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Let o(x, &)~ |E|P~2¢& be a p-Laplacian type operator and consider the Hodge
decomposition o(x, Du)= D¢ + H, div H=0. A standard elliptic theory asserts
that || Dell -1y < C HDuH{,’_1 for all ¢>p — 1. There has been considerable recent
interest in the validity of the reverse estimate HDqu]”1 < C Dol -1y for
q>p—1 in the regularity study of certain geometrical mappings. In this paper, we
give a relatively new proof of a well-known theorem that this reverse estimate holds
for all ¢ sufficiently close to the natural power p and also prove that the estimate
holds for all g =p—1 for certain special weak solutions .  © 2001 Academic Press

1. INTRODUCTION

Given a map u from R” to RY and a number p > 1, by the Hodge decom-
position, the field |Du|? =2 Du can be written as

|Du|?~? Du= D¢ + H, div H=0,
where the map ¢:R”— R” is determined by
A =div(|Du|?~2 Du). (1.1)

If Due L? and ¢ >p — 1, then a standard linear elliptic theory easily shows
that

D@l Latw-» < C | Dul| 55" .

In this paper, we are interested in the reverse estimate of this estimate. To
be more precise, given ¢, we are interested in whether the following
estimate holds for weak solutions u of equation (1.1),

[ Du| 47 < C | D@l raw-. (1.2)
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When ¢g = p, one easily establishes estimate (1.2) using « as a test function
in (1.1). Notice that if p =2 the same estimate obtains for all g > 1 since the
equation (1.1) is then linear in this case. The estimate (1.2) in the case
when p — 1 <¢ <p and p #2 remains a major open problem. An outstand-
ing difficulty in this case is that one cannot use u as a test function in the
equation.

There has been considerable recent interest in studying estimate (1.2) for
g below the natural power p in the study of optimal regularity and
removability for weakly quasiregular mappings in higher dimensions; see
e.g. [6, 7, 8]. A conjecture made in these papers, which is closely related
to the optimal higher integrability for quasiregular mappings, states that
the estimate (1.2) hold for all ¢ > p — 1. In this paper, instead of investigat-
ing this difficult conjecture, we study a similar problem for more general
nonlinear systems of p-Laplacian type. We refer to [2, 5] for some recent
studies of such systems in other spaces larger than the natural Sobolev
space of power p. We consider the system

div(o(x, Du))=div g, (L.3)

where a(x, £) is a function from Q x MY*" to M"Y *" and g is a map from
Q to MY*"; here M¥*" denotes the space of all N xn real matrices. We
assume that a(x, &) is measurable in x for all £ e MV *" and continuous in
¢ for almost every x € Q and that

a(x,&)-E= 7, a(x, l<alér™! (1.4)

for all xe Q, £e M¥*" where a >0 is a constant.
Let g=p—1, geLY?=D(Q;MV*"). A function ue W"9Q;R") is
called a (very) weak solution of system (1.3) if the equality

j o(x, Du) - Dy dx=j o(x) - Dy dx (1.5)

Q

holds for all e C(2; RY) thus for all y e Wi #4—,+1(Q; RY).
The main result of the present paper is that for all ¢ sufficiently close to
p the estimate

HDuHZIT_(;)S c Hg”Lq/(pfl)(g) (1.6)

holds for all weak solutions u in W} 9(€; R"). This result has been proved
by Iwaniec [6] and Iwaniec and Sbordone [8]. We present a different
approach to attacking the problem in hoping that it could shed some new
insights on the conjecture mentioned above about the p-Laplacian system.
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Assume ue W§9Q; RY) is a weak solution of (1.3). Notice that, since
g<g—tzgforp—1 < q<p, we canngt take w =uasa te?st function in (1.5).
On the other hand, in order to obtain certain useful estimates, one need to
choose test functions y in (1.5) with the property

Dy ~ |Du|?~” Du. (1.7)

If ¢ 1s sufficiently close to p, it has been shown in [6, 8] that the gradient
part Dy of the Hodge decomposition of |Du|?~# Du indeed provides a very
useful test function for system (1.3) and using it one establishes (1.6).

