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Abstract

In this paper, we give a necessary and sufficient condition for a one-dimensional functional
I (u) = ∫ 1

0 f (u̇(t)) dt to satisfy the so-called (PS)-weak lower semicontinuity property on the space

W 1,p((0, 1); Rm ); that is, I (ū) ≤ lim infk→∞ I (uk ) for all uk ⇀ ū in W 1,p((0, 1); Rm) and I ′(uk) → 0

in W−1, p
p−1 ((0, 1); Rm). The result shows that in this case the property of (PS)-weak lower semicontinuity

is in general not equivalent to convexity of the functional if m ≥ 2.
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1. Introduction

Let f : Rm → R be a continuously differentiable (i.e. C1) function satisfying

0 ≤ f (ξ) ≤ c1(|ξ |p + 1), | f ′(ξ)| ≤ c2(|ξ |p−1 + 1), (1.1)

where c1, c2 > 0 and 1 < p < ∞ are constants. Consider the integral functional

I (u) =
∫ 1

0
f (u̇(t)) dt, (1.2)
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where u: (0, 1) → Rm is a curve in Rm and u̇(t) = du
dt ∈ Rm is its velocity field. Under

these assumptions, the functional I (u) is continuously differentiable on the usual Sobolev space
X = W 1,p((0, 1); Rm) and its Fréchet derivative I ′(u) ∈ X∗ at u ∈ X is given by

〈I ′(u), v〉 =
∫ 1

0
f ′(u̇(t)) · v̇(t) dt ∀ v ∈ X.

Here, the inner product on Rm is denoted by ξ · η ≡ ∑m
i=1 ξiηi and the induced Euclidean norm

by |ξ | = (ξ · ξ)1/2.
Note that by the Sobolev embedding theorem a function in X can be viewed as an absolutely

continuous function on [0, 1]. In the following, the strong and weak convergences in X are
denoted by uk → u and uk ⇀ u, respectively. Let Y = W 1,p

0 ((0, 1); Rm) be the subspace
of X consisting of the functions u with u(0) = u(1) = 0. We shall use the equivalent norm in Y
given by

‖u‖Y =
(∫ 1

0
|u̇(t)|p dt

)1/p

and define

‖I ′(u)‖Y ∗ = sup{〈I ′(u), v〉 | v ∈ Y, ‖v‖Y ≤ 1}.
The following definition is a special case of the general definition introduced in Vasiliu and

Yan [11], which has been mainly motivated by a question raised in Müller [7] concerning the
Morrey quasiconvexity condition in connection with the Ekeland variational principle [6].

Definition 1.1. Let uk, u ∈ X . We say that uk (PS)-weakly converges to u in X (with respect to
functional I ) provided that uk ⇀ u in X and ‖I ′(uk)‖Y ∗ → 0 as k → ∞; in this case, we write

uk
ps
⇀ u. We say that I is (PS)-weakly lower semicontinuous on X if

I (u) ≤ lim inf
k→∞ I (uk) whenever uk

ps
⇀ u in X. (1.3)

The “PS” here simply refers to the sequence being the so-called Palais–Smale sequence in
nonlinear analysis [2].

The main result of this paper is the following theorem regarding the necessary and sufficient
condition for the (PS)-weak lower semicontinuity for the functional I defined above.

Theorem 1.1. Suppose f : Rm → R is C1 and satisfies (1.1). Then the functional I defined by
(1.2) is (PS)-weakly lower semicontinuous on X = W 1,p((0, 1); Rm) if and only if f satisfies
the following condition:⎧⎪⎨

⎪⎩
f

(
m+1∑
i=1

θiξi

)
≤

m+1∑
i=1

θi f (ξi ), ∀ 0 ≤ θi ≤ 1,
m+1∑
i=1

θi = 1;
∀ ξi ∈ Rm, f ′(ξi ) = f ′(ξ j ), 1 ≤ i, j ≤ m + 1.

(1.4)

This theorem will be proved later as two separate results (Theorems 3.1 and 3.3), where we
also derive an equivalent condition of (1.4) (see Remark 3.2 later). The proof of the sufficiency
part (Theorem 3.3) of this theorem relies on the Young measure theory as developed in [3,8,10]
following the original idea of Young [12].
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As an immediate corollary of this theorem, we have the following result, which has been
proved in [11] in the case of m = 2; however, the proof there did not use the Young measure
theory.

