We consider only the set \(Z \) of integers. Let \(P \) be the statement: “The product of two even integers is even.”

(1) Write \(P \) as an implication using “if..., then...”.

Answer:

Statement \(P \) : If \(m \) and \(n \) are both even, then \(mn \) is even.

(2) Write the converse of \(P \).

Answer:

The converse of \(P \) : If \(mn \) is even, then \(m \) and \(n \) are both even.

(3) Write the inverse of \(P \).

Answer:

The inverse of \(P \) : If \(m \) or \(n \) is odd (not even), then \(mn \) is odd (not even).

(4) Write the contrapositive of \(P \).

Answer:

The contrapositive of \(P \) : If \(mn \) is odd (not even), then \(m \) or \(n \) is odd (not even).

(5) Prove that \(P \) is true.

Proof. Let \(m \) and \(n \) be both even. We show that \(mn \) is even. Since \(m \) and \(n \) are even, we write \(m = 2a \) and \(n = 2b \) for some \(a, b \in \mathbb{Z} \). Hence \(mn = (2a)(2b) = 4ab = 2(2ab) = 2c \), where \(c = 2ab \in \mathbb{Z} \). So \(mn = 2c \) is even.

(6) Prove that the converse of \(P \) is false.

Proof. Clearly, with \(m = 2 \) and \(n = 3 \), we have that the product \(mn = 2 \times 3 = 6 \) is even, but the factor \(n = 3 \) is not even. So, the converse of \(P \) is false.