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We discuss some recent developments in the study of regularity and stability for
a first order Hamilton-Jacobi system: ∇u(x) ∈ K, where K is a closed set of
n × m-matrices and u is a map from a domain Ω ⊂ Rm to Rn. For regularity
of solutions, we obtain a higher integrability from a very weak integral coercivity
condition known as the Lp-mean coercivity. For the stability, we study W 1,p-
sequences {uj} for which {∇uj} converges weakly and approaches the set K in
some point-wise sense, and describe a new approach to study the weak limits by the
so-called W 1,p-quasiconvex hull of K. Computation of quasiconvex hulls is usually
extremely hard, but some important new developments in the nonlinear partial
differential equations turn out to be greatly useful for our study.

1 Introduction

Many partial differential equations arising from problems in analysis, geometry
and mechanics can be written as a first order Hamilton-Jacobi system:

∇u(x) ∈ K, a.e. x ∈ Ω ⊆ Rm, (1)

where u: Ω → Rn and K is a subset of Mn×m, the set of all real n×m matrices.
Here ∇u(x) denotes the Jacobian matrix or the gradient of map u:

(∇u)ij = ∂ui/∂xj ; 1 ≤ i ≤ n, 1 ≤ j ≤ m.

A systematic study of Hamilton-Jacobi equations (when n = 1) has been
largely developed in P. L. Lions 21; while for the vectorial cases where m, n ≥
2, some recent attempt for such a study has been made by Dacorogna and
Marcellini 8,9, Müller and Šverák 25, Šverák 29,30, Yan 33,35, and Yan and Zhou
36,37,38.

In this note, I report on some recent developments in the study of regularity
and stability concerning the system (1). For regularity, the ultimate goal is
to obtain the right conditions on K which guarantee that the solutions be
smooth, for example, the C1,α-regularity for p-Laplacians of K. Uhlenbeck 32;
for stability, we are interested in certain convergence behaviors of the sequences
that satisfy (1) approximately.
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A sequence {uj} is called an approximating sequence of (1) if there exists
a non-negative continuous function f vanishing exactly on K such that

lim
j→∞

∫

Ω′

f(∇uj(x)) dx = 0 for all Ω′ ⊂⊂ Ω. (2)

An important problem is to study weakly convergent approximating sequences
of (1) and their weak limits in the Sobolev space W 1,p(Ω;Rn) consisting of
all Lp-integrable maps with Lp-integrable gradients. The notion of strong and
weak convergence in W 1,p(Ω;Rn) is defined as usual and denoted by “→” and
“⇀”, respectively. In particular, we say K is W 1,p-stable if for any weakly
(weakly* if p = ∞) convergent approximating sequence in W 1,p(Ω;Rn) the
weak limit u0 satisfies (1); we sayK isW 1,p-compact if every weakly convergent
approximating sequence of (1) converges strongly in W 1,1

loc (Ω;Rn). From the
definition, it is obvious that every W 1,p-compact set is W 1,p-stable.

An algebraic structure pertaining to both regularity and stability for (1) is
the so-called rank-one connections inK, which, by definition, are the closed line
segments connecting any two matrices in K that differ by a rank-one matrix
3,31. A necessary condition for K to be W 1,∞-stable is that K contains all its
rank-one connections, while a necessary condition for K to be W 1,∞-compact
is that K contains no rank-one connections. Moreover, if K has a rank-one
connection, some solutions to (1) may have discontinuous gradients 25.

In order to obtain the optimal conditions for W 1,p-stability of the sets,
we introduce an important concept of W 1,p-quasiconvex hulls or simply p-
quasiconvex hulls of the sets using Morrey’s notion of quasiconvex functions
23. Our p-quasiconvex hulls generalize the usual quasiconvex hulls introduced
in the study of microstructures of certain elastic materials using the theory
of Young measures 3,20,29,31. As we shall see later, W 1,p-stability for (1) is
essentially determined by the p-quasiconvex hull of the set K.

