On a Reverse Estimate for Hodge Decompositions of *p*-Laplacian Type Operators

Baisheng Yan

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824 E-mail: yan@math.msu.edu

Received October 19, 1999

Let $\sigma(x, \xi) \approx |\xi|^{p-2} \xi$ be a *p*-Laplacian type operator and consider the Hodge decomposition $\sigma(x, Du) = D\varphi + H$, div H = 0. A standard elliptic theory asserts that $||D\varphi||_{q/(p-1)} \leq C ||Du||_q^{p-1}$ for all q > p-1. There has been considerable recent interest in the validity of the reverse estimate $||Du||_q^{p-1} \leq C ||D\varphi||_{q/(p-1)}$ for q > p-1 in the regularity study of certain geometrical mappings. In this paper, we give a relatively new proof of a well-known theorem that this reverse estimate holds for all $q \ge p-1$ for certain special weak solutions u. © 2001 Academic Press

1. INTRODUCTION

Given a map u from \mathbb{R}^n to \mathbb{R}^N and a number p > 1, by the Hodge decomposition, the field $|Du|^{p-2} Du$ can be written as

$$|Du|^{p-2} Du = D\varphi + H, \quad \text{div } H = 0,$$

where the map $\varphi : \mathbb{R}^n \to \mathbb{R}^N$ is determined by

$$\Delta \varphi = \operatorname{div}(|Du|^{p-2} Du). \tag{1.1}$$

If $Du \in L^q$ and q > p - 1, then a standard linear elliptic theory easily shows that

$$\|D\phi\|_{L^{q/(p-1)}} \leq C \|Du\|_{L^{q}}^{p-1}$$

In this paper, we are interested in the reverse estimate of this estimate. To be more precise, given φ , we are interested in whether the following estimate holds for weak solutions u of equation (1.1),

$$\|Du\|_{L^{q}}^{p-1} \leqslant C \|D\varphi\|_{L^{q/(p-1)}}.$$
(1.2)

When q = p, one easily establishes estimate (1.2) using u as a test function in (1.1). Notice that if p = 2 the same estimate obtains for all q > 1 since the equation (1.1) is then linear in this case. The estimate (1.2) in the case when $p-1 \leq q < p$ and $p \neq 2$ remains a major open problem. An outstanding difficulty in this case is that one cannot use u as a test function in the equation.

There has been considerable recent interest in studying estimate (1.2) for q below the natural power p in the study of optimal regularity and removability for weakly quasiregular mappings in higher dimensions; see e.g. [6, 7, 8]. A conjecture made in these papers, which is closely related to the optimal higher integrability for quasiregular mappings, states that the estimate (1.2) hold for all q > p - 1. In this paper, instead of investigating this difficult conjecture, we study a similar problem for more general nonlinear systems of *p*-Laplacian type. We refer to [2, 5] for some recent studies of such systems in other spaces larger than the natural Sobolev space of power p. We consider the system

$$\operatorname{div}(\sigma(x, Du)) = \operatorname{div} g, \tag{1.3}$$

where $\sigma(x, \xi)$ is a function from $\Omega \times \mathbf{M}^{N \times n}$ to $\mathbf{M}^{N \times n}$ and g is a map from Ω to $\mathbf{M}^{N \times n}$; here $\mathbf{M}^{N \times n}$ denotes the space of all $N \times n$ real matrices. We assume that $\sigma(x,\xi)$ is measurable in x for all $\xi \in \mathbf{M}^{N \times n}$ and continuous in ξ for almost every $x \in \Omega$ and that

$$\sigma(x,\xi) \cdot \xi \ge |\xi|^p, \qquad |\sigma(x,\xi)| \le a \, |\xi|^{p-1} \tag{1.4}$$

for all $x \in \Omega$, $\xi \in \mathbf{M}^{N \times n}$, where a > 0 is a constant. Let $q \ge p - 1$, $g \in L^{q/(p-1)}(\Omega; \mathbf{M}^{N \times n})$. A function $u \in W^{1, q}(\Omega; \mathbf{R}^N)$ is called a (very) weak solution of system (1.3) if the equality

$$\int_{\Omega} \sigma(x, Du) \cdot D\psi \, dx = \int_{\Omega} g(x) \cdot D\psi \, dx \tag{1.5}$$

holds for all $\psi \in C_0^{\infty}(\Omega; \mathbf{R}^N)$ thus for all $\psi \in W_0^{1, q/(q-p+1)}(\Omega; \mathbf{R}^N)$.

The main result of the present paper is that for all q sufficiently close to *p* the estimate

$$\|Du\|_{L^{q}(\Omega)}^{p-1} \leqslant C \|g\|_{L^{q/(p-1)}(\Omega)}$$
(1.6)

holds for all weak solutions u in $W_0^{1,q}(\Omega; \mathbb{R}^N)$. This result has been proved by Iwaniec [6] and Iwaniec and Sbordone [8]. We present a different approach to attacking the problem in hoping that it could shed some new insights on the conjecture mentioned above about the *p*-Laplacian system.

BAISHENG YAN

Assume $u \in W_0^{1,q}(\Omega; \mathbf{R}^N)$ is a weak solution of (1.3). Notice that, since $q < \frac{q}{q-p+1}$ for $p-1 \le q < p$, we cannot take $\psi = u$ as a test function in (1.5). On the other hand, in order to obtain certain useful estimates, one need to choose test functions ψ in (1.5) with the property

$$D\psi \approx |Du|^{q-p} Du. \tag{1.7}$$

If q is sufficiently close to p, it has been shown in [6, 8] that the gradient part $D\psi$ of the Hodge decomposition of $|Du|^{q-p} Du$ indeed provides a very useful test function for system (1.3) and using it one establishes (1.6).

In this paper, we use a different method to prove the main result. Our approach, which is greatly inspired by the work of Lewis [9] and a recent work of Dolzmann, Hungerbühler and Müller [2], is to construct Lipschitz test functions by truncating the gradient; see also [1, 10].

2. THE MAIN RESULTS

In the rest of this paper, we assume Ω is bounded and the complement $\Omega^c = \mathbf{R}^n \setminus \Omega$ is of type A (see e.g. [3]); that is, there exists a constant A > 0 such that $|B_r(x) \setminus \Omega| \ge Ar^n$ for all $x \in \Omega^c$ and r > 0. This means that Ω cannot have "sharp inward cusps". For example, all bounded Lipschitz domains Ω satisfy this assumption.

