Nonlinear
Analysis

PERGAMON Nonlinear Analysis 46 (2001) 835851 _
www.elsevier.com/locate/na

L?-Mean coercivity, regularity and relaxation in
the calculus of variations

Baisheng Yan*, Zhengfang Zhou

Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

Received 16 July 1999; accepted 5 November 1999

Keywords: Nonconvex functionals; [P-mean coercivity; Regularity and relaxation; Nonlinear
Hodge decomposition

1. Introduction

In this paper, we study the multiple integral functionals of the type

1,(u:D) = /D LA (Vu(x)))” dx, (L.1)

where D is a domain in R™, u is a map from D to R”, f is a given function defined
on the space .#"*™ of all real n x m matrices and p > 1 is a given number. Here and
throughout the paper, we use Vu(x) to denote the Jacobian matrix of u defined by

(Vu)y=ou'jox;, 1<i<n, 1<j<m.

The functional 7,(u; D) generalizes the classical Dirichlet p-energy (when f(X) =
|X]) and has been encountered when one studies the variational energies with given
minimum sets or energy wells [4,18,27]; in these cases, f is usually taken as the
distance function to the energy well. Therefore, in this paper, we assume that />0
be a Lipschitz function on .#"*", ie., |f(X)— f(Y)| < |X — Y| for X, Ye.d"™ ™.
This implies f grows linearly at infinity; hence, a natural class of admissible maps for
I1,(u; D) is the usual Sobolev space W'7(D;R").
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Among the most important properties for variational functional /,(u; D) are the con-
ditions of (sequential, throughout this paper) weak lower semicontinuity and certain
coercivity on WHP(D;R"). In this paper, we attempt to study some relations between
these two important issues under a condition known as the L”-mean coercivity to be
discussed later.

For many physical problems, the functional /,(u;D) is not weakly lower semi-
continuous and it is important to study the relaxation or the envelope of I,(u; D) with
respect to the weak convergence on W 7(D;R"). Recall that the relaxation of / p(u; D)
is the largest weakly lower semicontinuous functional on W'7(D;R") that is less than
or equal to 1,(u; D).

Under the assumption of the present paper, it is known (see [1,6,8]) that the relax-
ation of /,(u; D) is representable by another multiple integral J,(u; D) given by

J,(;D) = /D (P (Vu(x)) da, (12)

where, for any given function g on .#"*", g9° denotes the (quasiconvex) relaxation
or the quasiconvexification of g defined by

“(4)=  inf ][ A+ Vo(x))dx, A" ", 1.3
A= inf o+ TH0) (13)

where 2 C R” is any bounded open set with |0€2| =0 and the bar over the integral sign
means taking average. Following Morrey [25], g is said to be quasiconvex provided that
g% =g on #"*™. This quasiconvexity condition turns out to be the “right” condition
for the weak lower semicontinuity of multiple integral functionals on Sobolev spaces;
for instance, it has been proved that (see [1]) if 0 < g(X) < C(JX|? + 1) then the
functional G(u) = [, g(Vu) is weakly lower semicontinuous on W'?(D;R") if and
only if g is quasiconvex. However, besides the class of polyconvex functions of Ball
[2] which are quasiconvex, it is generally difficult to study the quasiconvex functions
since, in (1.3), it involves all test functions ¢ in C5°(€2; R"); see also [5,8,11,22,30]
for some important work on quasiconvexity. Consequently, the study of the relaxation
(f7)%° is greatly nontrivial mainly because in our case (f7)% is always quasiconvex
but, as many interesting examples show, not necessarily polyconvex; see Section 7
below.

Another important question concerns the coercivity of /,(u; D). This is usually dealt
with by assuming f satisfies a pointwise growth condition (see [14,15,24,23])

FX) > colX| =1, VXEM (1.4)

Under this condition, some of the properties concerning the relaxation (f7)% turns
out independent of the power p. For example, it has been proved in Yan [35] that
ZI(fP)€)=Z[(f1)*] for all 1 < p <qg < oo (see also [12,38]), where Z[g] de-
notes the zero set of function g. This result will be partially recovered later from our
main results in which we replace (1.4) by a much weaker condition known as the
LP-mean coercivity [14,15,18]. We say that /,(u; D) or simply f satisfies the L”-mean
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coercivity if

/ SV dx > Ty / ([Vb()” — T1)dx (15)
B B

holds for all smooth maps ¢ with compact support in the unit open ball B in R”,
where 'y, I'; are some positive constants. Note that condition (1.5) may be satisfied
even when (1.4) fails; for example, n=m = p=2 and f(X)=(|X|* — 2detX)"2.