In this paper, we use a different method to prove the main result. Our
approach, which is greatly inspired by the work of Lewis [9] and a recent
work of Dolzmann, Hungerbiihler and Miiller [2], is to construct
Lipschitz test functions by truncating the gradient; see also [1, 10].

2. THE MAIN RESULTS

In the rest of this paper, we assume £ is bounded and the complement
Q°=R"\Q is of type A (see e.g. [3]); that is, there exists a constant A >0
such that |B,(x)\Q2|= Ar" for all xeQ° and r>0. This means that Q
cannot have “sharp inward cusps”. For example, all bounded Lipschitz
domains Q satisfy this assumption.

THEOREM 2.1. Let p>=2. Then, there exists a number p*e[p—1, p)
such that for all p* <q<p the estimate

j |Dul|? dx < cj |g| 7P =D dx (2.1)
o) fe)
holds for any weak solution u of (1.3) belonging to W 4(Q2; RY).

COROLLARY 2.2. There exists a number p, e[ p—1, p) such that if
ue Wgr'(Q; RY) is a weak solution of the system (1.3) with g =0 then u=0.
Note that by Theorem 2.1 it follows that p, <p*.

THEOREM 2.3. Assume, in addition to (1.4), o(x, &) satisfies a Lipschitz
type condition

lo(x, &) —alx, )| <b |E—nl (1] + In))” 2
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Then for p* < q<p and for any weak solution ue W 4(Q; R") of the non-
homogeneous system

divo(x, h+ Du)=divg

it follows that
J |Du|qu<CJ [1h|7+ |g|¥®— D] dx.
Q Q

Remark. 1t has been conjectured in [6, 7, 8] that p, =p—1 for the
p-Laplacian system, that is, if a(x, &) = |£|? ~2£. We shall prove (Theorem
6.1) that for certain special weak solutions the number p* equals p — 1 for
all general systems o(x, £). However, the example below, based on Serrin
[11], shows that the constant p, in Corollary 2.2 may be strictly greater
than p — 1, even for linear operators a(x, &).

Example. letn=2, N=1, 0<e<]l1, and a= Let

n—1
en—2+¢)*
o(x, &)=+ (a—1) Tx'éx. (2.2)

Then the assumption (1.4) above holds with p =2; that is,

a(x,&)-E= ¢ a(x, &) <al¢]

for all xeR™\{0}, £eR™ Let w(x)=x,|x|'""7% Then, from [11],
div(e(x, Dw)) =0 weakly, and we W' 4(B,(0)) only for g < Let v be
the classical solution (see [4]) of

n+s nt+e—1°

div(e(x, Dv)) =0, Ul opy0) =X

Let u=w—v. Then u#0 is a weak solution of div(a(x, Du))=0 and
ue W4 By(0)) for all 1 <g<;7%2—. This shows that the constant p, in
Corollary 2.2 must satisfy

>——>1=p-—1
P n+e—1 P

for this particular linear operator o(x, &) defined by (2.2).
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3. PRELIMINARIES

For xeR" and p >0, we use B,(x) to denote the open ball of radius p
at center x. For a measurable function 7z on R” and a set S with Lebesgue
measure |S| >0, we let

hS:|S|*1f h(z) dz:][ h(z) d=.

N N

A point x in R” is said to be a Lebesgue point of / provided that

lim )Ilh(X)I — ()] dy =0.

p—0 B (x

By the Lebesgue differentiation theorem, almost every x is Lebesgue point
of h. The Hardy-Littlewood maximal function of / is defined by

M(h)(x)=sup |h(z)| dz.

p>0 *B,(x)

If x is a Lebesgue point of & then |A(x)| < M(h)(x). For each 1>0, we
define

E}={xeR"| M(h)(x)>i}.

LemMa 3.1 (Hardy-Littlewood Theorem [12]). There exist constants
¢, >0 such that

[{xeR"|M(h)(x)>2} | <cy 27N AL if q=1,

/ (3.1)
[M(h)lly<cglhlly if 1<g<oo.