In many problems, however, computing the p-quasiconvex hulls is an infi-
nite dimensional problem and usually is extremely difficult for a given set. Nev-
ertheless, some new developments in the nonlinear PDEs including methods
of compensated compactness 6,10,24,31 of F. Murat and L. Tartar and nonlinear
Hodge decompositions of T. Iwaniec 17,19 can be very useful in these studies.

2 W 1,p-Quasiconvex Hulls and W 1,p-Stability

Given f : Mn×m → R1, define the quasiconvexification fqc of f to be

fqc(A) = inf
φ∈C∞

0
(Ω,Rn)

1

|Ω|

∫

Ω

f(A+ ∇φ(x)) dx, A ∈Mn×m. (3)
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We say f is quasiconvex if fqc ≡ f. It is well-known that fqc is independent
of the domain Ω and, under some mild conditions, is also quasiconvex 7. By
Jensen’s inequality, every convex function is quasiconvex, but V. Šverák 28 has
shown that the class of quasiconvex functions is strictly larger if, e.g., n, m ≥ 3.

Let K be a subset of Mn×m and 1 ≤ p ≤ ∞. We denote by Q+
p (K) the

set of all quasiconvex continuous functions f on Mn×m which satisfy f |K = 0
and

0 ≤ f(X) < Cf (|X|p + 1), X ∈Mn×m (4)

for a constant Cf <∞. If p = ∞, condition (4) simply means 0 ≤ f(X) <∞.
Let Z(f) denote the zero set of f. We now define the p-quasiconvex hulls.

Definition 2.1 The set

Qp(K) = ∩{Z(f) | f ∈ Q+
p (K)}

is called the W 1,p- or p-quasiconvex hull of K. We say K is p-quasiconvex if

Qp(K) = K.

Remarks. 1. It is well-known that1,4 the functional IS(u) =
∫

S
f(∇u) is weakly

lower semicontinuous on W 1,p(Ω;Rn) for any f ∈ Q+
p (K) and measurable set

S ⊆ Ω.

2. If f(X) is a continuous and quasiconvex function on Mn×m satisfying
0 ≤ f(X) < C (|X|p + 1) and Z(f) 6= ∅, then K = Z(f) is p-quasiconvex.

3. It is easily seen that Qq(K) ⊆ Qp(K) for all 1 ≤ p < q ≤ ∞. Moreover,
if conv(K) is the closed convex hull of K, then Q1(K) ⊆ conv(K). So, all
Qp(K) are compact sets if K is bounded.

Using the Chacon biting convergence lemma 5, we can prove the following
result 35.

Theorem 2.2 Suppose {uj} is an approximating sequence of (1) and uj ⇀ u0

weakly in W 1,p(Ω;Rn) (weakly * if p = ∞). Then ∇u0(x) ∈ Qp(K) for almost

every x ∈ Ω. Therefore, K is W 1,p-stable if it is p-quasiconvex.

For bounded sets, using a Luzin type approximation result 1,20,39, we can
prove the following necessary and sufficient condition for W 1,p-stability of com-
pact sets 35.

Theorem 2.3 Let K be a compact set. Then, the p-quasiconvex hulls Qp(K)
are all the same for 1 ≤ p ≤ ∞ and will be denoted by Q(K). Moreover, K is

W 1,p-stable if and only if K is quasiconvex, i.e., Q(K) = K.
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3 Integral Growth Conditions and W 1,p-Compactness

We now study the W 1,p-compactness based on the integral growth condition
similar to the uniformly strict quasiconvexity of Evans and Gariepy 14. The
following results have been proved in Yan 35.

Theorem 3.1 Let 1 < p < ∞ and f ∈ Q+
p (K) with Z(f) = K. Suppose for

each ǫ > 0 there exists Cǫ > 0 such that
∫

D

|∇φ| ≤ ǫ

∫

D

(

|∇φ|p + 1
)

+ Cǫ

∫

D

f(A+ ∇φ) (5)

holds for all A ∈ K and φ ∈W 1,p
0 (D;Rn), where D is a fixed cube in Ω. Then

K is W 1,q-compact for all q > p.