The main purpose of the paper is to study the important relationship between the
LP-mean coercivity and certain questions regarding the relaxation and regularity issues
for the functional /,(u; D). We assume, for our function f, that Z[f] # (. It easily
follows from the Holder inequality that

ZIICSZISDFISZIS*] 1< p<g <o (1.6)

Our first main result (Theorem 2.1) asserts that under the L”-mean coercivity of f
the zero set Z[(f7)%] is half-locally constant in p:

ZI(fPY€]=Z[(fP**)%]  for some & > 0. (1.7)

In view of (1.6), this relation is a reverse Holder inequality, and it relates to a higher
integrability result for the first-order Hamilton—Jacobi system defined by

F(Vu(x))=0 ae. xeQ. (1.8)

It has been proved in Yan and Zhou [36] that if f satisfies the L”-mean coercivity
then Vu € Wkl)’CpH(Q;R”) for any solution u € W7(Q; R") solving (1.8), where ¢ > 0
is some constant. This type of higher integrability results, pioneered by Gehring’s
celebrated work [13], has been well-known for the energy minimizers of variational
integrals under certain pointwise growth conditions (see [14,15,20,24,23]). Indeed, by
adapting the Caccioppoli-type estimates as in Meyers and Elcrat [24] and Giaquinta
and Giusti [15], Theorem 2.1 is proved by the well-known technique of reverse Holder
inequalities of Gehring [13]. The proof here, however, requires a careful treatment
since f7 does not satisfy the usual pointwise growth condition.

We now discuss a stability problem for the Hamilton—Jacobi system (1.8) in Sobolev
spaces Wli’c” (2; R"), which concerns whether the weak limit of any weakly convergent
sequence {u;} satisfying I,(u;;§2) — 0 is a solution of (1.8). Let 4" = Z[f]. We can
study this stability problem by means of the p-quasiconvex hull of % as in Yan [35].
Recall that the p-quasiconvex hull Q,(#") of any set %" is defined by

Q)= {Zlgllg € 25(x)}, (1.9)

where 27 (#") is the set of all quasiconvex functions g with 0 < g(X) < C(|X|” +1)
and ¢g|» =0. Note that our definition of p-quasiconvex hulls, motivated by the work of
Sverak [31,32], is not equivalent to the one given in Zhang [39] as our p-quasiconvex
hulls may be strictly smaller than those defined in [39] for certain unbounded sets; see
an example in Section 7 later. We prefer this definition because it defines an optimal
relation satisfied by the weak limits of all solutions of the Hamilton—Jacobi system
(1.10) below (see [35-37]).
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In Theorem 2.1, we also establish a new characterization for p-quasiconvex hulls
under L”-mean coercivity. We prove that Q,(Z[f]) = Z[(f?)%*] if f satisfies the
LP-mean coercivity. In general, this identity does not hold for arbitrary 2" and p > 1;
see an example in Section 2.

The second main result (Theorem 2.3) deals with a special case where f is
1-homogeneous; that is, f(1X) = Af(X) for all 4 > 0. In this case # = Z[f] is
a closed cone and the Hamilton—Jacobi system (1.8) takes the form

Vu(x)ex ae. x e (1.10)

Assume now % is a given closed cone in .#"*"; that is, A4 C ¢ for all A > 0.
We say A" is LP-mean coercive or satisfies the L”-mean coercivity if (1.5) is satisfied
with f being the distance function dy. To study this L?-mean coercivity, we define

u(p;%')inf{/Bdi(Vcﬁ)‘ ¢ € CB;R"), [V 5 = 1} (1.11)
and
S(A#)={p>1|w(p;A) > 0}. (1.12)

Note that ¢ is LP-mean coercive if and only if p € S(%").

In Theorem 2.3, we show that the set S(¢") is an open set. Thus, if " is L”-mean
coercive for some p > 1 then it is L?-mean coercive for all ¢ € (p — ¢, p + ¢) for
some ¢ > 0. This, to the best of our knowledge, is a new and surprising result, which
assures the near-by mean-coercivity by establishing the L”-mean coercivity at merely
a single point p > 1. Some interesting applications of this result will be given in
Section 7. The proof of Theorem 2.3 relies on an important technique of nonlin-
ear Hodge decompositions of Iwaniec [17] and Iwaniec and Sbordone [20] (see also
[16,21,37]).

