

Nonlinear Analysis 46 (2001) 835-851

www.elsevier.com/locate/na

L^p -Mean coercivity, regularity and relaxation in the calculus of variations

Baisheng Yan*, Zhengfang Zhou

Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

Received 16 July 1999; accepted 5 November 1999

Keywords: Nonconvex functionals; L^p -mean coercivity; Regularity and relaxation; Nonlinear Hodge decomposition

1. Introduction

In this paper, we study the multiple integral functionals of the type

$$I_p(u;D) = \int_D \left[f(\nabla u(x)) \right]^p \mathrm{d}x,\tag{1.1}$$

where D is a domain in \mathbb{R}^m , u is a map from D to \mathbb{R}^n , f is a given function defined on the space $\mathcal{M}^{n \times m}$ of all real $n \times m$ matrices and $p \ge 1$ is a given number. Here and throughout the paper, we use $\nabla u(x)$ to denote the Jacobian matrix of u defined by

$$(\nabla u)_{ij} = \partial u^i / \partial x_j, \quad 1 \le i \le n, \ 1 \le j \le m.$$

The functional $I_p(u;D)$ generalizes the classical Dirichlet *p*-energy (when f(X) = |X|) and has been encountered when one studies the variational energies with given minimum sets or *energy wells* [4,18,27]; in these cases, f is usually taken as the distance function to the energy well. Therefore, in this paper, we assume that $f \ge 0$ be a Lipschitz function on $\mathcal{M}^{n \times m}$, i.e., $|f(X) - f(Y)| \le |X - Y|$ for $X, Y \in \mathcal{M}^{n \times m}$. This implies f grows linearly at infinity; hence, a natural class of admissible maps for $I_p(u;D)$ is the usual Sobolev space $W^{1,p}(D; \mathbf{R}^n)$.

^{*} Corresponding author.

Among the most important properties for variational functional $I_p(u;D)$ are the conditions of (sequential, throughout this paper) weak lower semicontinuity and certain coercivity on $W^{1,p}(D; \mathbb{R}^n)$. In this paper, we attempt to study some relations between these two important issues under a condition known as the L^p -mean coercivity to be discussed later.

For many physical problems, the functional $I_p(u;D)$ is not weakly lower semicontinuous and it is important to study the *relaxation* or the envelope of $I_p(u;D)$ with respect to the weak convergence on $W^{1,p}(D; \mathbf{R}^n)$. Recall that the relaxation of $I_p(u;D)$ is the largest weakly lower semicontinuous functional on $W^{1,p}(D; \mathbf{R}^n)$ that is less than or equal to $I_p(u;D)$.

Under the assumption of the present paper, it is known (see [1,6,8]) that the relaxation of $I_p(u;D)$ is representable by another multiple integral $J_p(u;D)$ given by

$$J_p(u;D) = \int_D (f^p)^{\mathrm{qc}}(\nabla u(x)) \,\mathrm{d}x,\tag{1.2}$$

where, for any given function g on $\mathcal{M}^{n \times m}$, g^{qc} denotes the (quasiconvex) relaxation or the quasiconvexification of g defined by

$$g^{\rm qc}(A) = \inf_{\phi \in C_0^{\infty}(\Omega; \mathbf{R}^n)} \int_{\Omega} g(A + \nabla \phi(x)) \, \mathrm{d}x, \quad A \in \mathcal{M}^{n \times m}, \tag{1.3}$$

where $\Omega \subset \mathbf{R}^m$ is any bounded open set with $|\partial \Omega| = 0$ and the bar over the integral sign means taking average. Following Morrey [25], g is said to be quasiconvex provided that $g^{qc} = g$ on $\mathcal{M}^{n \times m}$. This quasiconvexity condition turns out to be the "right" condition for the weak lower semicontinuity of multiple integral functionals on Sobolev spaces; for instance, it has been proved that (see [1]) if $0 \le g(X) \le C(|X|^p + 1)$ then the functional $G(u) = \int_D g(\nabla u)$ is weakly lower semicontinuous on $W^{1,p}(D; \mathbf{R}^n)$ if and only if g is quasiconvex. However, besides the class of polyconvex functions of Ball [2] which are quasiconvex, it is generally difficult to study the quasiconvex functions since, in (1.3), it involves all test functions ϕ in $C_0^{\infty}(\Omega; \mathbf{R}^n)$; see also [5,8,11,22,30] for some important work on quasiconvexity. Consequently, the study of the relaxation $(f^p)^{qc}$ is greatly nontrivial mainly because in our case $(f^p)^{qc}$ is always quasiconvex but, as many interesting examples show, not necessarily polyconvex; see Section 7 below.

Another important question concerns the coercivity of $I_p(u; D)$. This is usually dealt with by assuming f satisfies a pointwise growth condition (see [14,15,24,23])

$$f(X) \ge c_0 |X| - c_1, \quad \forall X \in \mathcal{M}^{n \times m}.$$

$$(1.4)$$

Under this condition, some of the properties concerning the relaxation $(f^p)^{qc}$ turns out independent of the power p. For example, it has been proved in Yan [35] that $\mathscr{Z}[(f^p)^{qc}] = \mathscr{Z}[(f^q)^{qc}]$ for all $1 \le p < q < \infty$ (see also [12,38]), where $\mathscr{Z}[g]$ denotes the zero set of function g. This result will be partially recovered later from our main results in which we replace (1.4) by a much weaker condition known as the L^p -mean coercivity [14,15,18]. We say that $I_p(u; D)$ or simply f satisfies the L^p -mean coercivity if

$$\int_{\mathbf{B}} f^{p}(\nabla \phi(x)) \,\mathrm{d}x \ge \Gamma_{0} \,\int_{\mathbf{B}} (|\nabla \phi(x)|^{p} - \Gamma_{1}) \,\mathrm{d}x \tag{1.5}$$

holds for all smooth maps ϕ with compact support in the unit open ball **B** in \mathbb{R}^m , where Γ_0 , Γ_1 are some positive constants. Note that condition (1.5) may be satisfied even when (1.4) fails; for example, n = m = p = 2 and $f(X) = (|X|^2 - 2 \det X)^{1/2}$.

The main purpose of the paper is to study the important relationship between the L^p -mean coercivity and certain questions regarding the relaxation and regularity issues for the functional $I_p(u;D)$. We assume, for our function f, that $\mathscr{Z}[f] \neq \emptyset$. It easily follows from the Hölder inequality that

$$\mathscr{Z}[f] \subseteq \mathscr{Z}[(f^q)^{qc}] \subseteq \mathscr{Z}[(f^p)^{qc}], \quad 1 \le p < q < \infty.$$
(1.6)

Our first main result (Theorem 2.1) asserts that under the L^p -mean coercivity of f the zero set $\mathscr{Z}[(f^p)^{qc}]$ is half-locally constant in p:

$$\mathscr{Z}[(f^p)^{qc}] = \mathscr{Z}[(f^{p+\varepsilon})^{qc}] \quad \text{for some } \varepsilon > 0.$$
(1.7)

In view of (1.6), this relation is a reverse Hölder inequality, and it relates to a higher integrability result for the first-order *Hamilton–Jacobi system* defined by

$$f(\nabla u(x)) = 0 \quad \text{a.e. } x \in \Omega. \tag{1.8}$$

It has been proved in Yan and Zhou [36] that if f satisfies the L^p -mean coercivity then $\nabla u \in W_{\text{loc}}^{1, p+\varepsilon}(\Omega; \mathbb{R}^n)$ for any solution $u \in W^{1, p}(\Omega; \mathbb{R}^n)$ solving (1.8), where $\varepsilon > 0$ is some constant. This type of higher integrability results, pioneered by Gehring's celebrated work [13], has been well-known for the energy minimizers of variational integrals under certain pointwise growth conditions (see [14,15,20,24,23]). Indeed, by adapting the Caccioppoli-type estimates as in Meyers and Elcrat [24] and Giaquinta and Giusti [15], Theorem 2.1 is proved by the well-known technique of reverse Hölder inequalities of Gehring [13]. The proof here, however, requires a careful treatment since f^p does not satisfy the usual pointwise growth condition.