THEOREM 2.1. Let $p \ge 2$. Then, there exists a number $p^* \in [p-1, p)$ such that for all $p^* \le q \le p$ the estimate

$$\int_{\Omega} |Du|^q \, dx \leqslant C \int_{\Omega} |g|^{q/(p-1)} \, dx \tag{2.1}$$

holds for any weak solution u of (1.3) belonging to $W_0^{1,q}(\Omega; \mathbf{R}^N)$.

COROLLARY 2.2. There exists a number $p_* \in [p-1, p)$ such that if $u \in W_0^{1, p^*}(\Omega; \mathbb{R}^N)$ is a weak solution of the system (1.3) with g = 0 then $u \equiv 0$. Note that by Theorem 2.1 it follows that $p_* \leq p^*$.

THEOREM 2.3. Assume, in addition to (1.4), $\sigma(x, \xi)$ satisfies a Lipschitz type condition

$$|\sigma(x,\xi) - \sigma(x,\eta)| \leq b |\xi - \eta| (|\xi| + |\eta|)^{p-2}.$$

Then for $p^* \leq q \leq p$ and for any weak solution $u \in W_0^{1, q}(\Omega; \mathbf{R}^N)$ of the non-homogeneous system

$$\operatorname{div} \sigma(x, h + Du) = \operatorname{div} g$$

it follows that

$$\int_{\Omega} |Du|^q \, dx \leqslant C \int_{\Omega} \left[|h|^q + |g|^{q/(p-1)} \right] \, dx.$$

Remark. It has been conjectured in [6, 7, 8] that $p_* = p - 1$ for the *p*-Laplacian system, that is, if $\sigma(x, \xi) = |\xi|^{p-2}\xi$. We shall prove (Theorem 6.1) that for certain special weak solutions the number p^* equals p-1 for all general systems $\sigma(x, \xi)$. However, the example below, based on Serrin [11], shows that the constant p_* in Corollary 2.2 may be strictly greater than p-1, even for linear operators $\sigma(x, \xi)$.

Example. Let
$$n \ge 2$$
, $N = 1$, $0 < \varepsilon < 1$, and $a = \frac{n-1}{\varepsilon(n-2+\varepsilon)}$. Let

$$\sigma(x,\xi) = \xi + (a-1) \ \frac{x \cdot \xi}{|x|^2} x.$$
(2.2)

Then the assumption (1.4) above holds with p = 2; that is,

$$\sigma(x,\xi) \cdot \xi \ge |\xi|^2, \qquad |\sigma(x,\xi)| \le a |\xi|$$

for all $x \in \mathbf{R}^n \setminus \{0\}$, $\xi \in \mathbf{R}^n$. Let $w(x) = x_1 |x|^{1-n-\varepsilon}$. Then, from [11], $\operatorname{div}(\sigma(x, Dw)) = 0$ weakly, and $w \in W^{1, q}(B_1(0))$ only for $q < \frac{n}{n+\varepsilon-1}$. Let v be the classical solution (see [4]) of

$$\operatorname{div}(\sigma(x, Dv)) = 0, \qquad v|_{\partial B_1(0)} = x_1.$$

Let u = w - v. Then $u \neq 0$ is a weak solution of $\operatorname{div}(\sigma(x, Du)) = 0$ and $u \in W_0^{1, q}(B_1(0))$ for all $1 \leq q < \frac{n}{n+\varepsilon-1}$. This shows that the constant p_* in Corollary 2.2 must satisfy

$$p_* \ge \frac{n}{n+\varepsilon-1} > 1 = p-1$$

for this particular linear operator $\sigma(x, \xi)$ defined by (2.2).

BAISHENG YAN

3. PRELIMINARIES

For $x \in \mathbf{R}^n$ and $\rho > 0$, we use $B_{\rho}(x)$ to denote the open ball of radius ρ at center x. For a measurable function h on \mathbf{R}^n and a set S with Lebesgue measure |S| > 0, we let

$$h_{S} = |S|^{-1} \int_{S} h(z) dz = \oint_{S} h(z) dz$$

A point x in \mathbb{R}^n is said to be a Lebesgue point of h provided that

$$\lim_{\rho \to 0} \oint_{B_{\rho}(x)} ||h(x)| - |h(y)|| \, dy = 0.$$

By the Lebesgue differentiation theorem, almost every x is Lebesgue point of h. The Hardy–Littlewood maximal function of h is defined by

$$M(h)(x) = \sup_{\rho > 0} \oint_{B_{\rho}(x)} |h(z)| dz.$$

If x is a Lebesgue point of h then $|h(x)| \leq M(h)(x)$. For each $\lambda \geq 0$, we define

$$E_h^{\lambda} = \{ x \in \mathbf{R}^n \mid M(h)(x) > \lambda \}.$$

LEMMA 3.1 (Hardy-Littlewood Theorem [12]). There exist constants $c_q > 0$ such that

$$\begin{aligned} |\{x \in \mathbf{R}^{n} \mid M(h)(x) > \lambda\}| &\leq c_{1} \lambda^{-1} \|h\|_{1} & \text{if } q = 1, \\ \|M(h)\|_{q} &\leq c_{q} \|h\|_{q} & \text{if } 1 < q \leq \infty. \end{aligned}$$
(3.1)

LEMMA 3.2. For any $1 \leq q < \infty$ there exists a constant N_q such that for all $h \in L^q(\mathbb{R}^n)$ and $\lambda > 0$

$$\lambda^q |E_h^{\lambda}| + \int_{E_h^{\lambda}} |h|^q \, dz \leq N_q \int_{|h| > \lambda/2} |h|^q \, dz.$$