As a consequence of Theorems 2.1 and 2.3, we prove that the p-quasiconvex hull
Q,(A") is constant for p in each connected component of S(#"). Furthermore, for
systems (1.10) defined by a closed cone #°, we prove a uniform higher integrabil-
ity theorem (Theorem 2.4) in the sense that for any [o, /] C S(#") a solution u €
WIL’C“(Q;R”) to (1.10) must belong to WIL’C[;(Q; R"). This can be considered as a global
version of the aforementioned results on the higher integrability of energy minimizers
(see, e.g., [13—15,17,20,24]).

2. Statement of the main theorems

As mentioned before, we assume that f: .#"*"—R is Lipschitz continuous. Through-
out the paper, we shall also assume f satisfies, for some constant Cy > 0, the following
condition:

0< fUX) < Co(f(X)+ 1), Xeu™™, ) eo,1]. 2.1)
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Note that (2.1) is easily satisfied if f is 1-homogeneous or if f satisfies f(X) >
¢o|X| —¢i. We think that this condition may be a technical condition, but we have not
been able to remove it in the proof of Theorem 2.1 given later.

LP-Mean coercivity. We say f satisfies the LP-mean coercivity provided that there
exist constants T'g > 0 and T'; > 0 such that for the unit ball BCR"

/ FPV$) > Ty / (V4P ~T)) Ve CE(BR". 22)
B B

It is easy to see that the unit ball B can be replaced by any open balls in (2.2). Note
also that, under the conditions (2.1) and (2.2), the zero set Z[f] of f is allowed to
be an unbounded closed set.

One of the main results of this paper is the following important consequence of the
LP-mean coercivity.

Theorem 2.1. Suppose f satisfies (2.1) and the LP-mean coercivity for some p > 1.
Then, there exists a constant § > 0 such that Z[(fPT5)*] = Z[(f?)*]. Moreover, in
this case, Z[(fP)€] = Q(Z[f]), where Q,(A") denotes the p-quasiconvex hull of
a set A" defined in the introduction.

The equality Z[(f7)%]=Q ,(Z[f]) may not hold without the assumption of L”-mean
coercivity of f; see an example in Section 7 later. As a corollary of Theorem 2.1, we
have the following result mentioned in the introduction.

Corollary 2.2. Suppose that f > 0 is Lipschitz and satisfies f(X) > co|X| — ¢; for
all Xe "™ ™. Then Z[(fP)]=Z[(f1)] for all 1 < p < q < 0.

In fact, this result is also true for p = 1. However, since the proof requires some
other important techniques including the Luzin type approximation of W'!-maps by
W1->_maps which we cannot cover in this paper, we refer to Yan [35] for the proof
and [1,38] for more information.

Let us consider the case where f is 1-homogeneous. Let %" = Z[f] then 4 is a
closed cone. By homogeneity, it is easy to see that the L”-mean coercivity for f is
equivalent to the L”-mean coercivity for dy, i.e.,

[axwor=ro [1991 v e @ 23)
B B
In the following, we assume that #" is a closed cone. As before, we define

p(p; A) = inf {/de’}(vdﬂ ¢ € C3°(B;R"), [Vl o) = 1}~

From (2.3), we say that the set ¢ satisfies the L”-mean coercivity if u(p;#") > 0.
Let

S(A)={p>1|u(p;A) >0}

Our second main result states that the L”-mean coercivity for cones is in fact locally
independent of the power p.
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Theorem 2.3. The set S(A') is an open set. Moreover, Q,(A) = Z[(d})*] if
p € S(A), and Q,(A") is constant for all p belonging to each of the connected
components of S(A").

Finally, we have the following higher integrability result concerning the first-order
Hamilton—Jacobi system defined by a cone ¢~

Vu(x)ex ae. x e 24)

Theorem 2.4. Let A be a closed cone and [o, f1 CS(HA"). Then, any solution u €
Wlf;c“(Q;R”) to system (2.4) must belong to Wlé’cﬁ(Q;R”).
Proof. Suppose [o, f] CS(#"). From the proof of Theorem 2.3 given later (see also
Theorem 6.2), we see that

yo = inf ; A7) > 0.

yo= inf u(p; A)
Hence " satisfies a uniform L?-mean coercivity for p&[a, f], thus the theorem follows
from a general regularity theorem of Yan and Zhou [36]. [

The proof of Theorem 2.1 will be given in Section 5 and that of Theorem 2.3 will
be given in Section 6.