Corollary 1.2. Let f : Rm → R be C1 and satisfy (1.1). Suppose the derivative map f ′: Rm →
Rm is one-to-one. Then I is (PS)-weakly lower semicontinuous on X = W 1,p((0, 1); Rm).

Remark 1.1. If m = 1, it has been shown that the restricted convexity condition (1.4) is
equivalent to the usual convexity of f ; see [11, Lemma 4.8]. Hence, in this case, the (PS)-weak
lower semicontinuity of I on X is equivalent to the usual weak lower semicontinuity of I (see [1,
5]).

However, in the case of m ≥ 2, condition (1.4) is not equivalent to the convexity of f ; see
Remark 3.3 below. Therefore, in general, (PS)-weak lower semicontinuity may lead to a non-
convex variational problem.

The following result shows that, under a certain coercivity condition on f , we do have
equivalence between the (PS)-weak lower semicontinuity of I and the convexity of f .

Theorem 1.3. Let f : Rm → R be C1 and satisfy (1.1). Suppose f satisfies

lim inf|ξ |→∞ f (ξ)/|ξ | = ∞. (1.5)

Then I is (PS)-weakly lower semicontinuous on X if and only if f is convex in Rm.

This theorem follows from Theorem 1.1 using an interesting calculus fact (see Theorem 3.4).
Note that, since p > 1, the condition (1.5) is satisfied if f satisfies the usual coercivity growth
condition f (ξ) ≥ c0(|ξ |p − 1) for some constant c0 > 0.

2. (PS)-weak convergence and the Young measures

As above, let X = W 1,p((0, 1); Rm), Y = W 1,p
0 ((0, 1); Rm) and 1 < p < ∞. Assume f is

a C1 function satisfying (1.1) and I (u) is the functional defined by (1.2). Let p′ = p
p−1 be the

conjugate of p.
We first have the following result.

Lemma 2.1. Let h ∈ L p′
((0, 1); Rm). Define ḣ ∈ Y ∗ by

〈ḣ, v〉 =
∫ 1

0
h(t) · v̇(t) dt ∀ v ∈ Y

with norm ‖ḣ‖Y ∗ = sup{〈ḣ, v〉 | v ∈ Y, ‖v‖Y ≤ 1} given as above. Then

‖ḣ‖Y ∗ = min
c∈Rm

‖h − c‖L p′ = ‖h − h̄‖L p′ ,

where the minimizer h̄ ∈ Rm is uniquely determined by the equation∫ 1

0
|h(t)− h̄|p′−2(h(t)− h̄) dt = 0. (2.1)

Therefore, ‖ḣ‖Y ∗ ≤ ‖h‖L p′ and |h̄| ≤ 2‖h‖L p′ .
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Proof. For any c ∈ Rm , it follows that

〈ḣ, v〉 =
∫ 1

0
(h(t)− c) · v̇(t)dt ≤ ‖h − c‖L p′

(0,1)‖v‖Y ∀v ∈ Y,

and hence ‖ḣ‖Y ∗ ≤ ‖h − c‖L p′ for all c ∈ Rm . Therefore

‖ḣ‖Y ∗ ≤ inf
c∈Rm

‖h − c‖L p′
(0,1) := μ.

Using the direct method of calculus of variations and the convexity of L p′
-norm, the

minimization problem of μ = infc∈Rm ‖h − c‖L p′ has a unique minimizer h̄ ∈ Rm , which is
uniquely determined by the Euler–Lagrange equation (2.1). We show ‖ḣ‖Y ∗ = ‖h − h̄‖L p′ = μ

to complete the proof. To this end, define

v(t) =
∫ t

0
|h(s)− h̄|p′−2(h(s)− h̄) ds, t ∈ [0, 1].

By (2.1), v ∈ Y and v̇(t) = |h(t)− h̄|p′−2(h(t)− h̄). Hence ‖v‖Y = ‖h − h̄‖
p′
p

L p′ and

‖ḣ‖Y ∗‖v‖Y ≥ 〈ḣ, v〉 =
∫ 1

0
(h(t)− h̄) · v̇(t) dt = ‖h − h̄‖p′

L p′ ,

from which it follows that μ ≥ ‖ḣ‖Y ∗ ≥ ‖h − h̄‖L p′ = μ and hence the equality holds. �

Lemma 2.2. Let uk
ps
⇀ u in X. Then there exists a subsequence {uk j } such that f ′(u̇k j ) → L

strongly in L p′
((0, 1); Rm) for some constant L ∈ f ′(Rm) ⊂ Rm.

