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Let _(x, !)r |!| p&2 ! be a p-Laplacian type operator and consider the Hodge
decomposition _(x, Du)=D.+H, div H=0. A standard elliptic theory asserts
that &D.&q�(p&1)�C &Du& p&1

q for all q>p&1. There has been considerable recent
interest in the validity of the reverse estimate &Du& p&1

q �C &D.&q�(p&1) for
q>p&1 in the regularity study of certain geometrical mappings. In this paper, we
give a relatively new proof of a well-known theorem that this reverse estimate holds
for all q sufficiently close to the natural power p and also prove that the estimate
holds for all q�p&1 for certain special weak solutions u. � 2001 Academic Press

1. INTRODUCTION

Given a map u from Rn to RN and a number p>1, by the Hodge decom-
position, the field |Du| p&2 Du can be written as

|Du| p&2 Du=D.+H, div H=0,

where the map . : Rn � RN is determined by

2.=div( |Du| p&2 Du). (1.1)

If Du # Lq and q>p&1, then a standard linear elliptic theory easily shows
that

&D.&Lq�(p&1)�C &Du& p&1
Lq .

In this paper, we are interested in the reverse estimate of this estimate. To
be more precise, given ., we are interested in whether the following
estimate holds for weak solutions u of equation (1.1),

&Du& p&1
Lq �C &D.&Lq�(p&1) . (1.2)

doi:10.1006�jdeq.2000.3925, available online at http:��www.idealibrary.com on

160
0022-0396�01 �35.00
Copyright � 2001 by Academic Press
All rights of reproduction in any form reserved.



When q= p, one easily establishes estimate (1.2) using u as a test function
in (1.1). Notice that if p=2 the same estimate obtains for all q>1 since the
equation (1.1) is then linear in this case. The estimate (1.2) in the case
when p&1�q<p and p{2 remains a major open problem. An outstand-
ing difficulty in this case is that one cannot use u as a test function in the
equation.

There has been considerable recent interest in studying estimate (1.2) for
q below the natural power p in the study of optimal regularity and
removability for weakly quasiregular mappings in higher dimensions; see
e.g. [6, 7, 8]. A conjecture made in these papers, which is closely related
to the optimal higher integrability for quasiregular mappings, states that
the estimate (1.2) hold for all q>p&1. In this paper, instead of investigat-
ing this difficult conjecture, we study a similar problem for more general
nonlinear systems of p-Laplacian type. We refer to [2, 5] for some recent
studies of such systems in other spaces larger than the natural Sobolev
space of power p. We consider the system

div(_(x, Du))=div g, (1.3)

where _(x, !) is a function from 0_MN_n to MN_n and g is a map from
0 to MN_n; here MN_n denotes the space of all N_n real matrices. We
assume that _(x, !) is measurable in x for all ! # MN_n and continuous in
! for almost every x # 0 and that

_(x, !) } !�|!| p, |_(x, !)|�a |!| p&1 (1.4)

for all x # 0, ! # MN_n, where a>0 is a constant.
Let q�p&1, g # Lq�(p&1)(0; MN_n). A function u # W 1, q(0; RN) is

called a (very) weak solution of system (1.3) if the equality

|
0

_(x, Du) } D� dx=|
0

g(x) } D� dx (1.5)

holds for all � # C�
0 (0; RN) thus for all � # W 1, q�(q& p+1)

0 (0; RN).
The main result of the present paper is that for all q sufficiently close to

p the estimate

&Du& p&1
Lq(0)�C &g&Lq�(p&1)(0) (1.6)

holds for all weak solutions u in W 1, q
0 (0; RN). This result has been proved

by Iwaniec [6] and Iwaniec and Sbordone [8]. We present a different
approach to attacking the problem in hoping that it could shed some new
insights on the conjecture mentioned above about the p-Laplacian system.
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Assume u # W 1, q
0 (0; RN) is a weak solution of (1.3). Notice that, since

q< q
q& p+1 for p&1�q<p, we cannot take �=u as a test function in (1.5).

