx \, dt = 0,
\]
Let
\[
\zeta(x, t) = \rho_\epsilon(\theta(x)) \phi\left(\frac{t}{\theta(x)}\right).
\]
Since \(\theta \in W^{1, \infty}(\Omega) \), we have \(\zeta \in W^{1, \infty}(U_0) \) and
\[
\zeta_t = \phi'\left(\frac{t}{\theta(x)}\right) \rho_\epsilon(\theta(x)) \frac{\rho_\epsilon'(\theta(x)) \nabla \theta(x) - \rho_\epsilon(\theta(x)) \phi'\left(\frac{t}{\theta(x)}\right) \frac{t\nabla \theta(x)}{\theta^2(x)}}{\theta(x)}.
\]
Therefore,
\[
Df(\nabla u): (u_t \otimes \nabla \zeta) - f(\nabla u) \zeta_t = \phi\left(\frac{t}{\theta}\right) \rho_\epsilon'(\theta) Df(\nabla u): (u_t \otimes \nabla \theta) - L(x, t, \frac{t\nabla \theta}{\theta}) \phi'\left(\frac{t}{\theta}\right) \rho_\epsilon(\theta).
\]
Since \(u(x, t) \) is a weak flow of (1.6), by (1.8), it follows that
\[
\int_{U_0} L(x, t, \frac{t\nabla \theta}{\theta}) \phi'\left(\frac{t}{\theta}\right) \rho_\epsilon(\theta) \, dx \, dt = \int_{U_0} \phi\left(\frac{x}{\theta}\right) \rho_\epsilon'(\theta) Df(\nabla u): (u_t \otimes \nabla \theta) \, dx \, dt.
\]
Note that \(\rho_\epsilon'(t) = 0 \) when \(|t| > 2\epsilon\) or \(|t| < \epsilon\) and \(|\rho_\epsilon'(t)| = \frac{1}{\epsilon} \) when \(\epsilon < |t| < 2\epsilon\). Also note that all \(\phi, \nabla u, u_t \) and \(\nabla \theta \) are bounded. Hence
\[
\left| \int_{U_0} \phi\left(\frac{x}{\theta}\right) \rho_\epsilon'(\theta) Df(\nabla u): (u_t \otimes \nabla \theta) \, dx \, dt \right| \leq C |U'|/\epsilon,
\]
where \(U' \subset U_0 \) is the open set defined by
\[
U' = \{(x, t) \in U_0 | \epsilon < |\theta(x)| < 2\epsilon, 0 < t < \theta(x) \text{ or } 0 > t > \theta(x)\}.
\]
Let \(\Omega^\epsilon = \{ x \in \Omega | \epsilon < |\theta(x)| < 2\epsilon \} \). Obviously, \(U^\epsilon \subset \Omega^\epsilon \times (-2\epsilon, 2\epsilon) \), and hence \(|U^\epsilon| \leq 4\epsilon|\Omega^\epsilon| \). Clearly, \(|\Omega^\epsilon| \to 0 \) as \(\epsilon \to 0^+ \). Therefore, (3.3) follows from (3.5) and (3.6).

Finally, we remark that under some mild regularity assumption any weak solution to the equilibrium flow (1.3) will be a weak flow for (1.6). Here by a weak solution to (1.3) we mean a map \(u \in W^{1,\infty}(\Omega_I; \mathbb{R}^m) \) such that

\[
\int_U Df(\nabla u(x,t)) : \nabla \varphi(x,t) \, dx dt = 0
\]

for all bounded domains \(U \subseteq \Omega_I \) and all \(\varphi \in W^{1,1}_0(U; \mathbb{R}^m) \).

Proposition 3.2. Let \(u \in W^{1,\infty}(\Omega_I; \mathbb{R}^m) \) be a weak solution to (1.3). Assume the weak derivatives \(\nabla u_t \) exist and belong to \(L^p(U) \) for some \(p > 1 \). Then, for any bounded Lipschitz domain \(U \subseteq \Omega_I \) and any \(\zeta \in W^{1,\infty}_0(U) \), it follows

\[
\int_U [Df(\nabla u) : (u_t \otimes \nabla \zeta) - f(\nabla u)\zeta] \, dx dt = 0.
\]

Proof. The proof follows from a standard approximation argument. Let \(u^\epsilon \) be the standard mollifier of \(u \) on \(\Omega_I \). Use \(\varphi = \zeta u^\epsilon \) as test function in (3.7) above to obtain

\[
\int_U Df(\nabla u(x,t)) : \nabla \zeta(x,t)u^\epsilon_t(x,t) \, dx dt = 0.
\]

Since \(\nabla (\zeta u^\epsilon) \) is bounded in \(L^p(U) \), it follows from the above equation that

\[
\lim_{\epsilon \to 0} \int_U Df(\nabla u^\epsilon(x,t)) : \nabla (\zeta(x,t)u^\epsilon_t(x,t)) \, dx dt = 0.
\]