The usefulness of this theorem is that we only need to check the condition
(5) for all A ∈ K and this condition is much weaker than the uniformly strict
quasiconvexity 14.

Theorem 3.2 Let K be compact, and let D ⊆ Ω be a cube and 1 < p < ∞.
Then, K is W 1,1-compact if and only if for each ǫ > 0 there exists a constant

Cǫ <∞ such that
∫

D

(

dK(A) + |∇φ|
)

≤ ǫ|D| + Cǫ

∫

D

dp
K(A+ ∇φ) (6)

holds for all A ∈Mn×m and φ ∈W 1,p
0 (D;Rn).

4 Special Structures in p-Quasiconvex Hulls

In order to compute Qp(K), we need some special structures besides those
consisting of rank-one connections mentioned earlier in the introduction.

For any setK and number p ∈ [1, ∞], let βp(K) be the set of all matrices A
for which (1) has a solution u ∈W 1,p(Ω;Rn) that satisfies u(x) = uA(x) ≡ Ax
on ∂Ω, and let ωp(K) be the set of all matrices A for which there exists an
approximating sequence {uj} of (1) such that uj ⇀ uA weakly in W 1,p(Ω;Rn)
(weakly * if p = ∞).

Directly from the definition, we can easily prove the following.

Theorem 4.1 (a) βp(K) ⊆ ωp(K) ∩ Qp(K) and furthermore, if K is W 1,p-

compact then the only solution to (1) with u = uA on ∂Ω is u ≡ uA.
(b) ω∞(K) ⊆ Qp(K) and ω∞(K) contains all rank-one connections in K.
(c) If K is compact, then Q(K) = ω∞(K).

Remark. There has been some recent study of the set βp(K) defined above by
Dacorogna and Marcellini 8,9 using the Baire category theory, and by Müller
and Šverák 25 using Gromov’s idea of convex integration.
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5 Lp-Mean Coercivity and Higher Regularity

We consider the case when K is a closed cone in Mn×m, i.e., λK ⊆ K for all
λ ≥ 0. Let dK be the corresponding distance function and let B be the unit
ball in Rm. Define

µ(p;K) = inf

{
∫

B

dp
K(∇φ)

∣

∣

∣
φ ∈ C∞

0 (B;Rn), ‖∇φ‖Lp(B) = 1

}

. (7)

We say that K satisfies the Lp-mean coercivity provided that µ(p;K) > 0.

Theorem 5.1 If p > 1 and µ(p;K) > 0, then there exists ǫ ∈ (0, p− 1) such

that µ(r;K) > 0 for all r ∈ [p− ǫ, p+ ǫ].

The proof of this theorem relies on the following stability result on the
nonlinear Hodge decompositions due to Iwaniec 17. We refer to Iwaniec and
Sbordone 19 for a proof of this result using the Lp-estimates of nonlinear para-
commutators.

Lemma 5.2 Let r > 1 and B be the open unit ball in Rm. Then, for any

u ∈ W 1,r
0 (B;Rn) and ǫ ∈ (−1, r − 1), the matrix |∇u|ǫ∇u ∈ L

r
1+ǫ (B;Mn×m)

can be decomposed as |∇u(x)|ǫ∇u(x) = ∇ψ(x) + h(x) for a.e. x ∈ B, where

ψ ∈ W
1, r

1+ǫ

0 (B;Rn), and h ∈ L
r

1+ǫ (Rm;Mn×m) is a divergence free matrix

field satisfying

‖h‖
L

r
1+ǫ (Rm)

≤ C(m,n, r, ǫ) |ǫ| ‖∇u‖1+ǫ
Lr(B). (8)

Moreover, for any constants 1 < r1 < r2 <∞,

sup
|ǫ|≤

r1−1

r1+1
, r1≤r≤r2

C(m,n, r, ǫ) ≡ α(r1, r2) <∞. (9)

We now sketch the proof of Theorem 5.1 given in Yan and Zhou 38. Let

r1 =

√
8p+ 1 − 1

2
, ǫ0 =

r1 − 1

r1 + 1
, r2 = (1 + ǫ0)p. (10)