LemMA 3.2, For any 1<q< oo there exists a constant N, such that for
all he LYR") and 1 >0

Aq|E;|+LA |h|qdz<qu h|7 dz.
h

|h| > A/2

Proof. Let A=Ej . Then for each x € 4 there exists a p = p(x) >0 such
that

j \h(z)| dz> .| B,(x)]. (3.2)
B,(x)
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By Besicovitch’s covering lemma [12], there exists a sequence of disjoint
balls {B, =B, ,(x;)} such that

ﬂ(xk)
Ac U BSp(xk)(xk)-
k

Since [ |h dz = A |Byl, 5, (im <2y 11 dz <5 | By, we have

2
|Be| <= |h dz.
2B ih > 22}
Summation over k yields
5" b
Al <57 Y |Bel €= hldz<-2% h|? dz,
Al <5" T 1Bd < LSS I
where b, =5"-29""1. Therefore
29 |EX | =19 |4 sbqj h|7 d=. (3.3)
|h] > A2
It remains to prove
| meaz<n, ] d-. (34)
E} | > A/2

To this end, let .%, be the set of all Lebesgue points of 4, and let
A=A n {|h| <2}, Ay =%, n {|h] >4},

Then A, nA,=, |A|=|A4,|+|A4,|. For each xe A, there exists a
sequence p, — 0% such that

[ a8, (%)
B, (%) ‘

for all k=1, 2, .... Therefore, the family {Bpk(x) |xed,, k=1,2,..} forms
a Vitali covering of 4,. Hence, there exists a sequence of disjoint balls
B;= B, (x;) such that

7

s

—0, J[Bj \h| dz > ).
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Since ¢ > 1 we have, by Jensen’s inequality,

q
J[ |h|qdz><Jf 1h| dz> > )4,
Bf Bf

Hence, from 1/|B; | |h|?dz < (%)9, we have
B, {1hl <32}

j Ihj7dz< C, \h|7 dz

B; B, {|h] > /2}
with C,=(1 —277) 71«2, and summation over j yields fAZ |h|9dz <
2 {4 42 |11 dz. Finally, since jAl |h|7dz <29 | A, | < AT Al <bf s 1h)? dz,
we obtain (3.3). From the proof, it also follows that Nq,=2+5"~2‘4’_1 <
57.24. |

LemmaA 3.3 (See [4, 12]). Let (X,u) be a measure space and
|f1? e LN(X, 1) for some 0 < p < 0. Then for any 0<e<p<d< o0

[Fome Qm» |f|£du>ds= pl_gjx|f|ﬂdu, (34)
1

I sp—l—‘*< I Ifl"du>ds= s [ (3.5)

4. CONSTRUCTION OF LIPSCHITZ TEST FUNCTIONS

Let 1<g<oo and ve W§9(Q; RY). Extend v to R” by zero outside Q
and denote the new function still by v. Then ve W' 9(R"; RY). Let M(|Dv|)
be the maximal function of |Dv|. For each 4> 0, define

E*v)={xeR"| M(|Dv|)(x)>1}.

Since ve W 4(R™ R"), there exists a sequence {v;} in Cy(R”; RY) such

that v; > v in wt4R™ RY) and v;(x) = v(x) for almost every xeR” as
j— oo. Since

|M(|Dv;|)(x) — M(|Dv[)(x)| < M(|Dv;— Dv[)(x),
it follows easily from Lemma 3.1 that

[{xeR"[ [M(|Dv;|)(x)— M(|Dv|)(x)| > 7} |
<[{xeR"| |M(|Dv;— Dv|)(x)| > 2} | <c?A~7|Dv,— Dv|? -0 (4.1)
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as j— oo for all 2> 0; thus, M(|Dv,|) — M(|Dv|) in measure. We may then
assume a subsequence M(|Dv, [)(x) — M(|Dv|)(x) for almost every x € R” as

Jx = 0. Let
Z(v)={xeR"|v;, (x) > v(x), M(|Dv;|)(x)— M(|Dv|)(x)}.