On the other hand, in order to obtain certain useful estimates, one need to
choose test functions � in (1.5) with the property

D�r |Du|q& p Du. (1.7)

If q is sufficiently close to p, it has been shown in [6, 8] that the gradient
part D� of the Hodge decomposition of |Du|q& p Du indeed provides a very
useful test function for system (1.3) and using it one establishes (1.6).

In this paper, we use a different method to prove the main result. Our
approach, which is greatly inspired by the work of Lewis [9] and a recent
work of Dolzmann, Hungerbu� hler and Mu� ller [2], is to construct
Lipschitz test functions by truncating the gradient; see also [1, 10].

2. THE MAIN RESULTS

In the rest of this paper, we assume 0 is bounded and the complement
0c=Rn"0 is of type A (see e.g. [3]); that is, there exists a constant A>0
such that |Br (x)"0|�Arn for all x # 0c and r>0. This means that 0
cannot have ``sharp inward cusps''. For example, all bounded Lipschitz
domains 0 satisfy this assumption.

Theorem 2.1. Let p�2. Then, there exists a number p* # [ p&1, p)
such that for all p*�q�p the estimate

|
0

|Du|q dx�C |
0

| g|q�( p&1) dx (2.1)

holds for any weak solution u of (1.3) belonging to W 1, q
0 (0; RN).

Corollary 2.2. There exists a number p
*

# [ p&1, p) such that if
u # W 1, p*

0 (0; RN) is a weak solution of the system (1.3) with g=0 then u#0.
Note that by Theorem 2.1 it follows that p

*
�p*.

Theorem 2.3. Assume, in addition to (1.4), _(x, !) satisfies a Lipschitz
type condition

|_(x, !)&_(x, ')|�b |!&'| ( |!|+|'| ) p&2.
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Then for p*�q�p and for any weak solution u # W 1, q
0 (0; RN) of the non-

homogeneous system

div _(x, h+Du)=div g

it follows that

|
0

|Du|q dx�C |
0

[|h| q+| g|q�(p&1)] dx.

Remark. It has been conjectured in [6, 7, 8] that p
*

= p&1 for the
p-Laplacian system, that is, if _(x, !)=|!| p&2!. We shall prove (Theorem
6.1) that for certain special weak solutions the number p* equals p&1 for
all general systems _(x, !). However, the example below, based on Serrin
[11], shows that the constant p

*
in Corollary 2.2 may be strictly greater

than p&1, even for linear operators _(x, !).

Example. Let n�2, N=1, 0<=<1, and a= n&1
=(n&2+=) . Let

_(x, !)=!+(a&1)
x } !
|x|2 x. (2.2)

Then the assumption (1.4) above holds with p=2; that is,

_(x, !) } !�|!|2, |_(x, !)|�a |!|

for all x # Rn"[0], ! # Rn. Let w(x)=x1 |x| 1&n&=. Then, from [11],
div(_(x, Dw))=0 weakly, and w # W1, q(B1(0)) only for q< n

n+=&1 . Let v be
the classical solution (see [4]) of

div(_(x, Dv))=0, v|�B1(0)=x1 .

Let u=w&v. Then u{0 is a weak solution of div(_(x, Du))=0 and
u # W 1, q

0 (B1(0)) for all 1�q< n
n+=&1 . This shows that the constant p

*
in

Corollary 2.2 must satisfy

p
*

�
n

n+=&1
>1= p&1

for this particular linear operator _(x, !) defined by (2.2).
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3. PRELIMINARIES

For x # Rn and \>0, we use B\(x) to denote the open ball of radius \
at center x. For a measurable function h on Rn and a set S with Lebesgue
measure |S|>0, we let

hS=|S|&1 |
S

h(z) dz=�|
S

h(z) dz.

A point x in Rn is said to be a Lebesgue point of h provided that

lim
\ � 0

�|
B\ (x)

| |h(x)|&|h( y)| | dy=0.

By the Lebesgue differentiation theorem, almost every x is Lebesgue point
of h. The Hardy�Littlewood maximal function of h is defined by

M(h)(x)=sup
\>0

�|
B\ (x)

|h(z)| dz.