Proof. Let $A = E_h^{\lambda}$. Then for each $x \in A$ there exists a $\rho = \rho(x) > 0$ such that

$$\int_{B_{\rho}(x)} |h(z)| \, dz \ge \lambda \, |B_{\rho}(x)|. \tag{3.2}$$

By Besicovitch's covering lemma [12], there exists a sequence of disjoint balls $\{B_k = B_{\rho(x_k)}(x_k)\}$ such that

$$A \subset \bigcup_k B_{5\rho(x_k)}(x_k).$$

Since $\int_{B_k} |h| dz \ge \lambda |B_k|$, $\int_{B_k \cap \{|h| \le \lambda/2\}} |h| dz \le \frac{\lambda}{2} |B_k|$, we have

$$|B_k| \leq \frac{2}{\lambda} \int_{B_k \cap \{|h| > \lambda/2\}} |h| \, dz.$$

Summation over k yields

$$|A| \leqslant 5^n \sum_k |B_k| \leqslant \frac{5^n}{\lambda} \int_{|h| > \lambda/2} |h| \, dz \leqslant \frac{b_q}{\lambda^q} \int_{|h| > \lambda/2} |h|^q \, dz,$$

where $b_q = 5^n \cdot 2^{q-1}$. Therefore

$$\lambda^{q} |E_{h}^{\lambda}| = \lambda^{q} |A| \leq b_{q} \int_{|h| > \lambda/2} |h|^{q} dz.$$

$$(3.3)$$

It remains to prove

$$\int_{E_h^{\lambda}} |h|^q \, dz \leqslant N_q \, \int_{|h| > \lambda/2} |h|^q \, dz. \tag{3.4}$$

To this end, let \mathscr{L}_h be the set of all Lebesgue points of h, and let

$$A_1 = A \ \cap \ \big\{ |h| \leqslant \lambda \big\}, \qquad A_2 = \mathscr{L}_h \ \cap \ \big\{ |h| > \lambda \big\}.$$

Then $A_1 \cap A_2 = \emptyset$, $|A| = |A_1| + |A_2|$. For each $x \in A_2$ there exists a sequence $\rho_k \to 0^+$ such that

$$\int_{B_{\rho_k}(x)} |h(z)| \ dz > \lambda \ |B_{\rho_k}(x)|$$

for all k = 1, 2, ... Therefore, the family $\{B_{\rho_k}(x) \mid x \in A_2, k = 1, 2, ...\}$ forms a Vitali covering of A_2 . Hence, there exists a sequence of disjoint balls $B_j = B_{\rho_{k_j}}(x_j)$ such that

$$\left|A_{2} \setminus \bigcup_{j} B_{j}\right| = 0, \quad \oint_{B_{j}} |h| \ dz \ge \lambda.$$

Since $q \ge 1$ we have, by Jensen's inequality,

$$\oint_{B_j} |h|^q \, dz \ge \left(\oint_{B_j} |h| \, dz \right)^q \ge \lambda^q.$$

Hence, from $1/|B_j| \int_{B_j \cap \{|h| \le \lambda/2\}} |h|^q dz \le (\frac{\lambda}{2})^q$, we have $\int_{B_j} |h|^q dz \le C_q \int_{B_j \cap \{|h| > \lambda/2\}} |h|^q dz$

with $C_q = (1 - 2^{-q})^{-1} \leq 2$, and summation over *j* yields $\int_{A_2} |h|^q dz \leq 2 \int_{|h| > \lambda/2} |h|^q dz$. Finally, since $\int_{A_1} |h|^q dz \leq \lambda^q |A_1| \leq \lambda^q |A| \leq b_q \int_{|h| > \lambda/2} |h|^q dz$, we obtain (3.3). From the proof, it also follows that $N_q = 2 + 5^n \cdot 2^{q-1} \leq 5^n \cdot 2^q$.

LEMMA 3.3 (See [4, 12]). Let (X, μ) be a measure space and $|f|^{\rho} \in L^{1}(X, \mu)$ for some $0 < \rho < \infty$. Then for any $0 \leq \varepsilon < \rho < \delta < \infty$

$$\int_0^\infty s^{\rho-1-\varepsilon} \left(\int_{|f|>s} |f|^\varepsilon \, d\mu \right) ds = \frac{1}{\rho-\varepsilon} \int_X |f|^\rho \, d\mu, \tag{3.4}$$

$$\int_{0}^{\infty} s^{\rho-1-\delta} \left(\int_{|f| \leqslant s} |f|^{\delta} d\mu \right) ds = \frac{1}{\delta - \rho} \int_{X} |f|^{\rho} d\mu.$$
(3.5)

4. CONSTRUCTION OF LIPSCHITZ TEST FUNCTIONS

Let $1 \leq q < \infty$ and $v \in W_0^{1, q}(\Omega; \mathbf{R}^N)$. Extend v to \mathbf{R}^n by zero outside Ω and denote the new function still by v. Then $v \in W^{1, q}(\mathbf{R}^n; \mathbf{R}^N)$. Let M(|Dv|) be the maximal function of |Dv|. For each $\lambda > 0$, define

$$E^{\lambda}(v) = \{ x \in \mathbf{R}^n \mid M(|Dv|)(x) > \lambda \}.$$

Since $v \in W^{1, q}(\mathbf{R}^n; \mathbf{R}^N)$, there exists a sequence $\{v_j\}$ in $C_0^{\infty}(\mathbf{R}^n; \mathbf{R}^N)$ such that $v_j \to v$ in $W^{1, q}(\mathbf{R}^n; \mathbf{R}^N)$ and $v_j(x) \to v(x)$ for almost every $x \in \mathbf{R}^n$ as $j \to \infty$. Since

$$|M(|Dv_i|)(x) - M(|Dv|)(x)| \le M(|Dv_i - Dv|)(x),$$

it follows easily from Lemma 3.1 that

$$\begin{split} |\{x \in \mathbf{R}^{n} | |M(|Dv_{j}|)(x) - M(|Dv|)(x)| > \lambda\}| \\ \leqslant |\{x \in \mathbf{R}^{n} | |M(|Dv_{j} - Dv|)(x)| > \lambda\}| \leqslant c_{q}^{q} \lambda^{-q} \|Dv_{j} - Dv\|_{q}^{q} \to 0 \quad (4.1) \end{split}$$

as $j \to \infty$ for all $\lambda > 0$; thus, $M(|Dv_j|) \to M(|Dv|)$ in measure. We may then assume a subsequence $M(|Dv_{j_k}|)(x) \to M(|Dv|)(x)$ for almost every $x \in \mathbf{R}^n$ as $j_k \to \infty$. Let

$$\mathscr{L}(v) = \left\{ x \in \mathbf{R}^n \mid v_{j_k}(x) \to v(x), \ M(|Dv_{j_k}|)(x) \to M(|Dv|)(x) \right\}.$$

