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Abstract. In this paper, we study Landau-Lifshitz equations of ferromag-

netism with a total energy that does not include a so-called exchange energy.
Many problems, including existence, stability, regularity and asymptotic be-

haviors, have been extensively studied for such equations of models with the

exchange energy. The problems turn out quite different and challenging for
Landau-Lifshitz equations of no-exchange energy models because the usual

methods based on certain compactness do not apply. We present a new method

for the existence of global weak solution to the Landau-Lifshitz equation of no-
exchange energy models based on the existence of regular solutions for smooth

data and certain stability of the solutions. We also study higher time regular-

ity, energy identity and asymptotic behaviors in some special cases for weak
solutions.

1. Introduction and main results.

1.1. Landau-Lifshitz theory. The well-known Landau-Lifshitz theory of ferro-
magnetism models the state of magnetization vector m of a ferromagnetic material
based on formulation of a total energy consisting of several competing energy con-
tributions. The theory for rigid ferromagnetic bodies also assumes that, below
certain critical temperature, the magnetization vector m has constant magnitude:
|m(x)| = Ms, where Ms > 0 is the saturation magnetization. Throughout this
paper, we will assume Ms = 1; therefore, magnetization vector m is a unit director
field. We refer to [4, 21, 22, 23] for more backgrounds on this theory and related
mathematical developments.

Under this theory, equilibrium states (including reduction theory for thin-film
limits) are studied usually through the minimization of total energy, while dynamic
properties are modeled and analyzed by the associated Landau-Lifshitz equations
or Landau-Lifshitz-Gilbert equations derived from the given total energy.

Both equilibrium and dynamic problems have been well studied for models of
total energy including the so-called exchange energy of density roughly proportional
to |∇m|2; see, e.g., [1, 2, 3, 5, 6, 7, 8, 12, 13, 15, 24, 25, 30]. Similar dynamic
problems for the models coupled with Maxwell equations of electromagnetism have
been also studied in [17, 18, 19, 20, 30]. Equilibrium problems for energies excluding
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the exchange energy (the “no-exchange energy” models) have been studied in, e.g.,
[9, 11, 16, 26, 27, 31, 32]; however, few work has been done on dynamic problems
for no-exchange energy models except for partial results in [10, 17, 18, 33].

1.2. Landau-Lifshitz equations of no-exchange energy models. In this pa-
per, we study the Landau-Lifshitz equation of no-exchange energy models; namely,
we assume the total energy is given by

E(m) =

∫
Ω

ϕ(m) dx−
∫

Ω

a(x) ·m dx+
1

2

∫
R3

|Hm|2 dx. (1.1)

Here Ω is a bounded domain in R3 occupied by the material, functions ϕ and a
are given physical quantities representing, respectively, material’s crystallographic
anisotropy and the external applied magnetic field, and the (stray) field Hm is
induced by m through (simplified) Maxwell equations:

curlHm = 0, div(Hm + mχΩ) = 0 in R3, (1.2)

where χΩ is the characteristic function of domain Ω. From the Maxwell equation,
one easily has

∫
R3 |Hm|2 dx = −

∫
Ω

m · Hm dx and hence one can also write the
energy E(m) as

E(m) =

∫
Ω

ϕ(m) dx−
∫

Ω

a(x) ·m dx− 1

2

∫
Ω

m ·Hm dx.

Under the energy formulation of E(m), the associated dynamic Landau-Lifshitz
equation governing the evolution of magnetization m = m(x, t) is given by

∂tm = γm×Heff + γαm× (m×Heff) on Ω× [0,∞), (1.3)

where γ < 0 is material-dependent electron gyromagnetic ratio, α ≥ 0 is Landau-
Lifshitz phenomenological damping parameter, and Heff is the total effective mag-
netic field that is given by the negative L2-derivative of E with respect to m as
follows:

Heff = − ∂E
∂m

= −ϕ′(m) + a(x) +Hm. (1.4)

Here and throughout the paper, we assume ϕ(m) is a smooth function on R3 and
a ∈ L∞(Ω; R3).

The Landau-Lifshitz equation (1.3) can also be written as a Landau-Lifshitz-
Gilbert equation:

∂tm = γ(1 + α2)m×Heff + αm× ∂tm; (1.5)

see [14] for further discussions. Equation (1.3) or (1.5) will be supplemented with
an initial value condition:

m(x, 0) = m0(x), x ∈ Ω, (1.6)

where m0 ∈ L∞(Ω; R3) is a given field.

Definition 1.1. By a (global) weak solution to Eq. (1.3) with initial condition

(1.6), we mean a function m ∈ W 1,∞
loc ([0,∞);L2(Ω; R3)) ∩ L∞((0,∞);L∞(Ω; R3))

satisfying m(0) = m0 in L2(Ω) such that Eq. (1.3) holds both in L∞((0, T );L2(Ω))
and in the sense of distribution on Ω× (0, T ) for all 0 < T <∞.

Remark 1. (a) Any weak solution m will satisfy

∂t(|m|2) = 2m · ∂tm = 0 in Ω× (0,∞).
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Therefore, if initial datum m0 satisfies the saturation condition |m0(x)| = 1 a.e. on
Ω, then solution m will also satisfy the saturation condition |m(x, t)| = 1 a.e. x ∈ Ω
for all t ∈ [0,∞).