Proof. Let hk(t) = f ′(u̇k(t)) ∈ L p′
(0, 1). Then it is easy to see that I ′(uk) = ḣk in Y ∗, and

hence by Lemma 2.1, there exists a constant h̄k ∈ Rm such that

‖I ′(uk)‖Y ∗ = ‖hk − h̄k‖L p′
(0,1) → 0 (2.2)

as k → ∞. Let uk
ps
⇀ u in X . Then {hk(t)} defined above is a bounded sequence in L p′

(0, 1)
and hence the number sequence {h̄k} is a bounded sequence in Rm . Therefore, there exists a
subsequence such that h̄k j → L, for some constant L ∈ Rm . By (2.2), f ′(u̇k j ) → L strongly

in L p′
(0, 1) as j → ∞. What is left to prove is that L ∈ f ′(Rm). After taking a further

subsequence, we may assume

lim
j→∞ f ′(u̇k j (t)) = L ∀ t ∈ E, (2.3)

where E ⊂ (0, 1) is a measurable set such that |E | = 1. Since ‖u̇k‖L p is bounded, for all M > 0,
it follows that the measure |{t ∈ E | |u̇k(t)| > M}| ≤ C

M p for a constant C . Therefore, for some
large fixed M1 > 0, we have |E j | ≥ 1

2 for all j = 1, 2, . . ., where E j = {t ∈ E | |u̇k j (t)| ≤ M1}.
We claim that there exists a subsequence { js} such that js → ∞ as s → ∞ and ∩∞

s=1 E js �= ∅.
Suppose to the contrary that no such subsequences { js} existed. Define g(t) = ∑∞

j=1 χE j (t),
where χF (t) is the characteristic function of set F ⊂ (0, 1). Then g(t) would be finite for every
t ∈ E . Let gn(t) = 1

n

∑n
j=1 χE j (t). Then 0 ≤ gn(t) ≤ 1 for all n ∈ N and t ∈ E , and

gn(t) ≤ g(t)
n → 0 as n → ∞ for all t ∈ E . Hence by the dominated convergence theorem,∫

E gn(t)dt → 0 as n → ∞. However,
∫

E gn(t)dt = 1
n

∑n
j=1 |E j | ≥ 1

2 ; this is a desired
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contradiction. Once we have ∩∞
s=1 E js �= ∅, we take t̄ ∈ ∩∞

s=1 E js . Then |u̇k(t̄)| ≤ M1 for a
subsequence of k → ∞. Taking further subsequence, we assume u̇k(t̄) → ξ̄ along the further
subsubsequence of k → ∞. Hence by (2.3) we have L = f ′(ξ̄ ); this proves L ∈ f ′(Rm). �

Lemma 2.3 (Young Measure Theorem). Let {Uk} be a bounded sequence in L p((0, 1); Rm).
Then there exist a subsequence {Uk j } and a family of probability measures (νt )t∈(0,1) on Rm

such that φ(Uk j ) ⇀ φ̄ weakly ∗ in L∞(0, 1) for all φ ∈ C0(Rm) as j → ∞, where C0(Rm)

denotes the set of continuous functions on Rm satisfying φ(ξ) → 0 as |ξ | → ∞, and

φ̄(t) =
∫

Rm
φ(ξ)dνt (ξ) = 〈νt , φ〉 ∀ a.e. t ∈ (0, 1).