3. A variational principle for minimizing sequences

In this section, we study some properties concerning the relaxation of a function
by constructing certain useful minimizing sequences using the Ekeland variational
principle [10].

First of all, we prove the following simple but useful result.

Lemma 3.1. Let g: .#"*"—R be any continuous function. Then for any A € M"*"
there exists a sequence {y;} in WOI’OO(B; R"™) such that

) = fim [ oGV lim [ =0 G0

Proof. Given Ac.#"*", by the definition of g9°(4), there exists a sequence {¢,} in
Cy°(B; R™) such that

g%(4) :jl—i>nolo ]{;g(A + Vo). 3.2)

Let Mj =1+ /¢l (p, and &; = 1/jM;. Given j=1,2,..., consider the family %; of
all closed balls contained in B and of radius < ¢;. Then #; forms a Vitali covering
of B. Therefore, there exist a sequence of disjoint closed balls {B;} and a null set N
such that B=J, By \UN. Let By = B(x;, ;) have center x; € B and radius 7; € (0, &),
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and hence ), 7' = 1. Define

rd; <x _Xk) if x € B for some £,
Yi(x) = T

(3.3)
0 otherwise.

It is easily seen that j € WO]’OO(B; R"). From (3.3), we have that

”lijLOO(B) < 8]||¢j||L°°(B) <1/j
and by (3.2)

- ) X — X x
/Bg(AJthﬁ,-(x))dx;/Bkg(AJrVqu( - ))d

= /B 9(A + V() dy
k

:/Bg(A + Vi(y))dy — g*(4)[B].

The lemma is proved. [l

Using this lemma, we can characterize the set Z[( f7)%] as follows if f satisfies
the LP-mean coercivity.

Proposition 3.2. Let f > 0 be Lipschitz continuous and satisfy the LP-mean coerciv-
ity. Then A € Z[(f?)%] if and only if there exists a sequence {;} in Wol’p(B; R")
such that

/ FPA+VY) <722, — 0 weakly in Wy "(B;R"). (3.4)
B

Proof. Note that condition (3.4) and the lower semicontinuity result mentioned in the
introduction (see also [1,5]) easily imply that A€ Z[( f?)%]. To prove the other direc-
tion, we assume A€ Z[(f7)%]. Applying the previous lemma to g = f”, we have a
sequence {y} in WOI’OO(B; R") which, via a subsequence, converges to zero in L>°-norm

and satisfies the first condition of (3.4). Finally, the L”-mean coercivity and the Lips-
chitz condition of f imply that the sequence {y;} is bounded in p-norm and thus must

converge weakly to zero in WO1 P(B;R"). O
Assuming 4 € Z[(f?)%], consider a complete metric space (7, p) defined by
h={ax+ e Wy (B;RDY,  p(w,v) = /B |Vw — V). (3.5)
Let {y;} be the sequence in WO1 "P(B; R") determined by Proposition 3.2. Then,

w; = Ax + Y € U, /pr(VWj) <j7?)2. (3.6)

We have the following version of the Ekeland variational principle (see [9,10]).
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Proposition 3.3. There exists b; € ¥4 such that p(b;,w;) < 1/j and

/fp(Vbj) < / fP(Vw)+ 7! / |Vw — Vb, (3.7)
B B B
for all w € 5 with w # b;.

Proof. For convenience of the reader, we give a proof of this result, following
[9, Theorem 4.2]. Let ®(v) = fB fP(Vv). By Fatou’s lemma, ® is lower semicon-
tinuous on (¥, p). Let v; = w; as defined above. Define

Si={ve|®w) < P(vr)—j p(v,01)}.
This set is nonempty and closed, and hence there exists v; € S such that ®(v;) <
infs, ® + j2/22. So, we inductively define S; by