Let |ǫ| ≤ ǫ0 and r = (1 + ǫ) p; then r1 ≤ r ≤ r2. Let φ ∈ C∞
0 (B;Rn). Using

Lemma 5.2, we decompose |∇φ|ǫ∇φ ∈ Lp(B;Mn×m) as follows:

|∇φ(x)|ǫ∇φ(x) = ∇ψ(x) + h(x) a.e. x ∈ B, (11)

where ψ ∈W 1,p
0 (B;Rn), h ∈ Lp(Rm;Mn×m) and

‖h‖Lp(Rm) ≤ αp |ǫ| ‖∇φ‖1+ǫ
Lr(B), (12)
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where αp depends only on p. Hence,

‖∇ψ‖Lp(B) ≥ (1 − αp|ǫ|) ‖∇φ‖1+ǫ
Lr(B). (13)

From (11), we have ∇ψ(x) = |∇φ(x)|ǫ∇φ(x) − h(x) and hence

dK(∇ψ(x)) ≤ |∇φ(x)|ǫdK(∇φ(x)) + |h(x)| ∀x ∈ B.

Let σ0 = µ(p;K)1/p. We have by the Lp-mean coercivity

σ0‖∇ψ‖Lp(B) ≤ ‖dK(∇ψ)‖Lp(B)

≤ ‖|∇φ|ǫdK(∇φ)‖Lp(B) + ‖h‖Lp(B). (14)

Combining (12)–(14), we have
(

σ0 − αp(1 + σ0) |ǫ|
)

‖∇φ‖1+ǫ
Lr(B) ≤ ‖|∇φ|ǫdK(∇φ)‖Lp(B). (15)

From this, it follows that if |ǫ| ≤ ǫ0 is further chosen sufficiently small then
∫

B

dr
K(∇φ) ≥ Cp ‖∇φ‖r

Lr(B), Cp > 0, r = (1 + ǫ) p, (16)

proving the theorem. Indeed, if ǫ < 0, using |∇φ|ǫ ≤ [dK(∇φ)]ǫ, we have

‖|∇φ|ǫdK(∇φ)‖Lp(B) ≤ ‖d1+ǫ
K (∇φ)‖Lp(B) = ‖dK(∇φ)‖1+ǫ

Lr(B),

hence (16) follows by using (15) if |ǫ| is sufficiently small. Let ǫ > 0; then, by
Hölder’s inequality, we have

‖|∇φ|ǫdK(∇φ)‖Lp(B) ≤ ‖dK(∇φ)‖Lr(B)‖∇φ‖ǫ
Lr(B).

So, we still obtain (16) using (15) for all sufficiently small |ǫ|.

The Lp-mean coercivity and the Ekeland variational principle 12 enable
us to adapt the standard Caccioppoli-type estimates 16 to obtain some higher
regularity results using the technique of reverse Hölder inequalities. This tech-
nique was first introduced by Gehring 15 in the study of higher integrability of
quasiconformal mappings and used later successfully for studying the nonlinear
elliptic systems 16,22.

The following results concerning the regularity and stability for system (1)
have been proved in Yan and Zhou 37,38.

Theorem 5.3 Let K be a closed cone and S(K) = {p > 1 | µ(p;K) > 0} 6= ∅.
Then Qp(K) is constant for all p belonging to each of the connected components

of S(K).
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Theorem 5.4 Let K be a closed cone and [α, β] ⊂ S(K). Then any solution

u ∈W 1,α
loc (Ω;Rn) to system (1) must belong to W 1,β

loc (Ω;Rn).

Remarks. 1. An application of these results will be discussed in the next section
concerning the regularity and stability of the weakly quasiregular mappings.

2. It remains extremely difficult and quite challenging to describe the set
S(K) in terms of any intrinsic properties of the cone K.

3. Another problem is to find a necessary and sufficient condition such
that K is p-quasiconvex, which would have a profound impact on the study of
Hamilton-Jacobi system (1).