We now discuss a stability problem for the Hamilton–Jacobi system (1.8) in Sobolev spaces $W_{loc}^{1, p}(\Omega; \mathbb{R}^n)$, which concerns whether the weak limit of any weakly convergent sequence $\{u_j\}$ satisfying $I_p(u_j; \Omega) \to 0$ is a solution of (1.8). Let $\mathscr{H} = \mathscr{L}[f]$. We can study this stability problem by means of the *p*-quasiconvex hull of \mathscr{H} as in Yan [35]. Recall that the *p*-quasiconvex hull $\mathbb{Q}_p(\mathscr{H})$ of any set \mathscr{H} is defined by

$$\mathbf{Q}_{p}(\mathscr{K}) = \bigcap \left\{ \mathscr{Z}[g] \, \big| \, g \in \mathscr{Q}_{p}^{+}(\mathscr{K}) \right\},\tag{1.9}$$

where $\mathscr{Q}_p^+(\mathscr{K})$ is the set of all quasiconvex functions g with $0 \le g(X) < C(|X|^p + 1)$ and $g|_{\mathscr{K}} = 0$. Note that our definition of p-quasiconvex hulls, motivated by the work of Šverák [31,32], is not equivalent to the one given in Zhang [39] as our p-quasiconvex hulls may be strictly smaller than those defined in [39] for certain unbounded sets; see an example in Section 7 later. We prefer this definition because it defines an *optimal* relation satisfied by the weak limits of all solutions of the Hamilton–Jacobi system (1.10) below (see [35–37]).

In Theorem 2.1, we also establish a new characterization for *p*-quasiconvex hulls under L^p -mean coercivity. We prove that $\mathbf{Q}_p(\mathscr{Z}[f]) = \mathscr{Z}[(f^p)^{qc}]$ if f satisfies the L^p -mean coercivity. In general, this identity does not hold for arbitrary \mathscr{K} and p > 1; see an example in Section 2.

The second main result (Theorem 2.3) deals with a special case where f is 1-homogeneous; that is, $f(\lambda X) = \lambda f(X)$ for all $\lambda \ge 0$. In this case $\mathscr{K} = \mathscr{Z}[f]$ is a closed cone and the Hamilton-Jacobi system (1.8) takes the form

$$\nabla u(x) \in \mathscr{K} \quad \text{a.e. } x \in \Omega.$$
 (1.10)

Assume now \mathscr{K} is a given closed cone in $\mathscr{M}^{n \times m}$; that is, $\lambda \mathscr{K} \subseteq \mathscr{K}$ for all $\lambda \ge 0$. We say \mathscr{K} is L^p -mean coercive or satisfies the L^p -mean coercivity if (1.5) is satisfied with f being the distance function $d_{\mathscr{K}}$. To study this L^p -mean coercivity, we define

$$\mu(p;\mathscr{K}) = \inf\left\{ \int_{\mathbf{B}} d_{\mathscr{K}}^{p}(\nabla\phi) \middle| \phi \in C_{0}^{\infty}(\mathbf{B};\mathbf{R}^{n}), \|\nabla\phi\|_{L^{p}(\mathbf{B})} = 1 \right\}$$
(1.11)

and

$$\mathbf{S}(\mathscr{K}) = \{ p > 1 \mid \mu(p; \mathscr{K}) > 0 \}.$$

$$(1.12)$$

Note that \mathscr{K} is L^p -mean coercive if and only if $p \in \mathbf{S}(\mathscr{K})$.

In Theorem 2.3, we show that the set $S(\mathscr{H})$ is an *open* set. Thus, if \mathscr{H} is L^p -mean coercive for some p > 1 then it is L^q -mean coercive for all $q \in (p - \varepsilon, p + \varepsilon)$ for some $\varepsilon > 0$. This, to the best of our knowledge, is a new and surprising result, which assures the *near-by* mean-coercivity by establishing the L^p -mean coercivity at merely a single point p > 1. Some interesting applications of this result will be given in Section 7. The proof of Theorem 2.3 relies on an important technique of nonlinear Hodge decompositions of Iwaniec [17] and Iwaniec and Sbordone [20] (see also [16,21,37]).

As a consequence of Theorems 2.1 and 2.3, we prove that the *p*-quasiconvex hull $\mathbf{Q}_p(\mathscr{K})$ is constant for *p* in each connected component of $\mathbf{S}(\mathscr{K})$. Furthermore, for systems (1.10) defined by a closed cone \mathscr{K} , we prove a uniform higher integrability theorem (Theorem 2.4) in the sense that for any $[\alpha, \beta] \subset \mathbf{S}(\mathscr{K})$ a solution $u \in W_{\text{loc}}^{1,\alpha}(\Omega; \mathbf{R}^n)$ to (1.10) must belong to $W_{\text{loc}}^{1,\beta}(\Omega; \mathbf{R}^n)$. This can be considered as a global version of the aforementioned results on the higher integrability of energy minimizers (see, e.g., [13–15,17,20,24]).

2. Statement of the main theorems

As mentioned before, we assume that $f: \mathscr{M}^{n \times m} \to \mathbf{R}$ is Lipschitz continuous. Throughout the paper, we shall also assume f satisfies, for some constant $C_0 > 0$, the following condition:

$$0 \le f(\lambda X) \le C_0(f(X) + 1), \quad X \in \mathcal{M}^{n \times m}, \ \lambda \in [0, 1].$$

$$(2.1)$$

Note that (2.1) is easily satisfied if f is 1-homogeneous or if f satisfies $f(X) \ge c_0|X| - c_1$. We think that this condition may be a technical condition, but we have not been able to remove it in the proof of Theorem 2.1 given later.

 L^p -Mean coercivity. We say f satisfies the L^p -mean coercivity provided that there exist constants $\Gamma_0 > 0$ and $\Gamma_1 \ge 0$ such that for the unit ball $\mathbf{B} \subset \mathbf{R}^m$

$$\int_{\mathbf{B}} f^{p}(\nabla \phi) \ge \Gamma_{0} \int_{\mathbf{B}} (|\nabla \phi|^{p} - \Gamma_{1}) \quad \forall \phi \in C_{0}^{\infty}(\mathbf{B}; \mathbf{R}^{n}).$$
(2.2)

It is easy to see that the unit ball **B** can be replaced by any open balls in (2.2). Note also that, under the conditions (2.1) and (2.2), the zero set $\mathscr{Z}[f]$ of f is allowed to be an unbounded closed set.

One of the main results of this paper is the following important consequence of the L^p -mean coercivity.

Theorem 2.1. Suppose f satisfies (2.1) and the L^p -mean coercivity for some p > 1. Then, there exists a constant $\overline{\varepsilon} > 0$ such that $\mathscr{Z}[(f^{p+\overline{\varepsilon}})^{qc}] = \mathscr{Z}[(f^p)^{qc}]$. Moreover, in this case, $\mathscr{Z}[(f^p)^{qc}] = \mathbf{Q}_p(\mathscr{Z}[f])$, where $\mathbf{Q}_p(\mathscr{K})$ denotes the p-quasiconvex hull of a set \mathscr{K} defined in the introduction.