Then |R"\Z(v)| =0. Define
RYv) = EXv) U (R\Z(v)).

Since E*(v) € RYv), |R*(v)| = |E*(v)|, from Lemma 3.2, we easily obtain

29 | RXv)| +le( ) |Dv|qdz<qu \Dv| d-. (42)

|Do| > A2

LemMa 4.1 (See also [1,9,10]). Let H*v) =R™\RX(v). Then there exists

a constant o, >0 depending only on n such that

|t o) dy<a, 2 (43)
B(x)

for all xe HX(v) and r> 0.
Proof. We first prove this for smooth v. Let ve C(R” RY). It is easily

calculated that
r" r
[ o —vldy <™ [ [ Do+ 1)) di do,
B,(x) nJsJo

where S=S""!is the unit sphere in R". Let g(¢ f s |Dv(x + tw)| dw. Note

that for p >0 and x e H*(v), since M(|Dv|)(x) <4, it follows that

2p .
jo gy Tdt={ |Du(y) dy<C,p" 2

sz(x)

From this we deduce that | g() dt < C, p 4 for all p> 0. Hence, for every

keN,

"

r k r/2l’1 k r
j g(z)dz=zf g di< Y Coh —<Cyr .
/2 i1 iz1 2
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and thus, letting kK — oo, we have L’) g(t) dt < C, r /. Therefore, we have

f |v(x)—v(y)|dy<r—J fr |Du(x + tw)| dt do < 1" frg(t)dtécz/lr"“.
B,(x) n JsJo 0

This proves the estimate (4.3) for smooth v. For general functions v, this
estimate follows by approximation. [j

LemMA 4.2. For all x, y e HXv) and r> 0, we have

lo(x) =oM< C3 4 |x— yl, <Gdr. (44)

v(x)—J(B( ) v(z) dz

Proof. The second estimate follows easily from (4.3). To prove the first,
let @ be the midpoint of x and y, and r = |x — y|/2. Then by (4.3)

v(z)dz| < J |v(x) —v(z)| dz

B(a)

jo(x) 1B, -

B(a)

<f [o(x) —v(z)| dz< Cy A" +1
BZY('x)

Similarly, |0(p) |B,|— [z v(2) dz| < C4 Ar"*'. Hence, |v(x)—v(y)| |B,|<

2C, Ar"T1 Since r = |x — y|/2, we easily obtain |v(x) —v(y)| < C3 A |x—y|.

The proof is now completed. ||

Assume now the domain & is bounded and the complement Q¢ =R"\Q is
of type A; that is, there exists a constant 4 >0 such that

|B.(x)\Q| = A4r", VxeQ° r>0. (4.5)

Lemma 4.3. Let ve WE9(Q; RY), 1>0. Define v* on H’I v) =R™\R*(v)
by letting v*(x) = v(x) on Q\R*(v) and v (x) =0 on Q°. Then v* is a Llpschltz
function on H*(v) and satisfies

() =" (I <BAlx =yl X))l < B2 dist(x; Q°)

for all x, ye HXv), where f=p(n, A)>0 is a constant depending only on n
and the constant A in (4.5).

Proof. We first prove the second estimate, following an idea in [2]. The
proof is trivial if x € Q¢ So let x € Q\H*(v). Let |x — %| = dist(x; Q") for some
xeQ Let r=2|x—x|>0, U=B,(x) and S= {er|v =0}. Then

B, 5(X)\Q2 < S; thus condition (4.5) implies that |S| > Cs r” for some constant
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Cs >0 depending on the constant 4 in (4.5). Since ve W5 U; RY) and v=0
on S, by a Poincaré type inequality (see e.g. [4, p. 164]), we have

| wedz=] ) —vsldz
B(x)

B(x)

< Ce |S| =1+ j |Do| dz< Cy 27+,
B,(x)

using the fact that M(|Dv|)(x) < A. Therefore, by (4.4),
[vA(x)| = |v(x)| < Cg A r =2Cjg A dist(x; Q°).