Then $|\mathbf{R}^n \setminus \mathscr{L}(v)| = 0$. Define

$$R^{\lambda}(v) = E^{\lambda}(v) \cup (\mathbf{R}^n \setminus \mathscr{L}(v)).$$

Since $E^{\lambda}(v) \subseteq R^{\lambda}(v)$, $|R^{\lambda}(v)| = |E^{\lambda}(v)|$, from Lemma 3.2, we easily obtain

$$\lambda^{q} |R^{\lambda}(v)| + \int_{R^{\lambda}(v)} |Dv|^{q} dz \leq N_{q} \int_{|Dv| > \lambda/2} |Dv|^{q} dz.$$
(4.2)

LEMMA 4.1 (See also [1, 9, 10]). Let $H^{\lambda}(v) = \mathbf{R}^n \setminus R^{\lambda}(v)$. Then there exists a constant $\alpha_n > 0$ depending only on n such that

$$\int_{B_r(x)} |v(x) - v(y)| \, dy \leq \alpha_n \, \lambda \, r^{n+1} \tag{4.3}$$

for all $x \in H^{\lambda}(v)$ and r > 0.

Proof. We first prove this for smooth v. Let $v \in C_0^{\infty}(\mathbf{R}^n; \mathbf{R}^N)$. It is easily calculated that

$$\int_{B_r(x)} |v(x) - v(y)| \, dy \leq \frac{r^n}{n} \int_{\mathcal{S}} \int_0^r |Dv(x + t\omega)| \, dt \, d\omega,$$

where $S = S^{n-1}$ is the unit sphere in \mathbb{R}^n . Let $g(t) = \int_S |Dv(x + t\omega)| d\omega$. Note that for $\rho > 0$ and $x \in H^{\lambda}(v)$, since $M(|Dv|)(x) \leq \lambda$, it follows that

$$\int_{0}^{2\rho} g(t) t^{n-1} dt = \int_{B_{2\rho}(x)} |Dv(y)| dy \leq C_1 \rho^n \lambda.$$

From this we deduce that $\int_{\rho}^{2\rho} g(t) dt \leq C_2 \rho \lambda$ for all $\rho > 0$. Hence, for every $k \in \mathbb{N}$,

$$\int_{r/2^{k}}^{r} g(t) dt = \sum_{i=1}^{k} \int_{r/2^{i}}^{r/2^{i-1}} g(t) dt \leq \sum_{i=1}^{k} C_{2} \lambda \frac{r}{2^{i}} \leq C_{2} r \lambda.$$

and thus, letting $k \to \infty$, we have $\int_0^r g(t) dt \leq C_2 r \lambda$. Therefore, we have

$$\int_{B_r(x)} |v(x) - v(y)| \, dy \leq \frac{r^n}{n} \int_S \int_0^r |Dv(x + t\omega)| \, dt \, d\omega \leq r^n \int_0^r g(t) \, dt \leq C_2 \, \lambda \, r^{n+1}.$$

This proves the estimate (4.3) for smooth v. For general functions v, this estimate follows by approximation.

LEMMA 4.2. For all $x, y \in H^{\lambda}(v)$ and r > 0, we have

$$|v(x) - v(y)| \leq C_3 \lambda |x - y|, \quad \left|v(x) - \int_{B_r(x)} v(z) dz\right| \leq C_3 \lambda r.$$
(4.4)

Proof. The second estimate follows easily from (4.3). To prove the first, let *a* be the midpoint of *x* and *y*, and r = |x - y|/2. Then by (4.3)

$$\begin{split} |v(x)|B_r| - \int_{B_r(a)} v(z) \, dz | &\leq \int_{B_r(a)} |v(x) - v(z)| \, dz \\ &\leq \int_{B_{2r}(x)} |v(x) - v(z)| \, dz \leq C_4 \, \lambda \, r^{n+1}. \end{split}$$

Similarly, $|v(y)|B_r| - \int_{B_r(a)} v(z) dz | \leq C_4 \lambda r^{n+1}$. Hence, $|v(x) - v(y)| |B_r| \leq 2 C_4 \lambda r^{n+1}$. Since r = |x - y|/2, we easily obtain $|v(x) - v(y)| \leq C_3 \lambda |x - y|$. The proof is now completed.

Assume now the domain Ω is bounded and the complement $\Omega^c = \mathbf{R}^n \setminus \Omega$ is of type A; that is, there exists a constant A > 0 such that

$$|B_r(x) \setminus \Omega| \ge Ar^n, \quad \forall \ x \in \Omega^c, \quad r > 0.$$

$$(4.5)$$

LEMMA 4.3. Let $v \in W_0^{1, q}(\Omega; \mathbb{R}^N)$, $\lambda > 0$. Define v^{λ} on $H^{\lambda}(v) = \mathbb{R}^n \setminus \mathbb{R}^{\lambda}(v)$ by letting $v^{\lambda}(x) = v(x)$ on $\Omega \setminus \mathbb{R}^{\lambda}(v)$ and $v^{\lambda}(x) = 0$ on Ω^c . Then v^{λ} is a Lipschitz function on $H^{\lambda}(v)$ and satisfies

$$|v^{\lambda}(x) - v^{\lambda}(y)| \leq \beta \lambda |x - y|, \qquad |v^{\lambda}(x)| \leq \beta \lambda \operatorname{dist}(x; \Omega^{c})$$

for all x, $y \in H^{\lambda}(v)$, where $\beta = \beta(n, A) > 0$ is a constant depending only on n and the constant A in (4.5).