However, it is easy to see that

\[
\int_U Df(\nabla u^\epsilon(x,t)) : \nabla (\zeta(x,t)u^\epsilon_t(x,t)) \, dx dt = \int_U \int_U [Df(\nabla u) : (u_t \otimes \nabla \zeta) \times \nabla \zeta] \, dx dt = \int_U \int_U [Df(\nabla u) : (u^\epsilon_t \otimes \nabla \zeta)] \, dx dt = \int_U \int_U [-\zeta_t f(\nabla u^\epsilon) + Df(\nabla u^\epsilon) : (u^\epsilon_t \otimes \nabla \zeta)] \, dx dt.
\]

Letting \(\epsilon \to 0 \) in (3.9)-(3.12) yields (3.8). This completes the proof. \(\square \)

Remark 3.1. (a) The result implies that the regular equilibrium flows \(u \) always generate maps \(w \) via (1.2) that have higher energy than \(u_0 \). For example, if \(Q : I \to M^{m \times n} \) is \(C^1 \), then \(u(x,t) = Q(t)x \) will be a weak flow for (1.6).

(b) A singular equilibrium flow may instead generate some map \(w \) that violates the inequality (1.1) even for a quasiconvex function \(f \). As an example, consider \(u(x,t) = Q(t)x \) and \(Q(t) = ((1 - t)^{-2} - 1)J \), where \(J \) is any given \(n \times n \) matrix such that \(|J|^n = -n^{n/2} \det J > 0 \). Then \(u(x,t) \) is an equilibrium flow (of any \(f \)) for all \(t < 1 \) (but blowing up at \(t = 1 \)). Let \(f(\xi) = |J + \xi|^n - n^{n/2} \det(J + \xi) \) and \(\theta(x) = 1 - |x| \) for the unit ball in \(\mathbb{R}^n \). In this case, \(w(x) = u(x, \theta(x)) = ((|x|^{-2} - 1)Jx \) satisfies \(f(\nabla w(x)) = 0 \) for all \(x \neq 0 \) and \(f \) is rank-one convex (in fact, polyconvex), but \(f(0) > 0 \). Such a result has also been observed earlier in [13].
4. Rotation-invariant functions

In this final section, we study a special class of functions f and some special weak flows. We assume $f : \mathbb{M}^{m \times n} \to \mathbb{R}$ is rotation-invariant; that is,

$$(4.1) \quad f(R \xi) = f(\xi), \quad \forall \ R \in SO(m), \ \xi \in \mathbb{M}^{m \times n},$$

where $SO(m)$ is the set of all rotations in \mathbb{R}^m defined by

$$SO(m) = \{ R \in \mathbb{M}^{m \times m} \mid R^T R = I, \det R = 1 \}.$$

Lemma 4.1. If f is C^1 and satisfies (4.1), then

$$\begin{align*}
(4.2) & \quad Df(R \xi) = R Df(\xi), \quad \forall \ R \in SO(m), \ \xi \in \mathbb{M}^{m \times n}, \\
(4.3) & \quad Df(\xi) \xi^T = \xi (Df(\xi))^T, \quad \forall \ \xi \in \mathbb{M}^{m \times n}.
\end{align*}$$

Proof. (4.2) follows easily from (4.1); so we prove (4.3) only. Let P be any matrix in $\mathbb{R}^{m \times m}$ such that $P + P^T = 0$. Define $R(t) = e^{tP}$. Then $R(t)$ is C^1 in $t \in \mathbb{R}$ with $R(t) \in SO(m)$ and $R(0) = I, R'(0) = P$. Differentiate the equation $f(R(t) \xi) = f(\xi)$ with respect to t and we have

$$Df(R(t) \xi) : [R'(t) \xi] = R'(t) : [\xi (Df(R(t) \xi))^T] = 0.$$

Letting $t = 0$ yields $P : [\xi (Df(\xi))^T] = 0$, which holds for all P such that $P + P^T = 0$. This in turn implies $\xi (Df(\xi))^T$ is symmetric: $\xi (Df(\xi))^T = Df(\xi) \xi^T$, proving (4.3). \qed

We look for solutions of flow (1.6) in the form of $u(x, t) = R(t) v(x)$, where $R : I \to SO(m)$ is C^1 on I. We search for v so that all such u’s are weak flows of (1.6).

We have the following result.

Theorem 4.2. Let $f : \mathbb{M}^{m \times n} \to \mathbb{R}$ be C^1 and satisfy (4.1). Suppose $v \in W^{1, \infty}(\Omega ; \mathbb{R}^m)$ is a weak solution to the equation

$$\begin{align*}
(4.4) & \quad \text{div}(Df(\nabla v)) = \lambda(x) v,
\end{align*}$$

where $\lambda \in L^1(\Omega)$ is a scalar function. Then $u(x, t) = R(t) v(x)$ is a weak flow of (1.6) for all C^1 functions $R : I \to SO(m)$.