The first estimate of the lemma follows from this last inequality and (4.4). ||

LemMMa 44. Let HcR™ be any nonempty set and v: H—RY be a
Lipschitz map with Lipschitz constant L; that is,

L= syp =N

x, yeH |X - )’|
Then there exists a Lipschitz map ©:R"—RY with Lipschitz constant
L< \ﬁVL such that 5(x)=v(x) for all xe H.

Proof. Define 5:R*"—>R" to be #=(¢) with #(z)=inf,_ 4z{v(x)+
L|z—x|} for zeR” and i=1,2,..,N. It is then easily verified that
#(x)=v(x) for all xe H and

|5l(x)_ﬁl(y)|<L|x_y|n vxn yERn'

So # is a Lipschitz map on R” with Lipschitz constant L g\/ﬁ L 1

THEOREM 4.5. There exists a constant y =7y(n, N, A) >0, where A is the
constant in (4.5), such that for ve Wy 4Q;RY) and 1.>0 there exists a
Lipschitz function v, € Wi ©(R™ RY) satisfying

”DUAHOO <j)l,

b(x)=0, xeR"\Q, (4.6)
v,(x) = v(x), x e Q\RYv),

where RYv) is the set defined by (4.1) above.

Proof. By Lemma 4.3, the function v*: H*(v) - R¥ defined above is a
Lipschitz map with Lipschitz constant L < 4. By Lemma 4.4, we extend v* to
the whole R” as a Lipschitz function (v, : R — R") with Lipschitz constant
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Zs\/ﬁﬁi. Let yzﬁﬁ. Then v,(x)=0 for all xeQ° thus v, e
WE*(2; RY). We can easily verify that this function v, satisfies the all
requirements of the theorem. |

5. PROOF OF THE MAIN RESULTS

In what follows, let 1<p—1<g<p and ge L¥®?~Y(Q; MV *"). Assume
ue WgQ; RY) is a weak solution of

div(o(x, Du)) =div g. (5.1)
For 2>0, let u; e W§ “(R”; RY) be the Lipschitz function constructed as in
Theorem 4.5 above. Using u, as a test function in (5.1) yields

j o(x, Du) - Du,, dx = j o(x) - Du, dx.
RYI Rn

Let HXu)=R"\R*(u). Since Du, = Du on H*(u), by (1.4), Theorem 4.5, we
have

[ pur<ya| pulrmt+ | gl D). (52)
HXu) RMu) Q
We also easily have

|Dul? = |Dul? + | |Dul”

jwm <if2 {1Dul <2/2} o R¥u) {1Dul < 3/2}  HA(u)

< AP |RMu)| +JH1( ) | Dul|?

<AN,_ |Du|1’*1+f | Du|?,

1l
|Dul > 2/2 HHu)

and, by (4.2), [ ri [ Dul? "' <N, _\ §ipu=4p |Dul?~". Therefore, by (5.2),

Dul? < (y+1) N,y 2 |

|Du| > /2

[ 1Dul?= 1+ [ gl |Duy .
|Du| < /2 Q

Changing 4/2 to 4 we have

j |Du|P<mj 1Du|? =1 + G(2), (5.3)
|Du| <A |Du| > A
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where
I'=I'(n,N, 4, p)=2(y+1)N,_,,  G(4) =L} |g(x)] [Duyy | dx.
From (5.3), we immediately obtain the following result.

PROPOSITION 5.1.  Suppose ue Wy ?~'(Q2; RY) is a weak solution of (5.1)
with g=0. Then u=0 provided that

A—> 0

1mnm<zf MMV_Hh>=A4<ML
|Du| > A
Proof. By (5.3), there exists a sequence 4; — oo such that

lim |Dul? dx < IT'M < oo
A= 0 J|1Dul <

and hence ue W #(Q; RY). Therefore, using u as a test function in (5.1) with
g =0 we easily deduce that u=0. ||

Remark. If {\p, 1 |Dul? =" dx <MJA, VA>T for some M, T>0, then
one can easily prove that |Du|e LY(Q) for all p—1<qg <p; hence, in this
case, Proposition 5.1 would follow from Theorem 2.1.