Sk = {v € %) < B(vr) — j ' plv,00)}
and define vy € S by requiring ®(vyy 1) < infs ® + j72/2%*1. Clearly, {S;} is a
decreasing sequence of closed sets in ¥;. We now estimate the size of S;. Let x € Sj.
Then ®(x) < P(vy) —j’lp(x, v ). Also, by the definition of v, since x € S;_1, it
follows that ®(vy) < infyes, , P(v) + j~2/2F < ®(x) + j~2/2F. Hence

plr,o) <j7'25, Wx e, (3.8)
and hence diam(S;) < j~!'/2¢!, which tends to 0 as k — oo. Therefore, (i Sk contains
a unique point, say, b;. Note that this b; satisfies that

B(by) < Do) —j plbjeve) Vh=1.2..... (3.9)
We claim that b; satisfies the requirements in the proposition. Indeed, by (3.8),

k—1 k—1

p(oewy) = p(oe,v1) <D p(opvigr) < Y j 2

i=1 i=1
and letting k — oo, we have p(b;,w;) < j~'. To prove (3.7), ie.

S(w) > ®(b;) — j ' p(w,b;) Yw € Y, w# b,
we assume, on the contrary, that ®(w) < ®(b;)— ;' p(w,b;) for some w € %, w # b;.

Then, by (3.9), ®(w) < ®(vx) — j~'p(w,v;) for all k. This implies w € (), S¢ and
hence w = b;, a desired contradiction. The proof is thus complete. [

We also obtain the following result using Proposition 3.2.
Corollary 3.4. 1,(b;; B)—0 and b;—Ax weakly in W"?(B;R") as j — oo, where {b;}
is the sequence defined in Proposition 3.3.
4. Reverse Holder inequalities and higher regularity

Let {b;} be determined in Proposition 3.3. In this section, we prove that the sequence

{Vb;} has a uniform higher integrability.
We first prove the following uniform reverse Hélder inequalities for sequence {Vb,}.
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Proposition 4.1. There exist constants Ny, fo and o depending on f and p such that
for all j > Ny and Byr = B(a,2R) € B

(m+p)/m
][ |Vb;|? < Bo (][ Vbj|1’m/<m+p>) + 7o. 4.1
Bg B

Proof. The proof uses standard techniques of Caccioppoli-type estimates [14,15,20,
23,24], but requires a careful treatment since the integrand f7 does not satisfy the
usual growth conditions, so we present the detail here; see also Yan and Zhou [37].

Let (7, p) be defined as before, and let cy,cy,... denote the constants depending
only on p and f. Given Byr = B(a,2R) € B and 0 <s <t < 2R, let n € C5°(B) be
a cut-off function such that

0<n<1, nlg=1 nlpg=0 [V <co(t—s)"

Let w=nv+ (1 —#n)b; and ¢ =b; —w, where v € R” is a constant to be chosen later.
Then w € %, ¢ € Wy "P(B;R") and

Vw=(1—-n)Vb; —(b; —v) ® Vy, V¢ =yVb;+(b; —v)® V. (4.2)
Using this, we obtain by (2.1) and (2.2) that

[ < [ 9ol <ty [ rrvsy+ s
By B, B,

e | SO+ / Ib; — |7 + c1|B,]. (43)
(t— )" B/\B,

Since Vw = Vb; in B\Bt and Vw =0 in B,, the first term in (4.3) can be estimated
by (3.7) as

/ fP(Vb;) < fP(Vw) + fP(0)|Bs] +;7! |[Vw — Vb;|. (4.4)
B B\B; B
Using (4.2) and the inequality f(X) < f(0)+ |X|, we have that
fp(Vw) SCQ/ |Vbj‘p+C72/ |bj—V|p-‘rCz|B2R‘. (45)
BB, BB, (t=5)7 Jp\s,

Combining (4.3)—(4.5), we have

(&
|Vb-|p§03/ |Vb-|p+7/ |b; — v|?
/BA. ! BB, (t—5)7 Jp, '

s

+%/ |Vb1 — VW| —+ C3|BZR‘- (46)
B,

Since t < t” 41 for all £ >0 and p > 1, it follows that

[ 19 =vwi= [(wsi+ [ val< [ vep
B, B Bz\Bs By

+c4/ Vol /\bj—v\p+64\321e|. 4.7)
B\B, )”
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Let Ny =2c¢3. Then, for j > Ny, by (4.6) and (4.7), we have
Cs

/ IVb,[” Scs/ ‘Vbj|p+7/ |bj = v|” + ¢s|Baxl. (4.8)
B, B\B (t—s)? Jp,

s

Filling the hole, i.e., adding c¢;s st |Vb;|? to both sides of (4.8), we obtain that

Cs Ce
Vbi|? < Vb;i|? + / b; — v|? + cg|Bag|-
Lonie < S [rwmie 2o [l v e

With this being valid for all 0 < s < ¢ < 2R, an iteration argument [14] yields that

|Vbj‘p S C7R_p/ |bj—V‘P+C7‘BZR| (49)

Bg Bor

and, taking the average, hence

&
V[P < -5 / 1b; — v|” + cs. (4.10)
]{311 ! Rm+p Bor !