Proof. Clearly, we have $u \in W^{1, \infty}(\Omega ; \mathbb{R}^m)$ and that $u_t(x, t) = R'(t) v(x)$, $\nabla u_t(x, t) = R(t) \nabla v(x)$ are Carathéodory functions. We need to prove (1.8). To this end, let U be any bounded Lipschitz domain in Ω_I and $\zeta \in W_0^{1, \infty}(U)$. By (4.1) and (4.2),

$$f(\nabla u(x, t)) = f(\nabla v(x)), \quad Df(\nabla u(x, t)) = R(t) Df(\nabla v (x)).$$

Since $f(\nabla u)$ is independent of t, it is easy to see that (1.8) is equivalent to

$$\begin{align*}
(4.5) & \quad \int_U R(t) Df(\nabla v(x)) : [R'(t) v(x) \otimes \nabla \zeta(x, t)] \, dx \, dt \\
(4.6) & \quad = \int_U R(t)^T R'(t) : [Df(\nabla v(x)) \nabla \zeta(x, t) \otimes v(x)] \, dx \, dt = 0.
\end{align*}$$

Extending ζ to all Ω_I by zero outside U, one can write the integral in (4.6) as

$$\int_U R(t)^T R'(t) : [Df(\nabla v(x)) \nabla \zeta(x, t) \otimes v(x)] \, dx \, dt = \int_I P(t) : K(t) \, dt,$$
Therefore, examples of nontrivial critical points should come with the cases when
\[(4.7) \]
implies that \(\lambda \) can then simplify the final result in the matrix form as follows:

\[\text{Since } R(t) \in SO(m) \text{ for all } t, \text{ it follows that } P(t) + P(t)T = 0. \text{ We will show that } K(t) = K(t)T \text{ for almost every } t \in I. \text{ To see this, we first note that equation (4.4) implies that} \]

\[\sum_{\alpha=1}^{n} \int_{\Omega} \frac{\partial f(\nabla \psi)}{\partial \psi_{\alpha}} \frac{\partial \phi}{\partial x_{\alpha}} \, dx = -\int_{\Omega} \lambda \psi \phi \, dx, \quad \forall \, i = 1, \ldots, m \]

for all \(\phi \in W^{1, \infty}_{0}(\Omega) \). For each \(j = 1, 2, \ldots, m \) and any fixed \(t \in I \), use \(\psi(x) = \psi^{j}(x)\zeta(x, t) \) as a test function in (4.7), and note that

\[\frac{\partial (\psi \zeta)}{\partial x_{\alpha}} = \zeta \frac{\partial \psi}{\partial x_{\alpha}} + \psi \frac{\partial \zeta}{\partial x_{\alpha}}. \]

We can then simplify the final result in the matrix form as follows:

\[\int_{\Omega} \xi Df(\nabla \psi)(\nabla \psi)^{T} \, dx + \int_{\Omega} Df(\nabla \psi) \nabla \zeta \otimes \psi \, dx
\]

\[= -\int_{\Omega} \lambda(x) \zeta(x, t) \psi(x) \otimes \psi(x) \, dx. \]

By (4.3), the first term on the left-hand side is a symmetric matrix, and so is the term on the right-hand side. This proves that \(K(t) = \int_{\Omega} Df(\nabla \psi) \nabla \zeta \otimes \psi \, dx \) is also a symmetric matrix. Therefore, \(P(t) : K(t) = 0 \) for almost every \(t \in I \). This proves (4.6); hence the theorem is proved. \(\Box \)

Remark 4.1. Any weak solution of (4.4) is a critical point of the functional (1.10) defined above. Rank-one convexity of \(f \) plays an important role in studying the existence of many critical points of this functional in a Sobolev space under certain growth conditions on \(f \). For instance, given any \(p \in \mathbb{R}^{m} \), the map \(\psi(x) = \psi(x)p \) will be a critical point of (1.10) if \(\psi(x) \) is a critical point of the functional

\[J(\psi) = \int_{\Omega} \left(f(p \otimes \nabla \psi(x)) + \frac{\lambda(x)}{2} |\psi(x)|^{2} \right) \, dx. \]

Note that since \(f \) is rank-one convex the Euler-Lagrange equation for functional \(J(\psi) \) is semi-linear elliptic. Also, if \(\lambda(x) \geq 0 \), then the functional \(J(\psi) \) is convex and thus the only critical point is \(\psi(x) = 0 \) in a suitable Sobolev space \(W^{1, p}_{0}(\Omega) \). Therefore, examples of nontrivial critical points should come with the cases when \(\lambda(x) < 0 \).

References

Department of Mathematics, Michigan State University, East Lansing, MI 48824

E-mail address: yan@math.msu.edu