ProOPOSITION 5.2. Ifp—1<g<p then

1 ['e)
—j |Dul < j |Du|‘1+J 2P GO A (5.4)
n q n 0

P—q —p+l

Proof. Multiplying (5.3) by A9~ !~” and integrating over 1€ (0, o), we
obtain

Ioo}ﬂ—l—l’ <f |Du|1’> d/1<rj°° ja-r <j |Du|P_1> i
0 |[Du| <A 0 |Du| > A
+[ a6 di
0

From this we easily deduce (5.4) using the formulas in Lemma 3.3. ||
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PrOPOSITION 5.3. For p—1<gq<p there exists a constant C(p, q) depend-
ing also on the dimensions n, N and the constant A in condition (4.5) such that

L AP G(2) dR< Clp, q) [ Dull ="+ gl g —1)-

Proof. Let f(x)= M(|Du|)(x) be the maximal function of |Du|. We write
G(1) = G1(4) + G,(A), where

Gila)=] _ lgliDul v Galiy=] 180l 1Dus | d

<22

First of all, we have G(4) <[ <2, |g(x)|1f(x)| dx={,<,; fdu, where du=
|g(x)| dx is a measure on X =R". Therefore,

fw J9=1=2 G (7) di qw Ja=1-» <L<ufd,u> &

0 0
1

- q—p+1
p_qjmf di

1 —p+1
< ﬂ lgllgp—1) Hf”?, P

c
< 1 Hg“ — HEl{”q !
= /(p—1)
V4 q ! 7

in view of Lemma 3.1. Note that our assumption on ¢ implies ¢ > 1. Next,
we have

| g(x)| dx = caj du.

f>22

Gy(1)<2y /IL

>2

Therefore, similarly as above we deduce

jwzq—l—P Gz(x)dz<cf°o ja-—» (L udﬂ> 4

0 0

C
- - q—p+1d
q—p—}—lj,,f #
Cyg) _
\q—p—l—l Hqu/(pfl) HDUHZ Pl

The proposition is thus proved. Also notice that the constant C(p, ¢) can be
chosen as C(p, q) =(c,/(p—q)) +(C(g)/(g—p+1)). |
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THEOREM 5.4. Let I’ be the constant in (5.4). Then for any q with
P — 71 <q<p there exists a constant K(p, q) such that

| 1Dutdx<K(p, g) | 1g170~ ax
Q Q

holds for any weak solution u of equation (5.1) in W§9(Q; RY).

Proof. Let k(p, q)=2=2L. Then, 0<k(p,q)<1 for p—F5<q<p.

Tg—p+l-
From (5.4) and Proposition 5.3, we have

w=ba _(p—q)Clp,q)
<LG |Du|qu> <T(pq) lell 4o — 1)

for p— 41 <q<p, where C(p, q)=(c,/(p —q)) +(C(g)/(qg—p+1)) is the
constant in Proposition 5.3. Notice that the constant

(p—q) Cp, q)]"/(p‘”

“””:[1—an

does not blow up as ¢ — p; we have thus proved the theorem. ||

Proof of Theorem 2.1. Theorem 2.1 follows from Theorem 5.4 with
p* <p— 57, while its Corollary 2.2 follows easily from the estimate in the
theorem. ||

Proof of Theorem 2.3. We assume the Lipschitz condition given in the
theorem; that is,

|o(x, &) —a(x, ) <b |E=nl (1] + In])?P 2 (5.5)

Let p* < ¢ <p, where p* is the constant in Theorem 2.1. Let ue Wy 9(Q; RY)
be a weak solution of

diva(x, h+ Du)=div g.