Now, choose v = vg :£2R — b; and use in (4.10) the Sobolev—Poincaré inequality

(m+p)/m
/ |bj —|? < Cp (/ |Vbj|pn1/(m+p)>
BZR BZR

we obtain (4.1). The proof is complete. [

Theorem 4.2. There exist ¢y > 0 and integer Ny depending on f and p such that the
sequence {b;} determined in the previous proposition satisfies

sup / |Vb;|Pt < Mp < oo, VD € B. (4.11)
Jj=No JD .

Proof. Let i; =1+ |Vb;|P"/("P) and r = (m+ p)/m. Then, by (2.2), {h;} is bounded
in L"(D) and for all j > Ny by (4.1)

][hjgrc<][ h.i) , VB € B,
Bp Bar

where x is a constant depending on f and p. By Gehring’s reverse Holder inequality

estimates [13], we conclude that {4;} is bounded in L] (B) for some s > r and hence

{b;} is bounded in le)’cp T9(B) for some & > 0 depending only on f and p. We have
thus proved Theorem 4.2. [

Corollary 4.3. Let {b;} be determined as in Corollary 3.4 and & > 0 determined in
Theorem 4.2. Then 1,(b;;B) — 0 and b; — Ax weakly in [W7 N Wli)’cpﬂ"](B; R") as

Jj — oo.
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5. Proof of Theorem 2.1

Let A € Z[(f7)%*] and let {b;} be defined as before. By Corollary 4.3, we have that
1,(b;;B) — 0 and b; — Ax in W-"(B;R"), where & > 0 is the constant determined

loc
in Theorem 4.2, which is independent of A.

Let s= p+¢p/2. We claim that 4 € Z[g] for any quasiconvex function g satisfying
0<gX)<CA+I[XF), glxr=0.

If this is done, then, by definition, 4 € Qs(#"). Therefore, Z[(f?)%*]C Qs(H")
C Z[(f*)%], and hence Theorem 2.1 follows.

To prove this claim, we observe that, for any given quasiconvex function g as above
and J > 0, there exists a constant C(6) > 0 such that

g(X) < (1 +|X |70y + C(O) fP(X), Xeu™ ™. (5.1
This inequality and Theorem 4.2 imply that for all D € B

/g(Vbj)gé/(l+\Vb,|P+8°)+C(5)/fP(Vbj)
D D D

< 3(1 + Mp) + C(8)I,,(b;; B).

Letting first j — oo and then 6 — 0, we have fD g(Vb;) — 0. Furthermore, as b; — Ax
in wl-rtio(D; R"), the lower semicontinuity theorem mentioned earlier again yields that

/g(A)S lim /g(Vbj):O
D Jj=eo Jp

hence, g(4) =0, i.e., 4 € Z[g]. The claim is proved, and the proof of Theorem 2.1 is
thus complete.

6. Proof of Theorem 2.3

The proof of Theorem 2.3 relies on a stability result of nonlinear Hodge decompo-
sitions due to Iwaniec [17] and Iwaniec and Sbordone [20]. We refer to [16,18,37] for
other developments and to Lewis [21] for the related results using different methods
involving the maximal functions in harmonic analysis.

We need the following version of the nonlinear Hodge decompositions proved in
Iwaniec and Sbordone [20, Theorem 3].