Proof. We first prove the second estimate, following an idea in [2]. The proof is trivial if $x \in \Omega^c$. So let $x \in \Omega \setminus H^{\lambda}(v)$. Let $|x - \bar{x}| = \text{dist}(x; \Omega^c)$ for some $\bar{x} \in \Omega^c$. Let $r = 2 |x - \bar{x}| > 0$, $U = B_r(x)$ and $S = \{x \in U \mid v(x) = 0\}$. Then $B_{r/2}(\bar{x}) \setminus \Omega \subset S$; thus condition (4.5) implies that $|S| \ge C_5 r^n$ for some constant

 $C_5 > 0$ depending on the constant A in (4.5). Since $v \in W^{1, 1}(U; \mathbf{R}^N)$ and v = 0 on S, by a Poincaré type inequality (see e.g. [4, p. 164]), we have

$$\begin{split} \int_{B_{r}(x)} |v(z)| \ dz &= \int_{B_{r}(x)} |v(z) - v_{S}| \ dz \\ &\leq C_{6} \ |S|^{-1 + 1/n} \ r^{n} \ \int_{B_{r}(x)} |Dv| \ dz &\leq C_{7} \ \lambda \ r^{n+1}, \end{split}$$

using the fact that $M(|Dv|)(x) \leq \lambda$. Therefore, by (4.4),

$$|v^{\lambda}(x)| = |v(x)| \leq C_8 \lambda r = 2C_8 \lambda \operatorname{dist}(x; \Omega^c).$$

The first estimate of the lemma follows from this last inequality and (4.4).

LEMMA 4.4. Let $H \subset \mathbf{R}^n$ be any nonempty set and $v: H \to \mathbf{R}^N$ be a Lipschitz map with Lipschitz constant L; that is,

$$L = \sup_{x, y \in H} \frac{|v(x) - v(y)|}{|x - y|} < \infty.$$

Then there exists a Lipschitz map $\tilde{v}: \mathbb{R}^n \to \mathbb{R}^N$ with Lipschitz constant $\tilde{L} \leq \sqrt{N} L$ such that $\tilde{v}(x) = v(x)$ for all $x \in H$.

Proof. Define $\tilde{v}: \mathbb{R}^n \to \mathbb{R}^N$ to be $\tilde{v} = (\tilde{v}^i)$ with $\tilde{v}^i(z) = \inf_{x \in H} \{v^i(x) + L | z - x|\}$ for $z \in \mathbb{R}^n$ and i = 1, 2, ..., N. It is then easily verified that $\tilde{v}(x) = v(x)$ for all $x \in H$ and

$$|\tilde{v}^i(x) - \tilde{v}^i(y)| \leq L |x - y|, \quad \forall x, y \in \mathbf{R}^n.$$

So \tilde{v} is a Lipschitz map on \mathbb{R}^n with Lipschitz constant $\tilde{L} \leq \sqrt{N}L$.

THEOREM 4.5. There exists a constant $\gamma = \gamma(n, N, A) > 0$, where A is the constant in (4.5), such that for $v \in W_0^{1,q}(\Omega; \mathbf{R}^N)$ and $\lambda > 0$ there exists a Lipschitz function $v_{\lambda} \in W_0^{1,\infty}(\mathbf{R}^n; \mathbf{R}^N)$ satisfying

$$\begin{cases} \|Dv_{\lambda}\|_{\infty} \leq \gamma \lambda, \\ v_{\lambda}(x) = 0, \quad x \in \mathbf{R}^{n} \backslash \Omega, \\ v_{\lambda}(x) = v(x), \quad x \in \Omega \backslash R^{\lambda}(v), \end{cases}$$
(4.6)

where $R^{\lambda}(v)$ is the set defined by (4.1) above.

Proof. By Lemma 4.3, the function $v^{\lambda}: H^{\lambda}(v) \to \mathbb{R}^{N}$ defined above is a Lipschitz map with Lipschitz constant $L \leq \beta \lambda$. By Lemma 4.4, we extend v^{λ} to the whole \mathbb{R}^{n} as a Lipschitz function $(v_{\lambda}: \mathbb{R}^{n} \to \mathbb{R}^{N})$ with Lipschitz constant

 $\tilde{L} \leq \sqrt{N} \beta \lambda$. Let $\gamma = \sqrt{N} \beta$. Then $v_{\lambda}(x) = 0$ for all $x \in \Omega^c$, thus $v_{\lambda} \in W_0^{1,\infty}(\Omega; \mathbf{R}^N)$. We can easily verify that this function v_{λ} satisfies the all requirements of the theorem.

5. PROOF OF THE MAIN RESULTS

In what follows, let $1 \leq p-1 \leq q \leq p$ and $g \in L^{q/(p-1)}(\Omega; \mathbf{M}^{N \times n})$. Assume $u \in W_0^{1, q}(\Omega; \mathbf{R}^N)$ is a weak solution of

$$\operatorname{div}(\sigma(x, Du)) = \operatorname{div} g. \tag{5.1}$$

For $\lambda > 0$, let $u_{\lambda} \in W_0^{1,\infty}(\mathbb{R}^n; \mathbb{R}^N)$ be the Lipschitz function constructed as in Theorem 4.5 above. Using u_{λ} as a test function in (5.1) yields

$$\int_{\mathbf{R}^n} \sigma(x, Du) \cdot Du_\lambda \, dx = \int_{\mathbf{R}^n} g(x) \cdot Du_\lambda \, dx.$$

Let $H^{\lambda}(u) = \mathbf{R}^n \setminus R^{\lambda}(u)$. Since $Du_{\lambda} = Du$ on $H^{\lambda}(u)$, by (1.4), Theorem 4.5, we have

$$\int_{H^{\lambda}(u)} |Du|^{p} \leq \gamma \lambda \int_{\mathcal{R}^{\lambda}(u)} |Du|^{p-1} + \int_{\Omega} |g| |Du_{\lambda}|.$$
(5.2)

We also easily have

$$\begin{split} \int_{|Du| \leqslant \lambda/2} |Du|^p &= \int_{\{|Du| \leqslant \lambda/2\} \cap R^{\lambda}(u)} |Du|^p + \int_{\{|Du| \leqslant \lambda/2\} \cap H^{\lambda}(u)} |Du|^p \\ &\leqslant \lambda^p |R^{\lambda}(u)| + \int_{H^{\lambda}(u)} |Du|^p \\ &\leqslant \lambda N_{p-1} \int_{|Du| > \lambda/2} |Du|^{p-1} + \int_{H^{\lambda}(u)} |Du|^p, \end{split}$$

and, by (4.2), $\int_{R^{\lambda}(u)} |Du|^{p-1} \leq N_{p-1} \int_{|Du| > \lambda/2} |Du|^{p-1}$. Therefore, by (5.2),

$$\int_{|Du| \leq \lambda/2} |Du|^p \leq (\gamma+1) N_{p-1} \lambda \int_{|Du| > \lambda/2} |Du|^{p-1} + \int_{\Omega} |g| |Du_{\lambda}|.$$

Changing $\lambda/2$ to λ we have

$$\int_{|Du| \leq \lambda} |Du|^p \leq \Gamma \lambda \int_{|Du| > \lambda} |Du|^{p-1} + G(\lambda),$$
(5.3)

where

$$\Gamma = \Gamma(n, N, A, p) = 2(\gamma + 1) N_{p-1}, \qquad G(\lambda) = \int_{\Omega} |g(x)| |Du_{2\lambda}| dx$$

From (5.3), we immediately obtain the following result.