The equality $\mathscr{Z}[(f^p)^{qc}] = \mathbf{Q}_p(\mathscr{Z}[f])$ may not hold without the assumption of L^p -mean coercivity of f; see an example in Section 7 later. As a corollary of Theorem 2.1, we have the following result mentioned in the introduction.

Corollary 2.2. Suppose that $f \ge 0$ is Lipschitz and satisfies $f(X) \ge c_0|X| - c_1$ for all $X \in \mathcal{M}^{n \times m}$. Then $\mathscr{Z}[(f^p)^{qc}] = \mathscr{Z}[(f^q)^{qc}]$ for all 1 .

In fact, this result is also true for p = 1. However, since the proof requires some other important techniques including the Luzin type approximation of $W^{1,1}$ -maps by $W^{1,\infty}$ -maps which we cannot cover in this paper, we refer to Yan [35] for the proof and [1,38] for more information.

Let us consider the case where f is 1-homogeneous. Let $\mathscr{K} = \mathscr{Z}[f]$ then \mathscr{K} is a closed cone. By homogeneity, it is easy to see that the L^p -mean coercivity for f is equivalent to the L^p -mean coercivity for $d_{\mathscr{K}}$, i.e.,

$$\int_{\mathbf{B}} d_{\mathscr{X}}^{p}(\nabla\phi) \ge \Gamma_{0} \int_{\mathbf{B}} |\nabla\phi|^{p} \quad \forall \phi \in W_{0}^{1, p}(\mathbf{B}; \mathbf{R}^{n}).$$
(2.3)

In the following, we assume that $\mathscr K$ is a closed cone. As before, we define

$$\mu(p;\mathscr{K}) = \inf \left\{ \int_{\mathbf{B}} d_{\mathscr{K}}^{p}(\nabla \phi) \middle| \phi \in C_{0}^{\infty}(\mathbf{B};\mathbf{R}^{n}), \|\nabla \phi\|_{L^{p}(\mathbf{B})} = 1 \right\}.$$

From (2.3), we say that the set \mathscr{K} satisfies the L^p -mean coercivity if $\mu(p; \mathscr{K}) > 0$. Let

 $\mathbf{S}(\mathcal{K}) = \{ p > 1 \mid \mu(p; \mathcal{K}) > 0 \}.$

Our second main result states that the L^p -mean coercivity for cones is in fact locally independent of the power p.

Theorem 2.3. The set $\mathbf{S}(\mathscr{K})$ is an open set. Moreover, $\mathbf{Q}_p(\mathscr{K}) = \mathscr{Z}[(d_{\mathscr{K}}^p)^{q_c}]$ if $p \in \mathbf{S}(\mathscr{K})$, and $\mathbf{Q}_p(\mathscr{K})$ is constant for all p belonging to each of the connected components of $\mathbf{S}(\mathscr{K})$.

Finally, we have the following higher integrability result concerning the first-order Hamilton–Jacobi system defined by a cone \mathscr{K}

$$\nabla u(x) \in \mathscr{H} \quad \text{a.e. } x \in \Omega.$$
 (2.4)

Theorem 2.4. Let \mathscr{K} be a closed cone and $[\alpha, \beta] \subset \mathbf{S}(\mathscr{K})$. Then, any solution $u \in W^{1,\alpha}_{\text{loc}}(\Omega; \mathbf{R}^n)$ to system (2.4) must belong to $W^{1,\beta}_{\text{loc}}(\Omega; \mathbf{R}^n)$.

Proof. Suppose $[\alpha, \beta] \subset \mathbf{S}(\mathscr{K})$. From the proof of Theorem 2.3 given later (see also Theorem 6.2), we see that

$$\gamma_0 = \inf_{\alpha \le p \le \beta} \mu(p; \mathscr{K}) > 0.$$

Hence \mathscr{K} satisfies a uniform L^p -mean coercivity for $p \in [\alpha, \beta]$, thus the theorem follows from a general regularity theorem of Yan and Zhou [36]. \Box

The proof of Theorem 2.1 will be given in Section 5 and that of Theorem 2.3 will be given in Section 6.

3. A variational principle for minimizing sequences

In this section, we study some properties concerning the relaxation of a function by constructing certain useful minimizing sequences using the Ekeland variational principle [10].

First of all, we prove the following simple but useful result.

Lemma 3.1. Let $g: \mathcal{M}^{n \times m} \to \mathbf{R}$ be any continuous function. Then for any $A \in \mathcal{M}^{n \times m}$ there exists a sequence $\{\psi_i\}$ in $W_0^{1,\infty}(\mathbf{B};\mathbf{R}^n)$ such that

$$g^{\rm qc}(A) = \lim_{j \to \infty} \int_{\mathbf{B}} g(A + \nabla \psi_j), \qquad \lim_{j \to \infty} \|\psi_j\|_{L^{\infty}(\mathbf{B})} = 0.$$
(3.1)

Proof. Given $A \in \mathcal{M}^{n \times m}$, by the definition of $g^{qc}(A)$, there exists a sequence $\{\phi_j\}$ in $C_0^{\infty}(\mathbf{B}; \mathbf{R}^n)$ such that

$$g^{\rm qc}(A) = \lim_{j \to \infty} \int_{\mathbf{B}} g(A + \nabla \phi_j).$$
(3.2)

Let $M_j = 1 + \|\phi_j\|_{L^{\infty}(\mathbf{B})}$ and $\varepsilon_j = 1/jM_j$. Given j = 1, 2, ..., consider the family \mathscr{B}_j of all closed balls contained in **B** and of radius $\langle \varepsilon_j$. Then \mathscr{B}_j forms a Vitali covering of **B**. Therefore, there exist a sequence of disjoint closed balls $\{\bar{B}_k\}$ and a null set N such that $\mathbf{B} = \bigcup_k \bar{B}_k \bigcup N$. Let $B_k = B(x_k, r_k)$ have center $x_k \in \mathbf{B}$ and radius $r_k \in (0, \varepsilon_j)$,

and hence $\sum_k r_k^m = 1$. Define

$$\psi_{j}(x) = \begin{cases} r_{k}\phi_{j}\left(\frac{x-x_{k}}{r_{k}}\right) & \text{if } x \in \bar{B}_{k} \text{ for some } k, \\ 0 & \text{otherwise.} \end{cases}$$
(3.3)

It is easily seen that $\psi_j \in W_0^{1,\infty}(\mathbf{B}; \mathbf{R}^n)$. From (3.3), we have that

 $\|\psi_j\|_{L^{\infty}(\mathbf{B})} \leq \varepsilon_j \|\phi_j\|_{L^{\infty}(\mathbf{B})} \leq 1/j$ and by (3.2)

$$\int_{\mathbf{B}} g(A + \nabla \psi_j(x)) \, \mathrm{d}x = \sum_k \int_{B_k} g\left(A + \nabla \phi_j\left(\frac{x - x_k}{r_k}\right)\right) \, \mathrm{d}x$$
$$= \sum_k \int_{\mathbf{B}} g(A + \nabla \phi_j(y)) r_k^m \, \mathrm{d}y$$
$$= \int_{\mathbf{B}} g(A + \nabla \phi_j(y)) \, \mathrm{d}y \to g^{\mathrm{qc}}(A) |\mathbf{B}|.$$

The lemma is proved. \Box

Using this lemma, we can characterize the set $\mathscr{Z}[(f^p)^{qc}]$ as follows if f satisfies the L^p -mean coercivity.

