(1) Show that a real number \(x \) satisfies \(x^2 - 2x - 3 < 0 \) if and only if \(-1 < x < 3\).

Proof. (a) We first prove the “if” part; that is, if \(-1 < x < 3\) then \(x^2 - 2x - 3 < 0 \).

So, assume \(-1 < x < 3\). Then \(x + 1 > 0 \) and \(x - 3 < 0 \), and hence

\[
x^2 - 2x - 3 = (x + 1)(x - 3) < 0.
\]

(b) We now prove the “only if” part; that is, if \(x^2 - 2x - 3 < 0 \) then \(-1 < x < 3\).

So assume \(x^2 - 2x - 3 < 0 \). This implies that the product \((x + 1)(x - 3)\) is negative, which is possible only in the following two cases:

(1) \(x + 1 > 0 \) and \(x - 3 < 0 \);

(2) \(x + 1 < 0 \) and \(x - 3 > 0 \).

Case (1) gives that \(-1 < x < 3\), while Case (2) gives that \(x < -1 \) and \(x > 3 \), which is not possible. Therefore, we must have the first case; that is, \(-1 < x < 3\).

This completes the proof.

(2) For each \(p \in \mathbb{P}_2 \), define \(T(p)(x) = p(x+1) - 5 \) for all \(x \in \mathbb{R} \). Show that \(T \) is a function from \(\mathbb{P}_2 \) to \(\mathbb{P}_2 \), and show that \(T : \mathbb{P}_2 \to \mathbb{P}_2 \) is a bijection.

Proof. We first show that \(T \) is a function from \(\mathbb{P}_2 \) to \(\mathbb{P}_2 \). Given each input \(p = a_0 + a_1x + a_2x^2 \in \mathbb{P}_2 \), its output under \(T \) is

\[
T(p) = p(x+1) - 5 = a_0 + a_1(x+1) + a_2(x+1)^2 - 5,
\]

which, after expansion, is a polynomial of degree \(\leq 2 \); that is, \(T(p) \in \mathbb{P}_2 \). So, the formula \(T \) defines a function from \(\mathbb{P}_2 \) to \(\mathbb{P}_2 \).

We now show that this function \(T : \mathbb{P}_2 \to \mathbb{P}_2 \) is a bijection; that is, \(T \) is both injective and surjective.

Step 1: We show that \(T : \mathbb{P}_2 \to \mathbb{P}_2 \) is **injective**. Assume \(T(p) = T(q) \), where \(p, q \in \mathbb{P}_2 \). This implies

\[
p(x+1) - 5 = q(x+1) - 5 \quad \text{for all} \quad x \in \mathbb{R}.
\]

Hence \(p(x+1) = q(x+1) \) for all \(x \), and so \(p(y) = q(y) \) for all \(y \in \mathbb{R} \); that is, \(p = q \), as polynomials in \(\mathbb{P}_2 \). This proves that \(T \) is injective.

Step 2: We show that \(T : \mathbb{P}_2 \to \mathbb{P}_2 \) is **surjective**. Assume \(q \in \mathbb{P}_2 \) and we need to show that there exists an element \(p \in \mathbb{P}_2 \) such that \(T(p) = q \).

[The Plan:] Suppose such a \(p \) exists. Then \(q(x) = T(p)(x) = p(x+1) - 5 \) for all \(x \in \mathbb{R} \). So \(p(x+1) = q(x) + 5 \) and, by letting \(y = x + 1 \), we have that \(p(y) = q(y - 1) + 5 \). This is how we define \(p \). The rest is to reverse this procedure to write the proof.]

Define \(p(x) = q(x - 1) + 5 \). Since \(q \in \mathbb{P}_2 \), as in Step 1, we have that \(p \in \mathbb{P}_2 \). For this \(p \in \mathbb{P}_2 \), we have

\[
T(p)(x) = p(x+1) - 5 = [q(x+1-1) + 5] - 5 = q(x) \quad \text{for all} \quad x \in \mathbb{R};
\]

that is, \(T(p) = q \) in \(\mathbb{P}_2 \). This proves that every element \(q \in \mathbb{P}_2 \) is an image under \(T \); thus, by definition, \(T : \mathbb{P}_2 \to \mathbb{P}_2 \) is surjective.

This completes the proof.