PROPOSITION 5.1. Suppose $u \in W_0^{1, p-1}(\Omega; \mathbf{R}^N)$ is a weak solution of (5.1) with g = 0. Then $u \equiv 0$ provided that

$$\liminf_{\lambda \to \infty} \left(\lambda \int_{|Du| > \lambda} |Du|^{p-1} \, dx \right) = M < \infty.$$

Proof. By (5.3), there exists a sequence $\lambda_i \to \infty$ such that

$$\lim_{\lambda_j \to \infty} \int_{|Du| \leqslant \lambda_j} |Du|^p \, dx \leqslant \Gamma M < \infty$$

and hence $u \in W_0^{1, p}(\Omega; \mathbb{R}^N)$. Therefore, using *u* as a test function in (5.1) with $g \equiv 0$ we easily deduce that $u \equiv 0$.

Remark. If $\int_{|Du|>\lambda} |Du|^{p-1} dx \leq M/\lambda$, $\forall \lambda > T$ for some M, T>0, then one can easily prove that $|Du| \in L^q(\Omega)$ for all p-1 < q < p; hence, in this case, Proposition 5.1 would follow from Theorem 2.1.

PROPOSITION 5.2. If p - 1 < q < p then

$$\frac{1}{p-q}\int_{\mathbf{R}^n}|Du|^q \leq \frac{\Gamma}{q-p+1}\int_{\mathbf{R}^n}|Du|^q + \int_0^\infty \lambda^{q-1-p} G(\lambda) \,d\lambda.$$
(5.4)

Proof. Multiplying (5.3) by λ^{q-1-p} and integrating over $\lambda \in (0, \infty)$, we obtain

$$\int_{0}^{\infty} \lambda^{q-1-p} \left(\int_{|Du| \leq \lambda} |Du|^{p} \right) d\lambda \leq \Gamma \int_{0}^{\infty} \lambda^{q-p} \left(\int_{|Du| > \lambda} |Du|^{p-1} \right) d\lambda$$
$$+ \int_{0}^{\infty} \lambda^{q-1-p} G(\lambda) d\lambda.$$

From this we easily deduce (5.4) using the formulas in Lemma 3.3.

PROPOSITION 5.3. For p-1 < q < p there exists a constant C(p, q) depending also on the dimensions n, N and the constant A in condition (4.5) such that

$$\int_0^\infty \lambda^{q-1-p} G(\lambda) \, d\lambda \leq C(p,q) \, \|Du\|_q^{q-p+1} \, \|g\|_{q/(p-1)}.$$

Proof. Let f(x) = M(|Du|)(x) be the maximal function of |Du|. We write $G(\lambda) = G_1(\lambda) + G_2(\lambda)$, where

$$G_1(\lambda) = \int_{f \leq 2\lambda} |g(x)| |Du_{2\lambda}| dx, \qquad G_2(\lambda) = \int_{f > 2\lambda} |g(x)| |Du_{2\lambda}| dx.$$

First of all, we have $G_1(\lambda) \leq \int_{f \leq 2\lambda} |g(x)| |f(x)| dx = \int_{f \leq 2\lambda} f d\mu$, where $d\mu = |g(x)| dx$ is a measure on $X = \mathbb{R}^n$. Therefore,

$$\begin{split} \int_0^\infty \lambda^{q-1-p} \, G_1(\lambda) \, d\lambda &\leq \int_0^\infty \lambda^{q-1-p} \left(\int_{f \leq 2\lambda} f \, d\mu \right) d\lambda \\ &= \frac{1}{p-q} \int_{\mathbf{R}^n} f^{q-p+1} \, d\mu \\ &\leq \frac{1}{p-q} \, \|g\|_{q/(p-1)} \, \|f\|_q^{q-p+1} \\ &\leq \frac{c_q}{p-q} \, \|g\|_{q/(p-1)} \, \|Du\|_q^{q-p+1} \end{split}$$

in view of Lemma 3.1. Note that our assumption on q implies q > 1. Next, we have

$$G_2(\lambda) \leqslant 2 \gamma \lambda \int_{f>2\lambda} |g(x)| \, dx = C \lambda \int_{f>2\lambda} d\mu.$$

Therefore, similarly as above we deduce

$$\begin{split} \int_0^\infty \lambda^{q-1-p} G_2(\lambda) \, d\lambda &\leq C \int_0^\infty \lambda^{q-p} \left(\int_{f>2\lambda} d\mu \right) d\lambda \\ &= \frac{C}{q-p+1} \int_{\mathbf{R}^n} f^{q-p+1} \, d\mu \\ &\leq \frac{C(q)}{q-p+1} \, \|g\|_{q/(p-1)} \, \|Du\|_q^{q-p+1} \, d\mu \end{split}$$

The proposition is thus proved. Also notice that the constant C(p, q) can be chosen as $C(p, q) = (c_q/(p-q)) + (C(q)/(q-p+1))$.

THEOREM 5.4. Let Γ be the constant in (5.4). Then for any q with $p - \frac{1}{\Gamma+1} < q \leq p$ there exists a constant K(p, q) such that

$$\int_{\Omega} |Du|^q \, dx \leq K(p, q) \int_{\Omega} |g|^{q/(p-1)} \, dx$$

holds for any weak solution u of equation (5.1) in $W_0^{1, q}(\Omega; \mathbf{R}^N)$.

Proof. Let $k(p,q) = \frac{(p-q)\Gamma}{q-p+1}$. Then, $0 \le k(p,q) < 1$ for $p - \frac{1}{T+1} < q \le p$. From (5.4) and Proposition 5.3, we have

$$\left(\int_{\mathbf{R}^n} |Du|^q \, dx\right)^{(p-1)/q} \leq \frac{(p-q) C(p,q)}{1-k(p,q)} \|g\|_{q/(p-1)}$$

for $p - \frac{1}{\Gamma+1} < q < p$, where $C(p, q) = (c_q/(p-q)) + (C(q)/(q-p+1))$ is the constant in Proposition 5.3. Notice that the constant

$$K(p,q) = \left[\frac{(p-q) C(p,q)}{1-k(p,q)}\right]^{q/(p-1)}$$

does not blow up as $q \rightarrow p$; we have thus proved the theorem.