Proposition 3.2. Let $f \ge 0$ be Lipschitz continuous and satisfy the L^p -mean coercivity. Then $A \in \mathscr{Z}[(f^p)^{qc}]$ if and only if there exists a sequence $\{\psi_j\}$ in $W_0^{1,p}(\mathbf{B}; \mathbf{R}^n)$ such that

$$\int_{\mathbf{B}} f^{p}(A + \nabla \psi_{j}) \leq j^{-2}/2, \qquad \psi_{j} \to 0 \text{ weakly in } W_{0}^{1, p}(\mathbf{B}; \mathbf{R}^{n}).$$
(3.4)

Proof. Note that condition (3.4) and the lower semicontinuity result mentioned in the introduction (see also [1,5]) easily imply that $A \in \mathscr{Z}[(f^p)^{qc}]$. To prove the other direction, we assume $A \in \mathscr{Z}[(f^p)^{qc}]$. Applying the previous lemma to $g = f^p$, we have a sequence $\{\psi_j\}$ in $W_0^{1,\infty}(\mathbf{B}; \mathbf{R}^n)$ which, via a subsequence, converges to zero in L^∞ -norm and satisfies the first condition of (3.4). Finally, the L^p -mean coercivity and the Lipschitz condition of f imply that the sequence $\{\psi_j\}$ is bounded in p-norm and thus must converge weakly to zero in $W_0^{1,p}(\mathbf{B}; \mathbf{R}^n)$. \Box

Assuming $A \in \mathscr{Z}[(f^p)^{qc}]$, consider a complete metric space (\mathscr{Y}_A, ρ) defined by

$$\mathscr{V}_{A} \equiv \{Ax + \zeta \,|\, \zeta \in W_{0}^{1,1}(\mathbf{B};\mathbf{R}^{n})\}, \qquad \rho(w,v) \equiv \int_{\mathbf{B}} |\nabla w - \nabla v|. \tag{3.5}$$

Let $\{\psi_j\}$ be the sequence in $W_0^{1, p}(\mathbf{B}; \mathbf{R}^n)$ determined by Proposition 3.2. Then,

$$w_j \equiv Ax + \psi_j \in \mathscr{V}_A, \qquad \int_{\mathbf{B}} f^p(\nabla w_j) \le j^{-2}/2.$$
(3.6)

We have the following version of the Ekeland variational principle (see [9,10]).

Proposition 3.3. There exists $b_j \in \mathscr{V}_A$ such that $\rho(b_j, w_j) \leq 1/j$ and

$$\int_{\mathbf{B}} f^{p}(\nabla b_{j}) < \int_{\mathbf{B}} f^{p}(\nabla w) + j^{-1} \int_{\mathbf{B}} |\nabla w - \nabla b_{j}|$$

$$(3.7)$$

for all $w \in \mathscr{V}_A$ with $w \neq b_j$.

Proof. For convenience of the reader, we give a proof of this result, following [9, Theorem 4.2]. Let $\Phi(v) = \int_{\mathbf{B}} f^p(\nabla v)$. By Fatou's lemma, Φ is lower semicontinuous on (\mathscr{V}_A, ρ) . Let $v_1 = w_j$ as defined above. Define

$$S_1 = \{ v \in \mathscr{V}_A \mid \Phi(v) \le \Phi(v_1) - j^{-1} \rho(v, v_1) \}.$$

This set is nonempty and closed, and hence there exists $v_2 \in S_1$ such that $\Phi(v_2) \leq \inf_{S_1} \Phi + j^{-2}/2^2$. So, we inductively define S_k by

$$S_k = \{v \in \mathscr{V}_A \mid \Phi(v) \le \Phi(v_k) - j^{-1}\rho(v, v_k)\}$$

and define $v_{k+1} \in S_k$ by requiring $\Phi(v_{k+1}) \leq \inf_{S_k} \Phi + j^{-2}/2^{k+1}$. Clearly, $\{S_k\}$ is a decreasing sequence of closed sets in \mathscr{V}_A . We now estimate the size of S_k . Let $x \in S_k$. Then $\Phi(x) \leq \Phi(v_k) - j^{-1}\rho(x, v_k)$. Also, by the definition of v_k , since $x \in S_{k-1}$, it follows that $\Phi(v_k) \leq \inf_{v \in S_{k-1}} \Phi(v) + j^{-2}/2^k \leq \Phi(x) + j^{-2}/2^k$. Hence

$$\rho(x, v_k) \le j^{-1}/2^k, \quad \forall x \in S_k, \tag{3.8}$$

and hence diam $(S_k) \leq j^{-1}/2^{k-1}$, which tends to 0 as $k \to \infty$. Therefore, $\bigcap_k S_k$ contains a unique point, say, b_j . Note that this b_j satisfies that

$$\Phi(b_j) \le \Phi(v_k) - j^{-1} \rho(b_j, v_k) \quad \forall k = 1, 2, \dots$$
(3.9)

We claim that b_i satisfies the requirements in the proposition. Indeed, by (3.8),

$$\rho(v_k, w_j) = \rho(v_k, v_1) \le \sum_{i=1}^{k-1} \rho(v_i, v_{i+1}) \le \sum_{i=1}^{k-1} j^{-1}/2$$

and letting $k \to \infty$, we have $\rho(b_j, w_j) \le j^{-1}$. To prove (3.7), i.e.

$$\Phi(w) > \Phi(b_j) - j^{-1}\rho(w, b_j) \quad \forall w \in \mathscr{V}_A, \ w \neq b_j,$$

we assume, on the contrary, that $\Phi(w) \leq \Phi(b_j) - j^{-1}\rho(w, b_j)$ for some $w \in \mathscr{V}_A$, $w \neq b_j$. Then, by (3.9), $\Phi(w) \leq \Phi(v_k) - j^{-1}\rho(w, v_k)$ for all k. This implies $w \in \bigcap_k S_k$ and hence $w = b_j$, a desired contradiction. The proof is thus complete. \Box

We also obtain the following result using Proposition 3.2.

Corollary 3.4. $I_p(b_j; \mathbf{B}) \rightarrow 0$ and $b_j \rightarrow Ax$ weakly in $W^{1,p}(\mathbf{B}; \mathbf{R}^n)$ as $j \rightarrow \infty$, where $\{b_j\}$ is the sequence defined in Proposition 3.3.

4. Reverse Hölder inequalities and higher regularity

Let $\{b_j\}$ be determined in Proposition 3.3. In this section, we prove that the sequence $\{\nabla b_j\}$ has a uniform higher integrability.

We first prove the following uniform reverse Hölder inequalities for sequence $\{\nabla b_i\}$.

Proposition 4.1. There exist constants N_0 , β_0 and γ_0 depending on f and p such that for all $j \ge N_0$ and $B_{2R} = B(a, 2R) \in \mathbf{B}$

$$\int_{B_{R}} |\nabla b_{j}|^{p} \leq \beta_{0} \left(\int_{B_{2R}} |\nabla b_{j}|^{pm/(m+p)} \right)^{(m+p)/m} + \gamma_{0}.$$
(4.1)

Proof. The proof uses standard techniques of Caccioppoli-type estimates [14,15,20, 23,24], but requires a careful treatment since the integrand f^p does not satisfy the usual growth conditions, so we present the detail here; see also Yan and Zhou [37].