Moreover, for any continuous function ψ ∈ C(Rm; Rd), if ψ(Uk j (t)) converges weakly to ψ̄(t)

in L1((0, 1); Rd) then

ψ̄(t) =
∫

Rm
ψ(ξ)dνt (ξ) ∀ a.e. t ∈ (0, 1). (2.4)

Furthermore, for any non-negative continuous function g ∈ C(Rm), one has∫ 1

0

∫
Rm

g(ξ)dνt (ξ)dt ≤ lim inf
j→∞

∫ 1

0
g(Uk j (t)) dt . (2.5)

In this case, we say the subsequence {Uk j } converges to (νt )t∈(0,1) in the sense of the Young
measure as j → ∞, and (νt )t∈(0,1) is called the Young measure determined by {Uk j }.
Proof. The Young measure theory has been developed in [3,8,10] following the original idea of
Young [12]. The last conclusion concerning inequality (2.5) can be found in [8] and also follows
from (2.4) using the biting convergence in L1(0, 1) (see also [1,4,7]). �

Let K ⊂ Rm be any given set. Denote by co(K ) the convex hull of K , which, by the
Carathéodory theorem [9], is given by

co(K ) =
{

m+1∑
i=1

θiξi | ξi ∈ K , 0 ≤ θi ≤ 1,
m+1∑
i=1

θi = 1

}
. (2.6)

Note that co(K ) may not be a closed set even when K is closed. However, by the Hahn–Banach
theorem [2,9], it follows that the closure of co(K ), the so-called closed convex hull of K and
denoted by co(K ), can be characterized by

co(K ) =
{
ξ ∈ Rm | y · ξ ≤ sup

η∈K
y · η ∀ y ∈ Rm

}
. (2.7)

The main result of this section is the following:

Theorem 2.4. Let uk
ps
⇀ u in X = W 1,p((0, 1); Rm). Then there exists a subsequence {u̇k j }

converging to a Young measure (νt )t∈(0,1) that satisfies

supp νt ⊂ KL := {ξ ∈ Rm | f ′(ξ) = L}, (2.8)

u̇(t) =
∫

KL

ξdνt (ξ) ⊂ co(KL), (2.9)

for almost every t ∈ (0, 1), where L ∈ f ′(Rm) is a constant.
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Proof. Let Uk = u̇k . Then {Uk} is bounded in L p((0, 1); Rm). By the Young measure theorem
(Lemma 2.3), there exists a subsequence {Uk j } which converges to the Young measure (νt )t∈(0,1)
on Rm as j → ∞. By (2.4),

u̇(t) =
∫

Rm
ξ dνt (ξ) ∀ a.e. t ∈ (0, 1). (2.10)

By virtue of Lemma 2.2, we may also assume that this subsequence satisfies f ′(Uk j ) → L

strongly in L p′
(0, 1) as j → ∞ for some constant L ∈ f ′(Rm). Let ψ(ξ) = | f ′(ξ) − L|p′ ∈

C(Rm). Then {ψ(Uk j (t))} converges weakly (in fact, strongly) to ψ̄(t) ≡ 0 in L1(0, 1). Hence,
by (2.4) in the Young measure theorem above,∫

Rm
| f ′(ξ)− L|p′

dνt (ξ) = ψ̄(t) = 0

for almost every t ∈ (0, 1), which implies supp νt ⊂ KL = {ξ ∈ Rm | f ′(ξ) = L}, proving
(2.8).

Finally, to show u̇(t) ∈ co(KL) for almost every t ∈ (0, 1), we observe that for every y ∈ Rm ,
by (2.8),

y ·
(∫

KL

ξdνt (ξ)

)
=
∫

KL

y · ξdνt (ξ)

≤
(

sup
η∈KL

y · η
)(∫

KL

dνt (ξ)

)
= sup
η∈KL

y · η.

Hence by (2.7) and (2.10) we have u̇(t) ∈ co(KL). This completes the proof. �

3. Proof of the main theorems

As before, we assume I (u) is the functional on the space X = W 1,p((0, 1); Rm) defined by
(1.2) with f satisfying the condition (1.1).

Given L ∈ f ′(Rm), let KL = {ξ ∈ Rm | f ′(ξ) = L}. Then KL is a non-empty closed set in
Rm .

Proof of Theorem 1.1. We prove the theorem in two separate steps.

Theorem 3.1. Assume functional I is (PS)-weakly lower semicontinuous on X. Let L ∈ f ′(Rm)

and n ∈ {1, 2, 3, . . .} be given. Then, for all 0 < θi < 1 with
∑n

i=1 θi = 1 and all ξi ∈ KL, we
have

f

(
n∑

i=1

θiξi

)
≤

n∑
i=1

θi f (ξi ). (3.1)

Proof. Let Ai = (ai−1, ai ] be the intervals with a0 = 0 and ai = ∑i
j=1 θ j for i = 1, 2, . . . , n.