If x is a Lebesgue point of h then |h(x)|�M(h)(x). For each *�0, we
define

E *
h=[x # Rn | M(h)(x)>*].

Lemma 3.1 (Hardy�Littlewood Theorem [12]). There exist constants
cq>0 such that

|[x # Rn | M(h)(x)>*]|�c1 *&1&h&1 if q=1,
(3.1)

&M(h)&q�cq &h&q if 1<q��.

Lemma 3.2. For any 1�q<� there exists a constant Nq such that for
all h # Lq(Rn) and *>0

*q |E *
h |+|

E *
h

|h| q dz�Nq |
|h| >*�2

|h|q dz.

Proof. Let A=E *
h . Then for each x # A there exists a \=\(x)>0 such

that

|
B\(x)

|h(z)| dz�* |B\(x)|. (3.2)
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By Besicovitch's covering lemma [12], there exists a sequence of disjoint
balls [Bk=B\(xk)(xk)] such that

A/.
k

B5\(xk)(xk).

Since �Bk
|h| dz�* |Bk |, �Bk & [ |h| �*�2] |h| dz� *

2 |Bk |, we have

|Bk |�
2
* |

Bk & [ |h|>*�2]
|h| dz.

Summation over k yields

|A|�5n :
k

|Bk |�
5n

* |
|h|>*�2

|h| dz�
bq

*q |
|h| >*�2

|h|q dz,

where bq=5n } 2q&1. Therefore

*q |E *
h |=*q |A|�bq |

|h| >*�2
|h| q dz. (3.3)

It remains to prove

|
E *

h

|h|q dz�Nq |
|h| >*�2

|h|q dz. (3.4)

To this end, let Lh be the set of all Lebesgue points of h, and let

A1=A & [ |h|�*], A2=Lh & [ |h|>*].

Then A1 & A2=<, |A|= |A1 |+|A2 |. For each x # A2 there exists a
sequence \k � 0+ such that

|
B\k

(x)
|h(z)| dz>* |B\k

(x)|

for all k=1, 2, ... . Therefore, the family [B\k
(x) | x # A2 , k=1, 2, ...] forms

a Vitali covering of A2 . Hence, there exists a sequence of disjoint balls
Bj=B\kj

(x j) such that

}A2>�j Bj }=0, �|
Bj

|h| dz�*.
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Since q�1 we have, by Jensen's inequality,

�|
Bj

|h|q dz�\�|
Bj

|h| dz+
q

�*q.

Hence, from 1�|Bj | |
Bj & [ |h| �*�2]

|h|q dz�( *
2)q, we have

|
Bj

|h|q dz�Cq |
Bj & [ |h| >*�2]

|h| q dz

with Cq=(1&2&q)&1�2, and summation over j yields �A2
|h|qdz�

2 � |h|>*�2 |h|q dz. Finally, since �A1
|h|q dz�*q |A1 |�*q |A|�bq� |h|>*�2 |h|q dz,

we obtain (3.3). From the proof, it also follows that Nq=2+5n } 2q&1�
5n } 2q. K

Lemma 3.3 (See [4, 12]). Let (X, +) be a measure space and
| f |\ # L1(X, +) for some 0<\<�. Then for any 0�=<\<$<�

|
�

0
s\&1&= \|| f | >s

| f | = d++ ds=
1

\&= |X
| f |\ d+, (3.4)

|
�

0
s\&1&$ \| | f |�s

| f |$ d++ ds=
1

$&\ |
X

| f |\ d+. (3.5)

4. CONSTRUCTION OF LIPSCHITZ TEST FUNCTIONS

Let 1�q<� and v # W 1, q
0 (0; RN). Extend v to Rn by zero outside 0

and denote the new function still by v. Then v # W1, q(Rn; RN). Let M( |Dv| )
be the maximal function of |Dv|. For each *>0, define

E*(v)=[x # Rn | M( |Dv| )(x)>*].