Let (\mathscr{V}_{A}, ρ) be defined as before, and let c_{0}, c_{1}, \ldots denote the constants depending only on p and f. Given $B_{2R} = B(a, 2R) \in \mathbf{B}$ and $0 < s < t \le 2R$, let $\eta \in C_{0}^{\infty}(\mathbf{B})$ be a cut-off function such that

$$0 \leq \eta \leq 1, \quad \eta|_{B_s} = 1, \quad \eta|_{\mathbf{B} \setminus B_t} = 0, \quad |\nabla \eta| \leq c_0 (t-s)^{-1}$$

Let $w = \eta v + (1 - \eta)b_j$ and $\phi = b_j - w$, where $v \in \mathbf{R}^n$ is a constant to be chosen later. Then $w \in \mathscr{V}_A$, $\phi \in W_0^{1, p}(B_t; \mathbf{R}^n)$ and

$$\nabla w = (1 - \eta)\nabla b_j - (b_j - \nu) \otimes \nabla \eta, \qquad \nabla \phi = \eta \nabla b_j + (b_j - \nu) \otimes \nabla \eta. \tag{4.2}$$

Using this, we obtain by (2.1) and (2.2) that

$$\int_{B_s} |\nabla b_j|^p \leq \int_{B_t} |\nabla \phi|^p \leq \Gamma_0^{-1} \int_{B_t} f^p (\nabla \phi) + \Gamma_1 |B_t|$$

$$\leq c_1 \int_{B_t} f^p (\nabla b_j) + \frac{c_1}{(t-s)^p} \int_{B_t \setminus B_s} |b_j - v|^p + c_1 |B_t|.$$
(4.3)

Since $\nabla w = \nabla b_j$ in **B**\ B_t and $\nabla w = 0$ in B_s , the first term in (4.3) can be estimated by (3.7) as

$$\int_{B_t} f^p(\nabla b_j) \le \int_{B_t \setminus B_s} f^p(\nabla w) + f^p(0)|B_s| + j^{-1} \int_{B_t} |\nabla w - \nabla b_j|.$$

$$(4.4)$$

Using (4.2) and the inequality $f(X) \le f(0) + |X|$, we have that

$$\int_{B_t \setminus B_s} f^p(\nabla w) \le c_2 \int_{B_t \setminus B_s} |\nabla b_j|^p + \frac{c_2}{(t-s)^p} \int_{B_t \setminus B_s} |b_j - v|^p + c_2 |B_{2R}|.$$
(4.5)

Combining (4.3)-(4.5), we have

$$\int_{B_s} |\nabla b_j|^p \le c_3 \int_{B_t \setminus B_s} |\nabla b_j|^p + \frac{c_3}{(t-s)^p} \int_{B_{2R}} |b_j - v|^p + \frac{c_3}{j} \int_{B_t} |\nabla b_j - \nabla w| + c_3 |B_{2R}|.$$

$$(4.6)$$

Since $t \le t^p + 1$ for all $t \ge 0$ and $p \ge 1$, it follows that

$$\int_{B_{t}} |\nabla b_{j} - \nabla w| = \int_{B_{s}} |\nabla b_{j}| + \int_{B_{t} \setminus B_{s}} |\nabla \phi| \leq \int_{B_{s}} |\nabla b_{j}|^{p} + c_{4} \int_{B_{t} \setminus B_{s}} |\nabla b_{j}|^{p} + \frac{c_{4}}{(t-s)^{p}} \int_{B_{2R}} |b_{j} - v|^{p} + c_{4}|B_{2R}|.$$
(4.7)

Let $N_0 = 2 c_3$. Then, for $j \ge N_0$, by (4.6) and (4.7), we have

$$\int_{B_s} |\nabla b_j|^p \le c_5 \int_{B_t \setminus B_s} |\nabla b_j|^p + \frac{c_5}{(t-s)^p} \int_{B_{2R}} |b_j - v|^p + c_5 |B_{2R}|.$$
(4.8)

Filling the hole, i.e., adding $c_5 \int_{B_s} |\nabla b_j|^p$ to both sides of (4.8), we obtain that

$$\int_{B_s} |\nabla b_j|^p \leq \frac{c_5}{1+c_5} \int_{B_t} |\nabla b_j|^p + \frac{c_6}{(t-s)^p} \int_{B_{2R}} |b_j - v|^p + c_6 |B_{2R}|.$$

With this being valid for all $0 < s < t \le 2R$, an iteration argument [14] yields that

$$\int_{B_R} |\nabla b_j|^p \le c_7 R^{-p} \int_{B_{2R}} |b_j - v|^p + c_7 |B_{2R}|$$
(4.9)

and, taking the average, hence

$$\int_{B_R} |\nabla b_j|^p \le \frac{c_8}{R^{m+p}} \int_{B_{2R}} |b_j - v|^p + c_8.$$
(4.10)

Now, choose $v = v_R = \int_{B_{2R}} -b_j$ and use in (4.10) the Sobolev–Poincaré inequality

$$\int_{B_{2R}} |b_j - v_R|^p \le C_m \left(\int_{B_{2R}} |\nabla b_j|^{pm/(m+p)} \right)^{(m+p)/m}$$

we obtain (4.1). The proof is complete. \Box

Theorem 4.2. There exist $\varepsilon_0 > 0$ and integer N_0 depending on f and p such that the sequence $\{b_j\}$ determined in the previous proposition satisfies

$$\sup_{j\geq N_0} \int_D |\nabla b_j|^{p+\varepsilon_0} \le M_D < \infty, \quad \forall D \in \mathbf{B}.$$
(4.11)

Proof. Let $h_j = 1 + |\nabla b_j|^{pm/(m+p)}$ and r = (m+p)/m. Then, by (2.2), $\{h_j\}$ is bounded in $L^r(D)$ and for all $j \ge N_0$ by (4.1)

$$\int_{B_R} h_j^r \leq \kappa \left(\int_{B_{2R}} h_j \right)^r, \quad \forall B_{2R} \in \mathbf{B},$$

where κ is a constant depending on f and p. By Gehring's reverse Hölder inequality estimates [13], we conclude that $\{h_j\}$ is bounded in $L^s_{loc}(\mathbf{B})$ for some s > r and hence $\{b_j\}$ is bounded in $W^{1, p+\varepsilon_0}_{loc}(\mathbf{B})$ for some $\varepsilon_0 > 0$ depending only on f and p. We have thus proved Theorem 4.2. \Box

Corollary 4.3. Let $\{b_j\}$ be determined as in Corollary 3.4 and $\varepsilon_0 > 0$ determined in Theorem 4.2. Then $I_p(b_j; \mathbf{B}) \to 0$ and $b_j \to Ax$ weakly in $[W^{1, p} \cap W^{1, p+\varepsilon_0}_{\text{loc}}](\mathbf{B}; \mathbf{R}^n)$ as $j \to \infty$.

5. Proof of Theorem 2.1

Let $A \in \mathscr{Z}[(f^p)^{qc}]$ and let $\{b_j\}$ be defined as before. By Corollary 4.3, we have that $I_p(b_j; \mathbf{B}) \to 0$ and $b_j \to Ax$ in $W_{loc}^{1, p+\varepsilon_0}(\mathbf{B}; \mathbf{R}^n)$, where $\varepsilon_0 > 0$ is the constant determined in Theorem 4.2, which is independent of A.

Let $s = p + \varepsilon_0/2$. We claim that $A \in \mathscr{Z}[g]$ for any quasiconvex function g satisfying

$$0 \le g(X) \le C(1 + |X|^s), \quad g|_{\mathscr{K}} = 0.$$

If this is done, then, by definition, $A \in \mathbf{Q}_{\mathbf{s}}(\mathscr{K})$. Therefore, $\mathscr{Z}[(f^p)^{qc}] \subseteq \mathbf{Q}_{\mathbf{s}}(\mathscr{K}) \subseteq \mathscr{Z}[(f^s)^{qc}]$, and hence Theorem 2.1 follows.