Let ρ(t) = ∑n
i=1 χAi (t)ξi be defined on (0, 1], where χAi is the characteristic function of

Ai ⊂ (0, 1]. We extend ρ to the whole of R as a 1-periodic function. Define U(t) = ∫ t
0 ρ(s) ds

for all t ∈ R. For each k = 1, 2, . . ., define uk(t) = 1
k U(kt). Then uk ∈ X = W 1,p((0, 1); Rm)

and u̇k(t) = U̇(kt) = ρ(kt) ∈ {ξ1, ξ2, . . . , ξn}. Hence f ′(u̇k(t)) = L for almost every t ∈ (0, 1)



588 D. Vasiliu, B. Yan / Nonlinear Analysis 66 (2007) 582–590

and thus I ′(uk) = 0 in W−1,p′
((0, 1); Rm). From this, we have uk

ps
⇀ ū on X , where ū(t) = ξ̄ t

with ξ̄ = ∑n
i=1 θiξi . Hence, by the (PS)-weak lower semicontinuity,

I (ū) ≤ lim inf
k→∞ I (uk) = I (U),

which after simplification is the required condition (3.1). �

In order to prove the sufficiency part, we need the following calculus result.

Lemma 3.2. Suppose that f : Rm → R is C1 and satisfies{
f (θξ + (1 − θ)η) ≤ θ f (ξ)+ (1 − θ) f (η)
∀ 0 < θ < 1 whenever f ′(ξ) = f ′(η). (3.2)

Then f (η) = f (ξ)+ f ′(ξ) · (η − ξ) whenever f ′(ξ) = f ′(η).

Proof. Assume that ξ, η satisfy f ′(ξ) = f ′(η). Let h(θ) = f (θξ + (1 − θ)η). Then h′(θ) =
f ′(θξ + (1 − θ)η) · (ξ − η). From the assumption and the mean value theorem,

h′(θ0)θ = h(θ)− h(0) ≤ θ( f (ξ)− f (η)),

h′(θ1)(1 − θ) = h(1)− h(θ) ≥ (1 − θ)( f (ξ)− f (η)),

where 0 < θ0 < θ and θ < θ1 < 1 are some constants depending on θ . Hence

h′(θ0) ≤ f (ξ)− f (η), (3.3)

h′(θ1) ≥ f (ξ)− f (η). (3.4)

Let θ → 0+ in (3.3) and θ → 1− in (3.4), respectively, and we have

f ′(η) · (ξ − η) ≤ f (ξ)− f (η) ≤ f ′(ξ) · (ξ − η).

Since f ′(ξ) = f ′(η), this implies f (η) = f (ξ)+ f ′(ξ) · (η − ξ). �

Remark 3.1. As mentioned before, if m = 1 and f ≥ 0, then the restricted convexity condition
(3.2) in Lemma 3.2 is equivalent to the convexity of f (see [11, Lemma 4.8]). But this is not the
case if m ≥ 2; see Remark 3.3 below.

Theorem 3.3. Assume function f satisfies the condition (1.4) above. Then the functional I is
(PS)-weakly lower semicontinuous on X.

Proof. Since condition (1.4) implies the condition (3.2) of Lemma 3.2, it follows that f (η) =
f (ξ) + L · (η − ξ) for all ξ, η ∈ KL for all L ∈ f ′(Rm). Let η ∈ co(KL) and ξ ∈ KL . Then,
by (2.6), η = ∑m+1

i=1 θiξi for some θi ≥ 0 with
∑m+1

i=1 θi = 1 and some ξi ∈ KL . Hence the
condition (1.4) implies

f (η) ≤
m+1∑
i=1

θi f (ξi ) =
m+1∑
i=1

θi [ f (ξ)+ L · (ξi − ξ)] = f (ξ)+ L · (η − ξ);

this inequality holds for all η ∈ co(KL) and ξ ∈ KL , which yields

f (η) ≤ f (ξ)+ L · (η − ξ) ∀ L ∈ f ′(Rm), η ∈ co(KL), ξ ∈ KL . (3.5)

Now assume uk
ps
⇀ u in X . After taking a subsequence, we also assume limk→∞ I (uk) exists.