Since v # W1, q(Rn; RN), there exists a sequence [vj] in C �
0 (Rn; RN) such

that vj � v in W1, q(Rn; RN) and vj (x) � v(x) for almost every x # Rn as
j � �. Since

|M( |Dvj | )(x)&M( |Dv| )(x)|�M( |Dvj&Dv| )(x),

it follows easily from Lemma 3.1 that

|[x # Rn | |M( |Dvj | )(x)&M( |Dv| )(x)|>*]|

�|[x # Rn | |M( |Dvj&Dv| )(x)|>*]|�cq
q *&q &Dv j&Dv&q

q � 0 (4.1)
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as j � � for all *>0; thus, M( |Dvj | ) � M( |Dv| ) in measure. We may then
assume a subsequence M( |Dvjk

| )(x) � M( |Dv| )(x) for almost every x # Rn as
jk � �. Let

L(v)=[x # Rn | vjk
(x) � v(x), M( |Dvjk

| )(x) � M( |Dv| )(x)].

Then |Rn"L(v)|=0. Define

R*(v)=E*(v) _ (Rn"L(v)).

Since E*(v)�R*(v), |R*(v)|=|E*(v)|, from Lemma 3.2, we easily obtain

*q |R*(v)|+|
R*(v)

|Dv|q dz�Nq |
|Dv|>*�2

|Dv|q dz. (4.2)

Lemma 4.1 (See also [1, 9, 10]). Let H*(v)=Rn"R*(v). Then there exists
a constant :n>0 depending only on n such that

|
Br(x)

|v(x)&v( y)| dy�:n * rn+1 (4.3)

for all x # H*(v) and r>0.

Proof. We first prove this for smooth v. Let v # C�
0 (Rn; RN). It is easily

calculated that

|
Br(x)

|v(x)&v( y)| dy�
rn

n |
S
|

r

0
|Dv(x+t|)| dt d|,

where S=Sn&1 is the unit sphere in Rn. Let g(t)=�S |Dv(x+t|)| d|. Note
that for \>0 and x # H*(v), since M( |Dv| )(x)�*, it follows that

|
2\

0
g(t) tn&1 dt=|

B2\(x)
|Dv( y)| dy�C1 \n *.

From this we deduce that �\
2\ g(t) dt�C2 \ * for all \>0. Hence, for every

k # N,

|
r

r�2k
g(t) dt= :

k

i=1
|

r�2i&1

r�2i
g(t) dt� :

k

i=1

C2 *
r
2i�C2 r *.
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and thus, letting k � �, we have �r
0 g(t) dt�C2 r *. Therefore, we have

|
Br(x)

|v(x)&v( y)| dy�
rn

n |
S
|

r

0
|Dv(x+t|)| dt d|�rn |

r

0
g(t) dt�C2 * rn+1.

This proves the estimate (4.3) for smooth v. For general functions v, this
estimate follows by approximation. K

Lemma 4.2. For all x, y # H*(v) and r>0, we have

|v(x)&v( y)|�C3 * |x& y|, }v(x)&�|
Br(x)

v(z) dz}�C3 * r. (4.4)

Proof. The second estimate follows easily from (4.3). To prove the first,
let a be the midpoint of x and y, and r=|x& y|�2. Then by (4.3)

|v(x) |Br |&|
Br(a)

v(z) dz|�|
Br(a)

|v(x)&v(z)| dz

�|
B2r(x)

|v(x)&v(z)| dz�C4 * rn+1.

Similarly, |v( y) |Br |&�Br(a) v(z) dz|�C4 * rn+1. Hence, |v(x)&v( y)| |Br |�
2 C4 * rn+1. Since r=|x& y|�2, we easily obtain |v(x)&v( y)|�C3 * |x& y|.
The proof is now completed. K

Assume now the domain 0 is bounded and the complement 0c=Rn"0 is
of type A; that is, there exists a constant A>0 such that

|Br (x)"0|�Arn, \ x # 0c, r>0. (4.5)

Lemma 4.3. Let v # W 1, q
0 (0; RN), *>0. Define v* on H*(v)=Rn"R*(v)

by letting v*(x)=v(x) on 0"R*(v) and v*(x)=0 on 0c. Then v* is a Lipschitz
function on H*(v) and satisfies

|v*(x)&v*( y)|�; * |x& y|, |v*(x)|�; * dist(x; 0c)

for all x, y # H*(v), where ;=;(n, A)>0 is a constant depending only on n
and the constant A in (4.5).