Proof of Theorem 2.1. Theorem 2.1 follows from Theorem 5.4 with $p^* \leq p - \frac{1}{\Gamma+1}$, while its Corollary 2.2 follows easily from the estimate in the theorem.

Proof of Theorem 2.3. We assume the Lipschitz condition given in the theorem; that is,

$$|\sigma(x,\xi) - \sigma(x,\eta)| \leq b |\xi - \eta| (|\xi| + |\eta|)^{p-2}.$$
(5.5)

Let $p^* \leq q \leq p$, where p^* is the constant in Theorem 2.1. Let $u \in W_0^{1, q}(\Omega; \mathbb{R}^N)$ be a weak solution of

div $\sigma(x, h + Du) = \operatorname{div} g$.

Assume $h \in L^q(\Omega; \mathbf{M}^{N \times n})$ and $g \in L^{q/(p-1)}(\Omega; \mathbf{M}^{N \times n})$. Then *u* is a weak solution of

$$\operatorname{div} \sigma(x, Du) = \operatorname{div} G,$$

where $G = \sigma(x, Du) - \sigma(x, h + Du) + g$. We have thus

$$\|G\|_{q/(p-1)} \leq \|g\|_{q/(p-1)} + \|\sigma(x, Du) - \sigma(x, h + Du)\|_{q/(p-1)}$$

and by Hölder's inequality and condition (5.5), it follows that

$$\begin{aligned} \|\sigma(x, Du) - \sigma(x, h + Du)\|_{q/(p-1)} &\leq C \, \||h| \cdot |Du|^{p-2} + |h|^{p-1} \|_{q/(p-1)} \\ &\leq \varepsilon \, \|Du\|_q^{p-1} + C_\varepsilon \, \|h\|_q^{p-1} \,. \end{aligned}$$

Using these estimates and Theorem 2.1 we have

$$\|Du\|_{q}^{p-1} \leq K \|G\|_{q/(p-1)} \leq K \|g\|_{q/(p-1)} + K\varepsilon \|Du\|_{q}^{p-1} + KC_{\varepsilon} \|h\|_{q}^{p-1}.$$

Choosing $\varepsilon > 0$ so that $K\varepsilon < 1$ yields $||Du||_q^{p-1} \leq C(||g||_{q/(p-1)} + ||h||_q^{p-1})$, proving Theorem 2.3.

6. A SPECIAL CASE OF RADIAL SOLUTIONS

In this final section, we consider a special case where we can indeed establish the estimate (2.1) for all $p-1 \le q \le p$ for a certain class of weak solutions; here again we assume $p \ge 2$. This is done by proving the existence of certain test functions satisfying (1.7).

Assume $\Omega = B$ is the unit ball in \mathbb{R}^n . We also assume N = 1; that is, $u: B \to \mathbb{R}$. We say u is a radial function if u(x) = U(r) with r = |x| for some function U.

THEOREM 6.1. Let $p-1 \leq q \leq p$ and $g \in L^{q/(p-1)}(B; \mathbb{R}^n)$. Then for any radial weak solutions u in $W_0^{1,q}(B)$ of the equation

$$\operatorname{div}(\sigma(x, Du)) = \operatorname{div} g$$

one has

$$\int_{B} |Du|^{q} dx \leq \int_{B} |g|^{q/(p-1)} dx.$$
(6.1)

As an immediate consequence of this theorem, we have the following uniqueness result.

COROLLARY 6.2. The only radial weak solution u of $div(\sigma(x, Du)) = 0$ in $W_0^{1, p-1}(B)$ is $u \equiv 0$.

Before proving Theorem 6.1, let us recall some properties of radial functions. Let v(x) = V(r) with r = |x| be a radial function. If V is smooth it is easily seen that v is smooth on $B \setminus \{0\}$ and

$$Dv(x) = V'(r) x/r, \qquad r \neq 0.$$

Let AC(0, 1] be the set of all functions V on (0, 1] that are absolutely continuous on $[\varepsilon, 1]$ for all $0 < \varepsilon < 1$ and satisfy V(1) = 0. We have the following elementary result.

LEMMA 6.3. Let v(x) = V(|x|). (i) Assume $1 < q < \infty$. Then $v \in W_0^{1, q}(B)$ if and only if $V \in AC(0, 1]$ and

$$\int_{0}^{1} |V'(r)|^{q} r^{n-1} dr < \infty.$$
(6.2)

- (ii) If $v \in W_0^{1,1}(B)$ then $V \in AC(0, 1]$ and (6.2) holds with q = 1.
- (iii) $v \in W_0^{1,\infty}(B)$ if and only if $V \in AC(0,1]$ and $|V'(r)| \leq L < \infty$.

Proof. Let v(x) = V(|x|) and $v \in W^{1, q}(B)$, where $1 \le q \le \infty$. Let $0 < \varepsilon < 1$. Then, for all $\varepsilon \le s < r \le 1$ and $|\omega| = 1$,

$$|V(r) - V(s)| = \left| \int_{s}^{r} \frac{dv(t\omega)}{dt} dt \right| = \left| \int_{s}^{r} Dv(t\omega) \cdot \omega dt \right|$$
$$\leq \int_{s}^{r} |Dv(t\omega)| dt \leq \varepsilon^{1-n} \int_{s}^{r} t^{n-1} |Dv(t\omega)| dt;$$

thus integrating over $|\omega| = 1$ and using polar coordinates yield

$$|V(r) - V(s)| \leq C\varepsilon^{1-n} \int_{B_r \setminus B_s} |Dv(x)| dx.$$

This implies V is absolutely continuous on $[\varepsilon, 1]$. By a density argument, it is also shown that if $v \in W_0^{1, q}(B)$ then V(1) = 0. Therefore we have proved that if $v \in W_0^{1, q}(B)$ then $V \in AC(0, 1]$. In this case, we also obtain

$$\int_0^1 |V'(r)|^q r^{n-1} dr = c_n \int_B |Dv(x)|^q dx < \infty; \qquad 1 \le q < \infty,$$
$$|V'(r)| = |Dv(x)| \le \|Dv\|_{L^\infty(B)} < \infty; \qquad q = \infty.$$