To prove this claim, we observe that, for any given quasiconvex function g as above and $\delta > 0$, there exists a constant $C(\delta) > 0$ such that

$$g(X) \le \delta(1+|X|^{p+\varepsilon_0}) + C(\delta)f^p(X), \quad X \in \mathcal{M}^{n \times m}.$$
(5.1)

This inequality and Theorem 4.2 imply that for all $D \in \mathbf{B}$

$$\int_{D} g(\nabla b_j) \leq \delta \int_{D} (1 + |\nabla b_j|^{p+\varepsilon_0}) + C(\delta) \int_{D} f^p(\nabla b_j)$$
$$\leq \delta(1 + M_D) + C(\delta) I_p(b_j; \mathbf{B}).$$

Letting first $j \to \infty$ and then $\delta \to 0$, we have $\int_D g(\nabla b_j) \to 0$. Furthermore, as $b_j \rightharpoonup Ax$ in $W^{1, p+\varepsilon_0}(D; \mathbf{R}^n)$, the lower semicontinuity theorem mentioned earlier again yields that

$$\int_D g(A) \le \lim_{j \to \infty} \int_D g(\nabla b_j) = 0$$

hence, g(A) = 0, i.e., $A \in \mathscr{Z}[g]$. The claim is proved, and the proof of Theorem 2.1 is thus complete.

6. Proof of Theorem 2.3

The proof of Theorem 2.3 relies on a stability result of nonlinear Hodge decompositions due to Iwaniec [17] and Iwaniec and Sbordone [20]. We refer to [16,18,37] for other developments and to Lewis [21] for the related results using different methods involving the maximal functions in harmonic analysis.

We need the following version of the nonlinear Hodge decompositions proved in Iwaniec and Sbordone [20, Theorem 3].

Lemma 6.1. For r > 1, $u \in W_0^{1,r}(\mathbf{B}; \mathbf{R}^n)$ and $\varepsilon \in (-1, r - 1)$, the matrix $|\nabla u|^{\varepsilon} \nabla u \in L^{r/(1+\varepsilon)}(\mathbf{B}; \mathcal{M}^{n \times m})$ can be decomposed as

$$|\nabla u(x)|^{\varepsilon} \nabla u(x) = \nabla \psi(x) + h(x) \quad \text{a.e. } x \in \mathbf{B},$$
(6.1)

where $\psi \in W_0^{1,r/(1+\varepsilon)}(\mathbf{B};\mathbf{R}^n)$ and $h \in L^{r/(1+\varepsilon)}(\mathbf{R}^m;\mathcal{M}^{n\times m})$ is a divergence-free matrix field such that

$$\|h\|_{L^{r/(1+\varepsilon)}(\mathbf{R}^m)} \le C(m,n,r,\varepsilon)|\varepsilon| \|\nabla u\|_{L^r(\mathbf{B})}^{1+\varepsilon}.$$
(6.2)

Moreover, for any constants $1 < r_1 < r_2 < \infty$, the constant $C(m, n, r, \varepsilon)$ satisfies that

$$\sup_{|\varepsilon| \le (r_1 - 1)/(r_1 + 1), r_1 \le r \le r_2} C(m, n, r, \varepsilon) \equiv \alpha(r_1, r_2) < \infty.$$
(6.3)

Proof. Estimate (6.2) follows simply from the standard Hodge decompositions, but a most important part of the lemma is the estimate (6.3) on the constant $C(m, n, r, \varepsilon)$. Using a technique of complex interpolation for nonlinear commutators, Iwaniec and Sbordone have proved that [20, Estimate (2.10)]

$$C(m, n, r, \varepsilon) \leq \frac{2r(s_2 - s_1)c(s_1, s_2)}{(r - s_1)(s_2 - r)}$$

where $c(s_1, s_2) < \infty$ and numbers $1 < s_1 < s_2 < \infty$ satisfy

$$s_1 < r < s_2, \quad s_1 \leq \frac{r}{1+\varepsilon} \leq s_2$$

From this, (6.3) follows easily by choosing $s_1 = (r_1 + 1)/2$ and $s_2 = r_2(r_1 + 1)/2$. \Box

Proof of Theorem 2.3. The second part of the theorem follows immediately from Theorem 2.1. We only need to show that the set $\mathbf{S}(\mathscr{K})$ is open. Assume $p \in \mathbf{S}(\mathscr{K})$. Let

$$r_1 = \frac{\sqrt{8p+1}-1}{2}, \qquad \varepsilon_0 = \frac{r_1-1}{r_1+1}, \quad r_2 = (1+\varepsilon_0)p.$$
 (6.4)

Given any ε such that $|\varepsilon| \le \varepsilon_0$, let $r = (1 + \varepsilon)p$. Obviously $r_1 \le r \le r_2$. We are going to show that $r \in \mathbf{S}(\mathscr{K})$ if $|\varepsilon|$ is further sufficiently small; consequently, $\mathbf{S}(\mathscr{K})$ is open and Theorem 2.3 is proved.

Let
$$\phi \in C_0^{\infty}(\mathbf{B}; \mathbf{R}^n)$$
. Using Lemma 6.1, for $|\nabla \phi|^{\varepsilon} \nabla \phi \in L^p(\mathbf{B}; \mathcal{M}^{n \times m})$, we have

$$|\nabla\phi(x)|^{\varepsilon}\nabla\phi(x) = \nabla\psi(x) + h(x) \quad \text{a.e. } x \in \mathbf{B},$$
(6.5)

where $\psi \in W_0^{1, p}(\mathbf{B}; \mathbf{R}^n), h \in L^p(\mathbf{R}^m; \mathcal{M}^{n \times m})$ and

$$\|h\|_{L^{p}(\mathbf{R}^{m})} \leq \alpha_{p} |\varepsilon| \|\nabla \phi\|_{L^{r}(\mathbf{B})}^{1+\varepsilon}, \qquad \|\nabla \psi\|_{L^{p}(\mathbf{B})} \geq (1-\alpha_{p} |\varepsilon|) \|\nabla \phi\|_{L^{r}(\mathbf{B})}^{1+\varepsilon}$$
(6.6)

with the constant $\alpha_p = \alpha(r_1, r_2)$ depending only on p, as defined in (6.3). From (6.5), we have that $\nabla \psi(x) = |\nabla \phi(x)|^{\varepsilon} \nabla \phi(x) - h(x)$. Therefore,

$$d_{\mathscr{K}}(\nabla\psi(x)) \leq |\nabla\phi(x)|^{\varepsilon} d_{\mathscr{K}}(\nabla\phi(x)) + |h(x)| \quad \forall x \in \mathbf{B}.$$

Let $\sigma_0 = \mu(p; \mathscr{K})^{1/p}$. The estimate above and the L^p -mean coercivity of \mathscr{K} imply that $\sigma_1 \|\nabla w\|_{L^p} \leq \|d_{\mathcal{K}}(\nabla w)\|_{L^p}$

$$\sigma_0 \|\nabla \psi\|_{L^p(\mathbf{B})} \leq \|d_{\mathscr{K}}(\nabla \psi)\|_{L^p(\mathbf{B})}$$

$$\leq \left\| \left| \nabla \phi \right|^{\varepsilon} d_{\mathscr{K}}(\nabla \phi) \right\|_{L^{p}(\mathbf{B})} + \left\| h \right\|_{L^{p}(\mathbf{B})}.$$

$$(6.7)$$

Combining (6.6) and (6.7) yields that

$$(\sigma_0 - \alpha_p (1 + \sigma_0) |\varepsilon|) \|\nabla \phi\|_{L^p(\mathbf{B})}^{1+\varepsilon} \le \||\nabla \phi|^{\varepsilon} d_{\mathscr{K}}(\nabla \phi)\|_{L^p(\mathbf{B})}.$$
(6.8)

We now claim (6.8) implies that if $|\varepsilon| \leq \varepsilon_0$ is further chosen sufficiently small then

$$\int_{\mathbf{B}} d_{\mathscr{K}}^{r}(\nabla \phi) \ge C_{p} \|\nabla \phi\|_{L^{r}(\mathbf{B})}^{r}, \quad C_{p} > 0$$
(6.9)

for $r = (1 + \varepsilon)p$; that is, $r \in \mathbf{S}(\mathscr{K})$, proving that $\mathbf{S}(\mathscr{K})$ is open.