Proof. We first prove the second estimate, following an idea in [2]. The
proof is trivial if x # 0c. So let x # 0"H*(v). Let |x&x� |=dist(x; 0c) for some
x� # 0c. Let r=2 |x&x� |>0, U=Br (x) and S=[x # U | v(x)=0]. Then
Br�2(x� )"0/S; thus condition (4.5) implies that |S|�C5 rn for some constant
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C5>0 depending on the constant A in (4.5). Since v # W1, 1(U; RN) and v=0
on S, by a Poincare� type inequality (see e.g. [4, p. 164]), we have

|
Br(x)

|v(z)| dz=|
Br(x)

|v(z)&vS | dz

�C6 |S|&1+1�n rn |
Br(x)

|Dv| dz�C7 * rn+1,

using the fact that M( |Dv| )(x)�*. Therefore, by (4.4),

|v*(x)|=|v(x)|�C8 * r=2C8 * dist(x; 0c).

The first estimate of the lemma follows from this last inequality and (4.4). K

Lemma 4.4. Let H/Rn be any nonempty set and v : H � RN be a
Lipschitz map with Lipschitz constant L; that is,

L= sup
x, y # H

|v(x)&v( y)|
|x& y|

<�.

Then there exists a Lipschitz map v~ : Rn � RN with Lipschitz constant
L� �- N L such that v~ (x)=v(x) for all x # H.

Proof. Define v~ : Rn � RN to be v~ =(v~ i) with v~ i (z)=infx # H [vi (x)+
L |z&x|] for z # Rn and i=1, 2, ..., N. It is then easily verified that
v~ (x)=v(x) for all x # H and

|v~ i (x)&v~ i ( y)|�L |x& y|, \ x, y # Rn.

So v~ is a Lipschitz map on Rn with Lipschitz constant L� �- N L. K

Theorem 4.5. There exists a constant #=#(n, N, A)>0, where A is the
constant in (4.5), such that for v # W 1, q

0 (0; RN) and *>0 there exists a
Lipschitz function v* # W 1, �

0 (Rn; RN) satisfying

&Dv*&��#*,

{v*(x)=0, x # Rn"0, (4.6)

v*(x)=v(x), x # 0"R*(v),

where R*(v) is the set defined by (4.1) above.

Proof. By Lemma 4.3, the function v* : H*(v) � RN defined above is a
Lipschitz map with Lipschitz constant L�;*. By Lemma 4.4, we extend v* to
the whole Rn as a Lipschitz function (v* : Rn � RN) with Lipschitz constant
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L� �- N ;*. Let #=- N ;. Then v*(x)=0 for all x # 0c, thus v* #
W1, �

0 (0; RN). We can easily verify that this function v* satisfies the all
requirements of the theorem. K

5. PROOF OF THE MAIN RESULTS

In what follows, let 1�p&1�q�p and g # Lq�(p&1)(0; MN_n). Assume
u # W 1, q

0 (0; RN) is a weak solution of

div(_(x, Du))=div g. (5.1)

For *>0, let u* # W 1, �
0 (Rn; RN) be the Lipschitz function constructed as in

Theorem 4.5 above. Using u* as a test function in (5.1) yields

|
Rn

_(x, Du) } Du* dx=|
Rn

g(x) } Du* dx.

Let H*(u)=Rn"R*(u). Since Du*=Du on H*(u), by (1.4), Theorem 4.5, we
have

|
H*(u)

|Du| p�#* |
R*(u)

|Du| p&1+|
0

| g| |Du* |. (5.2)

We also easily have

|
|Du|�*�2

|Du| p=|
[ |Du|�*�2] & R*(u)

|Du| p+|
[ |Du|�*�2] & H *(u)

|Du| p

�* p |R*(u)|+|
H*(u)

|Du| p

�* Np&1 |
|Du|>*�2

|Du| p&1+|
H*(u)

|Du| p,

and, by (4.2), �R*(u) |Du| p&1�Np&1 � |Du|>*�2 |Du| p&1. Therefore, by (5.2),

|
|Du|�*�2

|Du| p�(#+1) Np&1 * |
|Du|>*�2

|Du| p&1+|
0

| g| |Du* |.