Assume he LY(Q; MY >*") and ge LY®~Y(Q; MY "), Then u is a weak solu-
tion of

div a(x, Du) =div G,
where G = a(x, Du) —a(x, h+ Du) + g. We have thus

1G g/p—1) < N1 8llgp— 1y + (o6, Dut) — (2%, b+ Dut) | 1)
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and by Holder’s inequality and condition (5.5), it follows that
lo(x, Du) — o(x, h+ Du)| ;i — 1y < C [ 12]-|Dul? =2+ |17 7Y 1)
<e|Dull 2=+ C, A2 ~".
Using these estimates and Theorem 2.1 we have
1Dull 2= S K |Gl gpip— 1) S K 1 €ll gpip— 1) + Ke || Dul| 21 + KC, || 27

Choosing &>0 so that Ke<1 yields |Dul|?~'<C (| gl -1+ 12127,
proving Theorem 2.3. |

6. A SPECIAL CASE OF RADIAL SOLUTIONS

In this final section, we consider a special case where we can indeed estab-
lish the estimate (2.1) for all p —1 < ¢ <p for a certain class of weak solu-
tions; here again we assume p > 2. This is done by proving the existence of
certain test functions satisfying (1.7).

Assume Q=B is the unit ball in R”. We also assume N =1; that is,
u: B— R. We say u is a radial function if u(x)= U(r) with r=|x| for some
function U.

THEOREM 6.1. Let p—1<q<p and geLY?~VY(B;R"). Then for any
radial weak solutions u in W 4(B) of the equation

div(o(x, Du))=div g

one has
j|Du|qu<j 12|92 dx. (6.1)
B B

As an immediate consequence of this theorem, we have the following
uniqueness result.

COROLLARY 6.2. The only radial weak solution u of div(a(x, Du))=0 in
wyP~Y(B) is u=0.

Before proving Theorem 6.1, let us recall some properties of radial func-
tions. Let v(x) = V(r) with r=|x| be a radial function. If V is smooth it is
easily seen that v is smooth on B\{0} and

Du(x)=V"(r) x/r, r#0.
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Let AC(0, 1] be the set of all functions V on (0, 1] that are absolutely
continuous on [¢ 1] for all 0<e<1 and satisfy V(1)=0. We have the
following elementary result.

LemMA 6.3. Let v(x) = V(|x|). (i) Assume 1 <q<oo. Then ve W 4B) if
and only if Ve AC(0, 1] and

1
L V(1)) dr < 0. (62)

(i) If ve Wy (B) then Ve AC(0, 1] and (6.2) holds with g=1.
(iti) ve W§™(B) if and only if Ve AC(0,1] and |V'(r)] < L < 0.

Proof. Let v(x)=V(|x|) and ve W9 B), where 1 <g<oo. Let 0 <e<1.
Then, for all e<s<r<1 and |w|=1,

f’ dv(tw)

M =vel=|[ =

-

J Du(tw) -wdt’
<j |Du(tw)| dr <&'= j "=V | Du(tw)| dt;
thus integrating over |w| =1 and using polar coordinates yield

\V(r)— V(s)| < CSHJ |Du(x)] dx.

Br\B.v
This implies V" is absolutely continuous on [¢, 1]. By a density argument, it

is also shown that if ve W %(B) then V(1)=0. Therefore we have proved
that if ve Wy 4(B) then Ve AC(0, 1]. In this case, we also obtain

1
f |V'(r)|qr"—1dr=cnf |Du(x)|? dx < o0 1<q< oo,
0 B
[V'(r)| = |Dv(x)| < [ Dv]| oo gy < 00; q= 0.

To complete the proof of the lemma, we assume 1 <g¢ < oo and Ve AC(0, 1]
satisfies (6.2) if ¢ < oo or satisfies |V'(r)| < L < oo if ¢ = co. We need to show
v=V(|x|) e W 4B). Define

Sx)=V'(r)xjr,  r=|x|#0.
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From the assumption, we have fel9B;R"). We first show
v=V(|x|) e LB), which is equivalent to {g |V(r)|?r"~'dr<oo if g< oo or
|V(r)| M < oo if g=oo. Since V(r)= —[} V'(¢) dt, it follows that