Lemma 6.1. For r > 1, u € Wol”'(B; R") and ¢ € (—1,r — 1), the matrix |Vul*Vu €
L1+ (B; . 4"™™) can be decomposed as
|Vu()|*Vu(x) = Vi(x) + h(x) ae.x €B, (6.1)

where € Wy ""TY(B;R") and h € LTOFOR? 4™ s a divergence-free matrix
field such that

| 1By (62)

Lo+ (Rm) < C(m,n,r, 8)|'9| ||v”
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Moreover, for any constants 1 < ry <r, < oo, the constant C(m,n,r,¢) satisfies that

sup C(m,n,r,e) = o(r,ry) < 00. (6.3)
le| <(r1=1)/(n+ 1) <r<r

Proof. Estimate (6.2) follows simply from the standard Hodge decompositions, but a
most important part of the lemma is the estimate (6.3) on the constant C(m,n,r,¢).
Using a technique of complex interpolation for nonlinear commutators, Iwaniec and
Sbordone have proved that [20, Estimate (2.10)]

2r(sy — s1)c(s1,52)
(r—si)(s2—7) ~

where c(s1,52) < oo and numbers 1 < s; < s, < oo satisfy

C(m,n,r, 8) S

r
<r< < — <.
S1 r 852, S1_1+8_S2
From this, (6.3) follows easily by choosing s; = (r; + 1)/2 and s, =ry(r; + 1)/2. O
Proof of Theorem 2.3. The second part of the theorem follows immediately from

Theorem 2.1. We only need to show that the set S(#") is open. Assume p € S(X").
Let

8 1—-1 —
n=YPT T T (e (6.4)
2 r+1

Given any ¢ such that |¢| < g, let » = (1 4 &) p. Obviously 7 <r < r,. We are going
to show that » € S(¢") if |¢| is further sufficiently small; consequently, S(2#") is open
and Theorem 2.3 is proved.

Let ¢ € C°(B;R"). Using Lemma 6.1, for [V$|*V$ € LP(B; 4"*™), we have

[Vo(x)FVP(x) = Vip(x) + h(x) ae. x €B, (6.5)
where y € W, "(B;R”), h € LP(R”; .4/"*™) and
1]l o rmy < 0plel[[ Ve F(i;), V¥l Logy = (1 —apleDV ;r(ia) (6.6)

with the constant o, = o(r,7,) depending only on p, as defined in (6.3). From (6.5),
we have that Viy(x) = |Vé(x)|*Vé(x) — h(x). Therefore,

dr (VY(x)) < [Vo(x)[*dy (V(x)) + |h(x)| Vx € B.
Let 6o = u( p; #)"/P. The estimate above and the L”-mean coercivity of " imply that
O'OHV‘/’”U(B) < ||d%‘(v‘p)“Lp(B)

< IVl dr (Vo) Loy + 17l ooy (6.7)
Combining (6.6) and (6.7) yields that

(00 — 2p(1 + 00)[eD[ VDl 1wy < IV dir (V)| ow, (6.8)
We now claim (6.8) implies that if |¢| < g is further chosen sufficiently small then
| V6 =2 €IVl Co>0 (6.9)

B

for » = (1 + ¢) p; that is, r € S(#"), proving that S(#") is open.
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Indeed, if ¢ < 0 then, using |V¢|* < [dy(V )], we simply have

IV dn (V)| oy < N1y (Y oy = I (VP 1,

hence (6.9) follows from (6.8) if |¢| is sufficiently small. While, if ¢ > 0, by Holder’s
inequality, we have
|||v¢|nd9{'(v¢)“u(3) < ”d)f(v¢) Lr(B)Hv¢

So, we still obtain (6.9) from (6.8) for all sufficiently small |¢|. The proof of Theorem
2.3 is now complete. [

&
(B’

From the proof of Theorem 2.3, one can also see that if p > 1 and u(p; #") >0
then

w(p; A7) < liminf w(r; A7),
r—p

i.e., the function u(r; #") is lower semicontinuous at » = p for all such p. On the other
hand, from the definition, function u(r; ") is easily shown to be upper semicontinuous
at all » > 1. Therefore, we have also proved the following result.

Theorem 6.2. The function u(p; A") defined above is continuous at all p > 1 where
w(p; A7) > 0.

7. Some examples and applications

In this final section, we consider some examples for which our theorems may produce
some new interesting results.

First, we consider the so-called conformal set C, in the space .#"*" for n > 2; that
is, a closed cone defined by

C,={AR| 1> 0,R € SO(n)},
where SO(n) is the set of all real n x n orthogonal matrices with determinant 1.

It has been shown in [34] that (d’g{f)qczo for all n>3 and shown in [28] that if n>2
is even then Q,2(C,) = C,. This shows that the p-quasiconvex hulls defined here are
not equivalent to those given in [39] and also that the inclusion Q,(#") C Z[(d})*]
may be strict if a closed cone ¢ is not L”-mean coercive.