Let a subsequence {uk j } and the Young measure (νt )t∈(0,1) be determined as in Theorem 2.4
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above. By the Young measure theorem (Lemma 2.3),∫ 1

0

∫
Rm

f (ξ) dνt (ξ) dt ≤ lim inf
j→∞ I (uk j ) = lim

k→∞ I (uk). (3.6)

Since u̇(t) ∈ co(KL) for almost every t ∈ (0, 1), by (3.5), we have

f (u̇(t)) ≤ f (ξ)+ L · (u̇(t)− ξ) ∀ ξ ∈ KL .

Hence, integrating this over ξ ∈ KL with respect to νt and using the fact supp νt ⊂ KL , it follows
that

f (u̇(t)) ≤
∫

KL

( f (ξ)+ L · (u̇(t)− ξ)) dνt (ξ)

=
∫

Rm
f (ξ)dνt (ξ)+ L ·

(
u̇(t)−

∫
Rm
ξdνt (ξ)

)

=
∫

Rm
f (ξ)dνt (ξ)

for almost every t ∈ (0, 1). Therefore, in view of (3.6),

I (u) =
∫ 1

0
f (u̇(t))dt ≤

∫ 1

0

∫
Rm

f (ξ)dνt (ξ) dt ≤ lim
k→∞ I (uk).

This proves the (PS)-weak lower semicontinuity of I . �

Remark 3.2. We point out that, by Lemma 3.2, condition (3.5) is equivalent to condition (1.4).

Proof of Theorem 1.3. The theorem follows from Theorem 1.1 and the following calculus fact.

Theorem 3.4. Suppose that f : Rm → R is C1 and satisfies the condition (1.5) given above.
Then the condition (3.2) in Lemma 3.2 is equivalent to the convexity of f .

Proof. Certainly if f is convex on Rm then the condition (3.2) holds. Now assume (3.2) holds
and f satisfies (1.5). We show f is convex. Given any η ∈ Rm , let g(ξ) = f (η)+ f ′(η) · (ξ −η)
be the linear approximation of f at η. It is sufficient to show

f (ξ) ≥ g(ξ) ∀ ξ ∈ Rm . (3.7)

Suppose, to the contrary, there exists ξ̄ ∈ Rm such that f (ξ̄ ) < g(ξ̄ ). Let S = {ξ ∈ Rm | f (ξ) <
g(ξ)}. Then S is a non-empty open set since ξ̄ ∈ S. Also by (1.5) the set S is bounded and hence
its closure S̄ is compact. Let

σ = min
S̄
( f − g) = f (ξ∗)− g(ξ∗)

for some ξ∗ ∈ S̄. Since σ < 0 and f = g on ∂S, it follows that ξ∗ ∈ S and hence
f ′(ξ∗) = g′(ξ∗) = f ′(η). Then by Lemma 3.2, f (ξ∗) = f (η) + f ′(η) · (ξ∗ − η) = g(ξ∗),
which is a contradiction since σ = f (ξ∗)− g(ξ∗) < 0. �

Remark 3.3. We show that Theorem 3.4 fails without the condition (1.5). For example, let
ξ = (ξ1, ξ2) ∈ R2 and f (ξ) = ϕ(ξ1 − ξ2

2 ), where

ϕ(t) =
{

et t ≤ 0;
1

2
t2 + t + 1 t > 0.
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Then it is easy to see that f is C2 and its derivative map f ′: R2 → R2 is one-to-one. Hence the
condition (1.4) is satisfied automatically, but f is not convex; of course, (1.5) does not hold.
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[9] R.T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, NJ, 1972.

[10] L. Tartar, Compensated compactness and applications to partial differential equations, in: Nonlinear Analysis and
Mechanics: Heriot-Watt Symposium, Vol. IV, in: Res. Notes in Math., vol. 39, Pitman, Boston, MA, London, 1979,
pp. 136–212.

[11] D. Vasiliu, B. Yan, On a restricted weak lower semicontinuity for smooth functionals on Sobolev spaces, Indiana
Univ. Math. J. (in press).

[12] L.C. Young, Lectures on Calculus of Variations and Optimal Control Theory, W.B. Saunders, 1969.


	(PS)-weak lower semicontinuity in one dimension: A necessary and sufficient condition
	Introduction
	(PS)-weak convergence and the Young measures
	Proof of the main theorems
	Acknowledgments
	References