1 1
V<[ IVl e e de<e [ ] e d
r 0

for all 0<r<1, «>0. Therefore if g=o0o0 then |V(r)|<L and hence
n—1

ve W *(B). We now consider the case 1 < ¢ < co. In this case, with « = 7
in the previous inequality, we have by Holder’s inequality

1 l/q
V()| <r=t=1r <f V()] "= dz> : (6.3)
0

from which v € LY(B) follows. We now show ve W' 9(B); this is proved if we
show f = Dv in the sense of distribution. To prove this, we observe that, for
all e CF(B),

Jdebdx: lim j oD dx
B g0t Joox|<1
. . ¢
= — lim ¢ Dvdx+ lim W) —dS
e 0% Jocix<1 e—0+ Jix = on
. . o
= — lim ¢ fdx+ lim V(r) = dsS.
e— 0T Jooix <1 e—0+ Jix—¢ on

Since f'e LY(B; R"), we have

lim ¢ fdx= j ¢ fdx.

e—=0t Yoo x| <1

Also by (63), [V(e)|]<Ce "~"V4 and hence |f_,V(r)ZdSI<
Cet~1=(=D) 0 as ¢ 0" since ¢ > 1. Therefore

Jquﬁdx:—J ¢ fdx, VheCP(B);

thus Dv= fe L4 B; R"). Finally, for all 1 <¢ < o0, an easy density argument
using V(1) =0 shows ve Wy 4 (B). |

Proof of Theorem 6.1. Let p—1<qg<p and let u=U(|x|) be a weak
solution of the equation given in the theorem. Define

V=[P U d )=V,
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Then by Lemma 6.3, y € W§#@=2*+(B) and

Dy = V'(r) xfr=|U'(n)|*~? U'(r) x/r=|Dul*~" Du

Therefore, upon using this iy as a test function in the given equation and
using the hypothesis (1.4), we obtain

J |Du|qu<J a(x, Du) Dy dxzj g(x) |Du|?~? Du dx
B B B

@—1)/q (@a—p+1)/q
<<[ Iglq/(l’_l)dx> <f |Du|”dx> .
B B

This proves the inequality (6.1), and thus the theorem follows. |

1
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5.

10.

11.

12.

REFERENCES

. E. Acerbi and N. Fusco, An approximation lemma for W%” functions, in “Material
Instabilities in Continuum Mechanics,” pp. 1-5, Oxford University Press, Oxford, 1988.

. G. Dolzmann, N. Hungerbiihler, and S. Miiller, Uniqueness and maximal regularity for
nonlinear elliptic systems of n-Laplace type with measure valued right hand side, J. Reine
Angew. Math. 520 (2000), 1-35.

. M. Giaquinta, “Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic

Systems,” Princeton University Press, Princeton, 1983.

D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order,”

2nd ed., Springer-Verlag, New York, 1984.

L. Greco, T. Iwaniec, and C. Sbordone, Inverting the p-harmonic operator, Manuscripta

Math. 92 (1997), 249-258.

. T. Iwaniec, p-Harmonic tensors and quasiregular mappings, Ann. Math. 136 (1992),
589-624.

. T. Iwaniec and A. Lutoborski, Integral estimates for null Lagrangians, Arch. Rational Mech.
Anal. 125 (1993), 25-79.

. T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math.
454 (1994), 143-161.

. J. L. Lewis, On very weak solutions of certain elliptic systems, Comm. Partial Differential

Equations 18 (1993), 1515-1537.

F.-C. Liu, A Lusin type property of Sobolev functions, Indiana Univ. Math. J. 26 (1977),

645-651.

J. Serrin, Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup.

Pisa 18 (1964), 385-387.

E. Stein, “Singular Integrals and Differentiability Properties of Functions,” Princeton

University Press, Princeton, 1970.



	1. INTRODUCTION 
	2. THE MAIN RESULTS 
	3. PRELIMINARIES 
	4. CONSTRUCTION OF LIPSCHITZ TEST FUNCTIONS 
	5. PROOF OF THE MAIN RESULTS 
	6. A SPECIAL CASE OF RADIAL SOLUTIONS 
	REFERENCES 