Changing *�2 to * we have

|
|Du|�*

|Du| p�1 * |
|Du|>*

|Du| p&1+G(*), (5.3)
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where

1=1(n, N, A, p)=2 (#+1) Np&1 , G(*)=|
0

| g(x)| |Du2* | dx.

From (5.3), we immediately obtain the following result.

Proposition 5.1. Suppose u # W1, p&1
0 (0; RN) is a weak solution of (5.1)

with g=0. Then u#0 provided that

lim inf
* � � \* |

|Du|>*
|Du| p&1 dx+=M<�.

Proof. By (5.3), there exists a sequence *j � � such that

lim
*j � � |

|Du|�*j

|Du| p dx�1M<�

and hence u # W 1, p
0 (0; RN). Therefore, using u as a test function in (5.1) with

g#0 we easily deduce that u#0. K

Remark. If � |Du|>* |Du| p&1 dx�M�*, \*>T for some M, T>0, then
one can easily prove that |Du| # Lq(0) for all p&1<q<p; hence, in this
case, Proposition 5.1 would follow from Theorem 2.1.

Proposition 5.2. If p&1<q<p then

1
p&q |

Rn
|Du|q�

1
q& p+1 |

Rn
|Du|q+|

�

0
*q&1& p G(*) d*. (5.4)

Proof. Multiplying (5.3) by *q&1& p and integrating over * # (0, �), we
obtain

|
�

0
*q&1& p \||Du|�*

|Du| p+ d*�1 |
�

0
*q& p \||Du|>*

|Du| p&1+ d*

+|
�

0
*q&1& p G(*) d*.

From this we easily deduce (5.4) using the formulas in Lemma 3.3. K
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Proposition 5.3. For p&1<q<p there exists a constant C( p, q) depend-
ing also on the dimensions n, N and the constant A in condition (4.5) such that

|
�

0
*q&1& p G(*) d*�C( p, q) &Du&q& p+1

q &g&q�(p&1) .

Proof. Let f (x)=M( |Du| )(x) be the maximal function of |Du|. We write
G(*)=G1(*)+G2(*), where

G1(*)=|
f�2*

| g(x)| |Du2* | dx, G2(*)=|
f>2*

| g(x)| |Du2* | dx.

First of all, we have G1(*)��f�2* | g(x)| | f (x)| dx=�f�2* f d+, where d+=
| g(x)| dx is a measure on X=Rn. Therefore,

|
�

0
*q&1& p G1(*) d*�|

�

0
*q&1& p \|f�2*

f d++ d*

=
1

p&q |
Rn

f q& p+1 d+

�
1

p&q
&g&q�(p&1) & f &q& p+1

q

�
cq

p&q
&g&q�(p&1) &Du&q& p+1

q

in view of Lemma 3.1. Note that our assumption on q implies q>1. Next,
we have

G2(*)�2 # * |
f>2*

| g(x)| dx=C * |
f>2*

d+.

Therefore, similarly as above we deduce

|
�

0
*q&1& p G2(*) d*�C |

�

0
*q& p \|f>2*

d++ d*

=
C

q& p+1 |
Rn

f q& p+1 d+

�
C(q)

q& p+1
&g&q�(p&1) &Du&q& p+1

q .

The proposition is thus proved. Also notice that the constant C( p, q) can be
chosen as C( p, q)=(cq�(p&q))+(C(q)�(q& p+1)). K
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Theorem 5.4. Let 1 be the constant in (5.4). Then for any q with
p& 1

1+1<q�p there exists a constant K( p, q) such that

|
0

|Du|q dx�K( p, q) |
0

| g|q�( p&1) dx

holds for any weak solution u of equation (5.1) in W 1, q
0 (0; RN).