Indeed, if $\varepsilon < 0$ then, using $|\nabla \phi|^{\varepsilon} \leq [d_{\mathscr{K}}(\nabla \phi)]^{\varepsilon}$, we simply have

$$\left\|\left|\nabla\phi\right|^{\varepsilon} d_{\mathscr{K}}(\nabla\phi)\right\|_{L^{p}(\mathbf{B})} \leq \left\|d_{\mathscr{K}}^{1+\varepsilon}(\nabla\phi)\right\|_{L^{p}(\mathbf{B})} = \left\|d_{\mathscr{K}}(\nabla\phi)\right\|_{L^{p}(\mathbf{B})}^{1+\varepsilon}$$

hence (6.9) follows from (6.8) if $|\varepsilon|$ is sufficiently small. While, if $\varepsilon > 0$, by Hölder's inequality, we have

$$\left\|\left|\nabla\phi\right|^{\varepsilon}d_{\mathscr{K}}(\nabla\phi)\right\|_{L^{p}(\mathbf{B})} \leq \left\|d_{\mathscr{K}}(\nabla\phi)\right\|_{L^{r}(\mathbf{B})}\left\|\nabla\phi\right\|_{L^{r}(\mathbf{B})}^{\varepsilon}.$$

So, we still obtain (6.9) from (6.8) for all sufficiently small $|\varepsilon|$. The proof of Theorem 2.3 is now complete. \Box

From the proof of Theorem 2.3, one can also see that if p > 1 and $\mu(p; \mathcal{K}) > 0$ then

 $\mu(p;\mathscr{K}) \leq \liminf_{r \to p} \mu(r;\mathscr{K}),$

i.e., the function $\mu(r; \mathscr{K})$ is lower semicontinuous at r = p for all such p. On the other hand, from the definition, function $\mu(r; \mathscr{K})$ is easily shown to be upper semicontinuous at all r > 1. Therefore, we have also proved the following result.

Theorem 6.2. The function $\mu(p; \mathcal{K})$ defined above is continuous at all p > 1 where $\mu(p; \mathcal{K}) > 0$.

7. Some examples and applications

In this final section, we consider some examples for which our theorems may produce some new interesting results.

First, we consider the so-called *conformal set* C_n in the space $\mathcal{M}^{n \times n}$ for $n \ge 2$; that is, a closed cone defined by

$$C_n = \{\lambda R \mid \lambda \ge 0, R \in SO(n)\},\$$

where SO(n) is the set of all real $n \times n$ orthogonal matrices with determinant 1.

It has been shown in [34] that $(d_{C_n}^{n/2})^{qc} \equiv 0$ for all $n \geq 3$ and shown in [28] that if $n \geq 2$ is *even* then $\mathbf{Q}_{n/2}(C_n) = C_n$. This shows that the *p*-quasiconvex hulls defined here are not equivalent to those given in [39] and also that the inclusion $\mathbf{Q}_p(\mathscr{K}) \subseteq \mathscr{Z}[(d_{\mathscr{K}}^p)^{qc}]$ may be *strict* if a closed cone \mathscr{K} is not L^p -mean coercive.

Furthermore, it can be seen that C_n is L^n -mean coercive (see below); therefore, Theorems 2.1 and 2.3 show that, for some $\varepsilon > 0$, $(d_{C_n}^p)^{qc}$ is quasiconvex and

$$\mathscr{Z}[(d^p_{C_n})^{\mathrm{qc}}] = C_n \quad \forall p \in [n-\varepsilon, n+\varepsilon].$$

However, as shown in [34], $(d_{C_n}^p)^{qc}$ is not *polyconvex* in the sense of Ball [2] for all $n/2 with <math>n \ge 3$. This shows that the structure of $(d_{C_n}^p)^{qc}$ is highly non-trivial if n/2 .

In order to illustrate some concrete examples of applications of the results proved above, let us consider a *null-Lagrangian* N(X) on $\mathcal{M}^{n \times m}$; that is,

$$\int_{\mathbf{B}} N(A + \nabla \phi(x)) \, \mathrm{d}x = N(A) |\mathbf{B}| \quad \forall A \in \mathcal{M}^{n \times m}$$

for all balls **B** and all $\phi \in C_0^{\infty}(\mathbf{B}; \mathbf{R}^n)$. (We refer to [3] for more on null-Lagrangians.) Assume also that N is homogeneous of degree $k \ge 2$. Then we know k must be an integer and $k \le \min\{n, m\}$.

Let $u \in W^{1,\overline{k}}(\Omega; \mathbb{R}^n)$. Then we know that $N(\nabla u)$ belongs to the local Hardy space $\mathscr{H}^1_{\text{loc}}(\Omega)$ [7] and if in addition $N(\nabla u(x)) \ge 0$ then $N(\nabla u)$ belongs locally to the Stein space $L^1 \ln L^1$ [26,29]; this last property is a higher regularity result since by scaling $N(\nabla u(x))$ only belongs to L^1 . We next show that if a certain strict positivity of $N(\nabla u(x))$ holds then one could obtain some new interesting higher regularity results.

Theorem 7.1. There exist constants $\alpha_k < k < \beta_k$ such that any map $u \in W^{1,\alpha_k}_{loc}(\Omega; \mathbf{R}^n)$ satisfying

$$N(\nabla u(x)) \ge |\nabla u(x)|^k \quad \text{a.e. } x \in \Omega \tag{7.1}$$

must belong to $W_{\text{loc}}^{1,\beta_k}(\Omega; \mathbf{R}^n)$; thus $N(\nabla u(x))$ belongs to $L_{\text{loc}}^p(\Omega)$ for some p > 1.

Proof. The crux of this theorem is that u only belongs to $W_{loc}^{1,\alpha_k}(\Omega; \mathbf{R}^n)$; there is no local $L^1 \ln L^1$ regularity for $N(\nabla u)$ since it is not a priori integrable. The proof is a beautiful application of the theorems we proved above. Define

$$f(X) = (\max\{0, |X|^k - N(X)\})^{1/k}, \quad \mathscr{K} = \mathscr{Z}[f].$$
(7.2)

Then condition (7.1) is equivalent to the Hamilton–Jacobi system

$$\nabla u(x) \in \mathscr{K}$$
 a.e. $x \in \Omega$.

Note that f is 1-homogeneous and

$$\int_{\mathbf{B}} f^k(\nabla \phi(x)) \, \mathrm{d}x \ge \int_{\mathbf{B}} \left(|\nabla \phi(x)|^k - N(\nabla \phi(x)) \right) \, \mathrm{d}x = \int_{\mathbf{B}} \left| \nabla \phi(x) \right|^k \, \mathrm{d}x$$

for all balls **B** and all $\phi \in C_0^{\infty}(\mathbf{B}; \mathbf{R}^n)$; therefore, f and hence \mathscr{K} satisfy the L^k -mean coercivity. So $k \in \mathbf{S}(\mathscr{K})$, the *open* set defined before, and hence there exists a closed interval $[\alpha_k, \beta_k] \subset \mathbf{S}(\mathscr{K})$ such that $\alpha_k < k < \beta_k$. Consequently, the theorem follows from Theorem 2.4. \Box

From this theorem and Sobolev's embedding theorem, we easily have the following result.