To complete the proof of the lemma, we assume $1 < q \le \infty$ and $V \in AC(0, 1]$ satisfies (6.2) if $q < \infty$ or satisfies $|V'(r)| \le L < \infty$ if $q = \infty$. We need to show $v = V(|x|) \in W_0^{1, q}(B)$. Define

$$f(x) = V'(r) x/r, \qquad r = |x| \neq 0.$$

From the assumption, we have $f \in L^q(B; \mathbb{R}^n)$. We first show $v = V(|x|) \in L^q(B)$, which is equivalent to $\int_0^1 |V(r)|^q r^{n-1} dr < \infty$ if $q < \infty$ or $|V(r)| \leq M < \infty$ if $q = \infty$. Since $V(r) = -\int_r^1 V'(t) dt$, it follows that

$$|V(r)| \leq \int_{r}^{1} |V'(t)| t^{\alpha} t^{-\alpha} dt \leq r^{-\alpha} \int_{0}^{1} |V'(t)| t^{\alpha} dt$$

for all 0 < r < 1, $\alpha \ge 0$. Therefore if $q = \infty$ then $|V(r)| \le L$ and hence $v \in W^{1,\infty}(B)$. We now consider the case $1 < q < \infty$. In this case, with $\alpha = \frac{n-1}{q}$ in the previous inequality, we have by Hölder's inequality

$$|V(r)| \leq r^{-(n-1)/q} \left(\int_0^1 |V'(t)|^q t^{n-1} dt \right)^{1/q}, \tag{6.3}$$

from which $v \in L^q(B)$ follows. We now show $v \in W^{1, q}(B)$; this is proved if we show f = Dv in the sense of distribution. To prove this, we observe that, for all $\phi \in C_0^{\infty}(B)$,

$$\int_{B} v \ D\phi \ dx = \lim_{\varepsilon \to 0^{+}} \int_{\varepsilon < |x| < 1} v \ D\phi \ dx$$
$$= -\lim_{\varepsilon \to 0^{+}} \int_{\varepsilon < |x| < 1} \phi \ Dv \ dx + \lim_{\varepsilon \to 0^{+}} \int_{|x| = \varepsilon} V(r) \ \frac{\partial \phi}{\partial n} \ dS$$
$$= -\lim_{\varepsilon \to 0^{+}} \int_{\varepsilon < |x| < 1} \phi \ f \ dx + \lim_{\varepsilon \to 0^{+}} \int_{|x| = \varepsilon} V(r) \ \frac{\partial \phi}{\partial n} \ dS.$$

Since $f \in L^q(B; \mathbf{R}^n)$, we have

$$\lim_{\varepsilon \to 0^+} \int_{\varepsilon < |x| < 1} \phi f \, dx = \int_B \phi f \, dx.$$

Also by (6.3), $|V(\varepsilon)| \leq C \varepsilon^{-(n-1)/q}$ and hence $|\int_{|x|=\varepsilon} V(r) \frac{\partial \phi}{\partial n} dS| \leq C \varepsilon^{n-1-((n-1)/q)} \to 0$ as $\varepsilon \to 0^+$ since q > 1. Therefore

$$\int_{B} v \ D\phi \ dx = -\int_{B} \phi \ f \ dx, \qquad \forall \phi \in C_{0}^{\infty}(B);$$

thus $Dv = f \in L^q(B; \mathbb{R}^n)$. Finally, for all $1 < q \le \infty$, an easy density argument using V(1) = 0 shows $v \in W_0^{1, q}(B)$.

Proof of Theorem 6.1. Let $p-1 \le q \le p$ and let u = U(|x|) be a weak solution of the equation given in the theorem. Define

$$V(r) = \int_{1}^{r} |U'(t)|^{q-p} U'(t) dt, \qquad \psi(x) = V(|x|)$$

Then by Lemma 6.3, $\psi \in W_0^{1, q/(q-p+1)}(B)$ and

$$D\psi = V'(r) x/r = |U'(r)|^{q-p} U'(r) x/r = |Du|^{q-p} Du.$$

Therefore, upon using this ψ as a test function in the given equation and using the hypothesis (1.4), we obtain

$$\int_{B} |Du|^{q} dx \leq \int_{B} \sigma(x, Du) D\psi dx = \int_{B} g(x) |Du|^{q-p} Du dx$$
$$\leq \left(\int_{B} |g|^{q/(p-1)} dx \right)^{(p-1)/q} \left(\int_{B} |Du|^{q} dx \right)^{(q-p+1)/q}$$

This proves the inequality (6.1), and thus the theorem follows.

REFERENCES

- E. Acerbi and N. Fusco, An approximation lemma for W^{1, p} functions, in "Material Instabilities in Continuum Mechanics," pp. 1–5, Oxford University Press, Oxford, 1988.
- G. Dolzmann, N. Hungerbühler, and S. Müller, Uniqueness and maximal regularity for nonlinear elliptic systems of *n*-Laplace type with measure valued right hand side, *J. Reine Angew. Math.* 520 (2000), 1–35.
- 3. M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems," Princeton University Press, Princeton, 1983.
- D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," 2nd ed., Springer-Verlag, New York, 1984.
- L. Greco, T. Iwaniec, and C. Sbordone, Inverting the *p*-harmonic operator, *Manuscripta Math.* 92 (1997), 249–258.
- 6. T. Iwaniec, *p*-Harmonic tensors and quasiregular mappings, *Ann. Math.* **136** (1992), 589–624.
- T. Iwaniec and A. Lutoborski, Integral estimates for null Lagrangians, Arch. Rational Mech. Anal. 125 (1993), 25–79.
- T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143–161.
- J. L. Lewis, On very weak solutions of certain elliptic systems, Comm. Partial Differential Equations 18 (1993), 1515–1537.
- F.-C. Liu, A Lusin type property of Sobolev functions, *Indiana Univ. Math. J.* 26 (1977), 645–651.
- J. Serrin, Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup. Pisa 18 (1964), 385–387.
- E. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton University Press, Princeton, 1970.