Proof. Let k( p, q)= ( p&q) 1
q& p+1 . Then, 0�k( p, q)<1 for p& 1

1+1<q�p.
From (5.4) and Proposition 5.3, we have

\|Rn
|Du|q dx+

(p&1)�q

�
( p&q) C( p, q)

1&k( p, q)
&g&q�(p&1)

for p& 1
1+1<q<p, where C( p, q)=(cq �(p&q))+(C(q)�(q& p+1)) is the

constant in Proposition 5.3. Notice that the constant

K( p, q)=_( p&q) C( p, q)
1&k( p, q) &

q�(p&1)

does not blow up as q � p; we have thus proved the theorem. K

Proof of Theorem 2.1. Theorem 2.1 follows from Theorem 5.4 with
p*�p& 1

1+1 , while its Corollary 2.2 follows easily from the estimate in the
theorem. K

Proof of Theorem 2.3. We assume the Lipschitz condition given in the
theorem; that is,

|_(x, !)&_(x, ')|�b |!&'| ( |!|+|'| ) p&2. (5.5)

Let p*�q�p, where p* is the constant in Theorem 2.1. Let u # W 1, q
0 (0; RN)

be a weak solution of

div _(x, h+Du)=div g.

Assume h # Lq(0; MN_n) and g # Lq�(p&1)(0; MN_n). Then u is a weak solu-
tion of

div _(x, Du)=div G,

where G=_(x, Du)&_(x, h+Du)+ g. We have thus

&G&q�(p&1)�&g&q�(p&1)+&_(x, Du)&_(x, h+Du)&q�(p&1)
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and by Ho� lder's inequality and condition (5.5), it follows that

&_(x, Du)&_(x, h+Du)&q�(p&1)�C &|h| } |Du| p&2+|h| p&1&q�(p&1)

�= &Du& p&1
q +C= &h& p&1

q .

Using these estimates and Theorem 2.1 we have

&Du& p&1
q �K &G&q�(p&1)�K &g&q�(p&1)+K= &Du& p&1

q +KC= &h& p&1
q .

Choosing =>0 so that K=<1 yields &Du& p&1
q �C (&g&q�(p&1)+&h& p&1

q ),
proving Theorem 2.3. K

6. A SPECIAL CASE OF RADIAL SOLUTIONS

In this final section, we consider a special case where we can indeed estab-
lish the estimate (2.1) for all p&1�q�p for a certain class of weak solu-
tions; here again we assume p�2. This is done by proving the existence of
certain test functions satisfying (1.7).

Assume 0=B is the unit ball in Rn. We also assume N=1; that is,
u : B � R. We say u is a radial function if u(x)=U(r) with r=|x| for some
function U.

Theorem 6.1. Let p&1�q�p and g # Lq�(p&1)(B; Rn). Then for any
radial weak solutions u in W 1, q

0 (B) of the equation

div(_(x, Du))=div g

one has

|
B

|Du|q dx�|
B

| g|q�(p&1) dx. (6.1)

As an immediate consequence of this theorem, we have the following
uniqueness result.

Corollary 6.2. The only radial weak solution u of div(_(x, Du))=0 in
W1, p&1

0 (B) is u#0.

Before proving Theorem 6.1, let us recall some properties of radial func-
tions. Let v(x)=V(r) with r=|x| be a radial function. If V is smooth it is
easily seen that v is smooth on B"[0] and

Dv(x)=V$(r) x�r, r{0.

174 BAISHENG YAN



Let AC(0, 1] be the set of all functions V on (0, 1] that are absolutely
continuous on [=, 1] for all 0<=<1 and satisfy V(1)=0. We have the
following elementary result.

Lemma 6.3. Let v(x)=V( |x| ). (i) Assume 1<q<�. Then v # W 1, q
0 (B) if

and only if V # AC(0, 1] and

|
1

0
|V$(r)|q rn&1 dr<�. (6.2)

(ii) If v # W1, 1
0 (B) then V # AC(0, 1] and (6.2) holds with q=1.

(iii) v # W 1, �
0 (B) if and only if V # AC(0, 1] and |V$(r)|�L<�.