6 Weakly Quasiregular Mappings

As an example of our study, we consider the case m = n and the class of closed
cones Kl defined by

Kl = {A ∈Mn×n | |A|n ≤ lnn/2 detA}

for all l ≥ 1; the set K1 is called the conformal set and denoted by Cn. A map
u ∈ W 1,p

loc (Ω;Rn) is called (weakly if p < n) l-quasiregular 17,18,27 if it satisfies
∇u(x) ∈ Kl a.e. x ∈ Ω.

In order to study the regularity and stability of (weakly) quasiregular
mappings, we shall try to compute the set S(Kl). Consider the function

Fl(X) = max {0, |X|n − lnn/2 detX}.

It is easily seen that Fl ≥ 0 is n-homogeneous, quasiconvex and Z(Fl) = Kl,
and we also have that

∫

B
Fl(∇φ) ≥

∫

B
|∇φ|n for all φ ∈ C∞

0 (B;Rn). From
this, using the homogeneity, we obtain that there is a Γ > 0 such that

∫

B

dn
Kl

(∇φ) ≥ Γ

∫

B

|∇φ|n, ∀φ ∈ C∞
0 (B;Rn).

Hence, by definition and Theorems 5.3 and 5.4, we have the following regularity
and stability result.

Theorem 6.1 For all l ≥ 1, it follows that n ∈ S(Kl) and Qp(Kl) = Kl for

p ∈ [n− ǫ, n+ ǫ] ⊂ S(Kl) for some ǫ > 0. Therefore, we have both the stability

and higher regularity for weakly quasiregular mappings in W 1,p
loc with p slightly

below the dimension n.

Remarks. 1. Observe that the nonlinear homothety ul(x) = x|x|(1−l)/l satisfies

∇ul(x) ∈ Kl for x 6= 0, and ul ∈ W 1,n(B;Rn), but ul /∈ W 1, nl
l−1 (B;Rn). By

Theorem 5.4, there must be a q ∈ [n, nl/(l − 1)] such that q /∈ S(Kl).
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2. On a basis of Theorem 5.4 and a conjecture made by Iwaniec 17

concerning regularity of weakly quasiregular mappings, we conjecture that

S(Kl) =
(

nl
l+1 ,

nl
l−1

)

for all n and l ≥ 1. For even dimensions n, it is indeed

true that S(Cn) = (n/2, ∞), but question concerning all other cases remains
open 18,26,34.

3. This conjecture is closely related to an open problem on the p-Laplacian
equation regarding whether the C1,α-regularity result of Uhlenbeck32 holds for
weak solutions in W 1,q with q > p− 1.

The following theorem gives the compactness results concerning the weakly
conformal mappings proved in Müller, Šverák and Yan26 and in Yan and Zhou
36.

Theorem 6.2 There exists a pn ∈ [n/2, n), pn = n/2 if n is even, such that

if p ≥ pn and if uj ⇀ u0 in W 1,p(Ω;Rn) and
∫

Ω
dp

Cn
(∇uj) → 0 then uj → u0

strongly in W 1,1
loc (Ω;Rn).

Remarks. 1. If p ≥ n, the result follows from a strong convergence result of
Evans and Gariepy 14 by a theory of strictly uniformly polyconvex functions.
However, as proved in Yan 34, such functions do not exist if p < n.

2. If pn ≤ p < n, Theorem 6.2 generalizes the classical stability result
of quasiregular mappings 27: If {uj} is a sequence of lj-quasiregular mappings
bounded in W 1,n and lj → 1, then {uj} converges strongly to a Möbius map in

W 1,1
loc (Ω;Rn). In this case, it is easily seen that the conformal energy Ip(uj) =

∫

Ω
dp

Cn
(∇uj) approaches 0.

3. The result in the even dimension case is sharp. A key to the proof is the
fact that for n = 2l the conformality of a matrix can be (almost) characterized
by a linear condition that involves l×l-minors11,18. This characterization gives
a nonlinear version of Cauchy-Riemann equations and hence enables us to use
the elliptic estimates and compensated compactness 6,26,31.
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