Corollary 7.2. Let k = m. Then any map u in $W_{loc}^{1,\alpha_k}(\Omega; \mathbf{R}^n)$ satisfying (7.1) must be locally Hölder continuous in Ω .

Let $\alpha_k < k < \beta_k$ be as determined in the proof given above. We prove a stability result.

Theorem 7.3. Let $\{u_i\}$ converge weakly to u in $W^{1,\alpha_k}(\Omega; \mathbf{R}^n)$ and satisfy

$$|\nabla u_j(x)|^k \le N(\nabla u_j(x)) + (g_j(x))^{k/\alpha_k} \quad \text{a.e. } x \in \Omega.$$
(7.3)

If $g_i \to 0$ strongly in $L^1(\Omega)$ as $j \to \infty$, then the weak limit u satisfies

$$N(\nabla u(x)) \ge |\nabla u(x)|^k$$
 a.e. $x \in \Omega$,

and thus the regularity result of the previous theorem follows.

Proof. Again, the difficulty lies in that the sequence and the weak convergence are only in $W^{1,\alpha_k}(\Omega; \mathbf{R}^n)$ and in this case one cannot take any limit in the inequality (7.3). It seems necessary to use some of the results proved above to prove this theorem. Let f, \mathcal{K} be defined as in the proof of the previous theorem. Note that f^k is quasiconvex since it is polyconvex in the sense of Ball [2]. Therefore, by definition, the *k*-quasiconvex hull $\mathbf{Q}_k(\mathcal{K}) = \mathcal{K}$. From this and Theorem 2.3 we have $\mathbf{Q}_{\alpha_k}(\mathcal{K}) = \mathcal{K} = \mathcal{Z}[f]$. Also by the assumption we have

$$\lim_{j\to\infty}\int_{\Omega}f^{\alpha_k}(\nabla u_j(x))\,\mathrm{d}x=0.$$

From this and a theorem in Yan [35] it follows that the weak limit u satisfies

$$\nabla u(x) \in \mathbf{Q}_{\alpha_k}(\mathscr{K}) = \mathscr{K} = \mathscr{Z}[f]$$

and hence $N(\nabla u(x)) \ge |\nabla u(x)|^k$ for almost every $x \in \Omega$. The proof is complete. \Box

Remark. Let $n = m = k \ge 2$ and for $L \ge 1$ let $N(X) = Ln^{n/2} \det X$. We can then recover from Theorems 7.1 and 7.3 some of results in [17,19,33,37] concerning the regularity of the so-called *weakly* L-quasiregular mappings.

References

- E. Acerbi, N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal. 86 (1984) 125–145.
- [2] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977) 337–403.
- [3] J.M. Ball, J. Currie, P. Olver, Null Lagrangians, weak continuity, and variational problems of arbitrary order, J. Funct. Anal. 41 (1981) 135–174.
- [4] J.M. Ball, R.D. James, Proposed experimental tests of a theory of fine microstructures and the two well problem, Phil. Trans. Roy. Soc. London 338A (1992) 389–450.
- [5] J.M. Ball, F. Murat, W^{1, p}-Quasiconvexity and variational problems for multiple integrals, J. Funct. Anal. 58 (1984) 225–253.
- [6] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Research Notes in Mathematics, Vol. 207, Longman, Harlow, 1989.
- [7] R. Coifman, P.-L. Lions, Y. Meyer, S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (9) (1993) 247–286.
- [8] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, New York, 1989.
- [9] D.G. De Figueiredo, in: The Ekeland Variational Principle with Applications and Detours, Tata Institute Lecture, Springer, Berlin, 1989.

- [10] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974) 324-353.
- [11] L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations, Arch. Rational Mech. Anal. 95 (1986) 227–252.
- [12] W. Gangbo, On the continuity of the polyconvex, quasiconvex and rank-one-convex envelopes with respect to growth condition, Proc. Roy. Soc. Edinburgh 123A (1993) 707–729.
- [13] F.W. Gehring, The L^p-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973) 265–277.
- [14] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, 1983.
- [15] M. Giaquinta, E. Giusti, On the regularity of the minima of certain variational integrals, Acta Math. 148 (1982) 31–46.
- [16] L. Greco, T. Iwaniec, New inequalities for the Jacobian, Ann. Inst. H. Poincaré Analyse non linéaire 11 (1) (1994) 17–35.
- [17] T. Iwaniec, p-Harmonic tensors and quasiregular mappings, Ann. Math. 136 (1992) 589-624.
- [18] T. Iwaniec, A. Lutoborski, Integral estimates for null Lagrangians, Arch. Rational Mech. Anal. 125 (1993) 25–79.
- [19] T. Iwaniec, G. Martin, Quasiregular mappings in even dimensions, Acta Math. 170 (1993) 29-81.
- [20] T. Iwaniec, C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994) 143–161.
- [21] J. Lewis, On very weak solutions of certain elliptic systems, Comm. Partial Differential Equations 18 (9 & 10) (1993) 1515–1537.
- [22] P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré Analyse non linéaire 3 (5) (1986) 391–409.
- [23] P. Marcellini, C. Sbordone, On the existence of minima of multiple integrals, J. Math. Pures Appl. 62 (1983) 1–9.
- [24] N. Meyers, A. Elcrat, Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions, Duke Math. J. 42 (1975) 121–136.
- [25] C.B. Morrey Jr., Multiple Integrals in the Calculus of Variations, Springer, Berlin, 1966.
- [26] S. Müller, Higher integrability of determinants and weak convergence in L^1 , J. Reine Angew. Math. 412 (1990) 20–34.
- [27] S. Müller, V. Šverák, Attainment results for the two-well problem by convex integration, in: J. Jost (Ed.), Geometric Analysis and the Calculus of Variations, International Press, Cambridge, MA, 1996, pp. 239–251.
- [28] S. Müller, V. Šverák, B. Yan, Sharp stability results for almost conformal maps in even dimensions, J. Geom. Analysis, 9 (1999) 671–681.
- [29] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.
- [30] V. Šverák, Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh 120A (1992) 185–189.
- [31] V. Šverák, On the problem of two wells, in: D. Kinderlehrer et al. (Eds.), Microstructure and Phase Transition, IMA Math. Appl. Vol. 54, Springer, New York, 1993, pp. 183–190.
- [32] V. Šverák, Lower semicontinuity for variational integral functionals and compensated compactness, in: S.D. Chatterji (Ed.), Proceedings of the International Congress of Mathematicians, Zürich, 1994, Birkhäuser, Basel, 1995, pp. 1153–1158.
- [33] B. Yan, Remarks about W^{1, p}-stability of the conformal set in higher dimensions, Ann. Inst. H. Poincaré, Analyse non linéaire 13 (6) (1996) 691–705.
- [34] B. Yan, On rank-one convex and polyconvex conformal energy functions with slow growth, Proc. Roy. Soc. Edinburgh 127A (1997) 651–663.
- [35] B. Yan, Relaxation of certain partial differential relations in Sobolev spaces, preprint.
- [36] B. Yan, Z. Zhou, A theorem on improving regularity of minimizing sequences by reverse Hölder inequalities, Michigan Math. J. 44 (1997) 543–553.
- [37] B. Yan, Z. Zhou, Stability of weakly almost conformal mappings, Proc. Amer. Math. Soc. 126 (1998) 481–489.

- [38] K. Zhang, A construction of quasiconvex functions with linear growth at infinity, Ann. Scuola Norm. Sup. Pisa 19 (1992) 313-326.
- [39] K. Zhang, On various semiconvex hulls in the calculus of variations, Calc. Var. Partial Differential Equations 6 (1998) 143–160.