Proof. Let v(x)=V(|x| ) and v # W1, q(B), where 1�q��. Let 0<=<1.
Then, for all =�s<r�1 and |||=1,

|V(r)&V(s)|= }|
r

s

dv(t|)
dt

dt}= }|
r

s
Dv(t|) } | dt}

�|
r

s
|Dv(t|)| dt�=1&n |

r

s
tn&1 |Dv(t|)| dt;

thus integrating over |||=1 and using polar coordinates yield

|V(r)&V(s)|�C=1&n |
Br"Bs

|Dv(x)| dx.

This implies V is absolutely continuous on [=, 1]. By a density argument, it
is also shown that if v # W 1, q

0 (B) then V(1)=0. Therefore we have proved
that if v # W1, q

0 (B) then V # AC(0, 1]. In this case, we also obtain

|
1

0
|V$(r)|q rn&1 dr=cn |

B
|Dv(x)|q dx<�; 1�q<�,

|V$(r)|=|Dv(x)|�&Dv&L�(B)<�; q=�.

To complete the proof of the lemma, we assume 1<q�� and V # AC(0, 1]
satisfies (6.2) if q<� or satisfies |V$(r)|�L<� if q=�. We need to show
v=V(|x| ) # W 1, q

0 (B). Define

f(x)=V$(r) x�r, r=|x|{0.
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From the assumption, we have f # Lq(B; Rn). We first show
v=V(|x| ) # Lq(B), which is equivalent to �1

0 |V(r)|qrn&1 dr<� if q<� or
|V(r)|�M<� if q=�. Since V(r)=&�1

r V$(t) dt, it follows that

|V(r)|�|
1

r
|V$(t)| t: t&: dt�r&:|

1

0
|V$(t)| t: dt

for all 0<r<1, :�0. Therefore if q=� then |V(r)|�L and hence
v # W1, �(B). We now consider the case 1<q<�. In this case, with := n&1

q

in the previous inequality, we have by Ho� lder's inequality

|V(r)|�r&(n&1)�q \|
1

0
|V$(t)|q tn&1 dt+

1�q

, (6.3)

from which v # Lq(B) follows. We now show v # W1, q(B); this is proved if we
show f =Dv in the sense of distribution. To prove this, we observe that, for
all , # C �

0 (B),

|
B

v D, dx= lim
= � 0+ |

=<|x|<1
vD, dx

=& lim
= � 0+ |

=<|x|<1
, Dv dx+ lim

= � 0+ |
|x|==

V(r)
�,
�n

dS

=& lim
= � 0+ |

=<|x|<1
, f dx+ lim

= � 0+ |
|x|==

V(r)
�,
�n

dS.

Since f # Lq(B; Rn), we have

lim
= � 0+ |

=<|x|<1
, f dx=|

B
, f dx.

Also by (6.3), |V (=)|�C =&(n&1)�q and hence | � |x| = = V(r) �,
�n dS|�

C =n&1&((n&1)�q) � 0 as = � 0+ since q>1. Therefore

|
B

v D, dx=&|
B

, f dx, \, # C �
0 (B);

thus Dv= f # Lq(B; Rn). Finally, for all 1<q��, an easy density argument
using V(1)=0 shows v # W1, q

0 (B). K

Proof of Theorem 6.1. Let p&1�q�p and let u=U( |x| ) be a weak
solution of the equation given in the theorem. Define

V(r)=|
r

1
|U$(t)|q& p U$(t) dt, �(x)=V( |x| ).
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Then by Lemma 6.3, � # W 1, q�(q& p+1)
0 (B) and

D�=V$(r) x�r=|U$(r)|q& p U$(r) x�r=|Du|q& p Du.

Therefore, upon using this � as a test function in the given equation and
using the hypothesis (1.4), we obtain

|
B

|Du|q dx�|
B

_(x, Du) D� dx=|
B

g(x) |Du|q& p Du dx

�\|B
| g|q�(p&1) dx+

(p&1)�q

\|B
|Du|q dx+

(q&p+1)�q

.

This proves the inequality (6.1), and thus the theorem follows. K
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