Furthermore, it can be seen that C, is L"-mean coercive (see below); therefore,
Theorems 2.1 and 2.3 show that, for some ¢ > 0, (dg” )4 is quasiconvex and

Z[(dL)*]=C, Vpen—en+el

However, as shown in [34], (dgn )% is not polyconvex in the sense of Ball [2] for all
n/2 < p < n with n > 3. This shows that the structure of (dgn )9¢ is highly non-trivial
if n/2 < p<n.

In order to illustrate some concrete examples of applications of the results proved
above, let us consider a null-Lagrangian N(X) on .#4"*™, that is,

/N(A +Vé(x))dx = N(A)|B| VA € ™"
B
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for all balls B and all ¢ € C;°(B;R"). (We refer to [3] for more on null-Lagrangians.)
Assume also that N is homogeneous of degree k& > 2. Then we know k£ must be an
integer and k& < min{n,m}.

Let u € W (Q;R"). Then we know that N(Vu) belongs to the local Hardy space
AL (Q) [7] and if in addition N(Vu(x)) > 0 then N(Vu) belongs locally to the
Stein space L'InL' [26,29]; this last property is a higher regularity result since by
scaling N(Vu(x)) only belongs to L'. We next show that if a certain strict positivity
of N(Vu(x)) holds then one could obtain some new interesting higher regularity results.

Theorem 7.1. There exist constants o, < k < Py such that any map u € WIL’CW(Q;R”)
satisfying

N(Vu(x)) > |Vu@x)[f ae.xeQ (7.1)

must belong to Wl’ﬁ"(Q;R"); thus N(Vu(x)) belongs to LY () for some p > 1.

loc loc

Proof. The crux of this theorem is that u only belongs to W,"*(Q;R"); there is no

loc
local L'InL' regularity for N(Vu) since it is not a priori integrable. The proof is a

beautiful application of the theorems we proved above. Define

FQ0) = (max{0, [ X[ —= NCOD'¥, o =2[f1. (7.2)
Then condition (7.1) is equivalent to the Hamilton—Jacobi system

Vu(x)ex” ae. x €.

Note that f is 1-homogeneous and
/fk(V¢(X))dx > /(\V¢(X)|k —N(V¢(X)))dx=/ V()| dx
B B B

for all balls B and all ¢ € C5°(B;R"); therefore, f and hence 4 satisfy the LF-mean
coercivity. So k € S(A"), the open set defined before, and hence there exists a closed
interval [oy, f;] C S(") such that o < k < ;. Consequently, the theorem follows from
Theorem 2.4. [

From this theorem and Sobolev’s embedding theorem, we easily have the following
result.

Corollary 7.2. Let k =m. Then any map u in Wlf)’c“k(Q;R") satisfying (7.1) must be
locally Holder continuous in Q.

Let o <k < P be as determined in the proof given above. We prove a stability
result.
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Theorem 7.3. Let {u;} converge weakly to u in W"*(S; R") and satisfy

[V (x)[F < N(Vup(x)) + (g;(x))"™*  ae x e (7.3)
If g; — 0 strongly in L'() as j — oo, then the weak limit u satisfies

N(Vu(x)) > |Vu(x)|* ae xeQ,

and thus the regularity result of the previous theorem follows.

Proof. Again, the difficulty lies in that the sequence and the weak convergence are
only in Wh#(Q;R") and in this case one cannot take any limit in the inequality
(7.3). It seems necessary to use some of the results proved above to prove this
theorem. Let f,#  be defined as in the proof of the previous theorem. Note that
f* is quasiconvex since it is polyconvex in the sense of Ball [2]. Therefore, by def-
inition, the k-quasiconvex hull Qu(-#") = . From this and Theorem 2.3 we have
Q. (A)=H =Z[f]. Also by the assumption we have

lim [ f™(Vuy(x))dx=0.

From this and a theorem in Yan [35] it follows that the weak limit u satisfies
Vu(x) € Qu(A)= A" =Z[f]
and hence N(Vu(x)) > |[Vu(x)[¥ for almost every x € €. The proof is complete. [J

Remark. Let n=m=k > 2 and for L > 1 let N(X ):Ln”/2 det X. We can then recover
from Theorems 7.1 and 7.3 some of results in [17,19,33,37] concerning the regularity
of the so-called weakly L-quasiregular mappings.
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