(b) The regularity condition on weak solution m automatically requires that
m ∈ C([0, T ];L2(Ω; R3)) for all T > 0.

1.3. Quasi-stationary limits. Initial value problem (1.3) with (1.6) can be writ-
ten as a quasi-stationary system:

∂tm = Fa(x,m, Hm) in Ω× (0,∞),

curlHm = 0, div(Hm + mχΩ) = 0 in R3 for all t ∈ [0,∞),

m(x, 0) = m0(x) on Ω,

(1.7)

where Fa(x,m, H), specifying the dependence on applied field a, is the Landau-
Lifshitz interaction function given by

Fa(x,m, H) = L(m,−ϕ′(m) + a(x) +H),

with L(m,n) linear in n and defined by

L(m,n) = γm× n + γαm× (m× n), m,n ∈ R3. (1.8)

Existence of global weak solution to system (1.7) has been established in [10,
17] using the quasi-stationary limit of certain Landau-Lifshitz-Maxwell systems as
electric permittivity tends to zero. The method in [10] uses a simple Landau-
Lifshitz-Maxwell system given by

ε∂tE − curlH = 0,

∂t(H +MχΩ) + curlE = 0 in R3 × (0,∞),

∂tM = Fa(x,M,H) in Ω× (0,∞),

(E,H)|t=0 = (E0, H0) on R3, M |t=0 = m0 on Ω,

(1.9)

where ε > 0, and the initial data E0, H0 for electric and magnetic fields E,H are
any vector-fields satisfying

E0, H0 ∈ L2(R3; R3), divE0 = div(H0 + m0χΩ) = 0. (1.10)

System (1.9) with ε = 1 has been studied by Joly, Metivier and Rauch [19], where
existence of global weak solutions was established. Similarly, one can show that, for
any ε > 0, system (1.9) has a global weak solution (Eε, Hε,M ε). In Deng and Yan
[10], we have showed that, as ε→ 0, M ε →m strongly in both C0([0, T ];L2(Ω; R3))
and L2(Ω × (0, T ); R3) for all 0 < T < ∞ and that the limit m is a global weak
solution to problem (1.7).

1.4. Main results. In this paper, we present a different method for the existence
of global weak solution to (1.7) with any initial data m0 ∈ L∞(Ω; R3); we do not
assume the saturation condition here. Our method is based on the existence of
solutions to (1.7) for smooth a and m0 and a certain stability for solutions. We
also study the higher time regularity and the asymptotic behaviors of solutions in
some special cases.

We organize our plans of the paper and summarize the main results as follows.
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1.4.1. Finite time local L2-stability. Our main stability result is stated as follows
and will be proved in Section 2 (see Theorem 2.2).

Theorem 1.2. Let 0 < R, T < ∞ be given. Then there exist constants C =
C(R, T ) > 0, c = c(R, T ) > 0 and ρ = ρ(R, T ) > 0 such that, for any weak solution
mk to the system (1.7) with applied field ak and initial datum mk(0) = mk

0 satisfying
‖ak‖L∞ + ‖mk

0‖L∞ ≤ R for k = 1, 2, if µ = max{‖m1
0 −m2

0‖L2 , ‖a1 − a2‖L2} ≤ c,
then one has, for all t ∈ [0, T ],

‖m1(t)−m2(t)‖L2(Ω) ≤ Cµρ. (1.11)

This stability result also implies the uniqueness of weak solution to system (1.7).

1.4.2. Existence of global weak solutions. Based on the previous stability theorem,
in Section 3, we present a new method for the existence of global solution to (1.7)
with general applied fields a and initial data m0.

First, we show the existence of global solution to (1.7) for smooth fields a and ini-
tial data m0 ∈ H2(Ω; R3). Define f(m) = Fa(x,m, Hm). We show f : H2(Ω; R3)→
H2(Ω; R3) and is locally Lipschitz ; the proof uses a critical estimate that Hm ∈
H2(Ω; R3) for all m ∈ H2(Ω; R3) (see, e.g., [8, 19]). By the abstract ODE theory
in Banach spaces, problem (1.7) has a local solution if m0 ∈ H2(Ω; R3). Then a
no-blowup result (Theorem 3.4) shows that the local solution is in fact global on
t ∈ [0,∞). The proof of the no-blowup result, Theorem 3.4, is given in Section 4.

We remark that in the special case when ϕ = 0 and a = 0 (thus Heff = Hm),
for smooth initial data m0 ∈ H2(Ω) with ∂m0

∂ν |∂Ω = 0, Carbou and Fabrie [8]
also established the global existence through a singular perturbation method, by
including κ∆m in Heff and letting κ→ 0.

Once we have obtained the global existence for smooth data a and m0, we use
approximation and the stability result Theorem 1.2 to establish the existence for
general data.

1.4.3. Higher time regularity. In Section 5, we study the higher time regularity for
the simple Landau-Lifshitz equation

mt = γm×Hm + αγm× (m×Hm) in Ω× (0,∞), (1.12)

where Hm is given as above.

Theorem 1.3. For any T > 0 and initial datum m0 ∈ H2(Ω), the regular solution
m to (1.12) satisfies, for all p = 0, 1, 2, · · ·

sup
t∈[0,T ]

‖∂p+1
t m‖H2(Ω) ≤ C <∞,

where C is a constant only depending on T, p, ‖m0‖H2(Ω).

By similar methods, this result is also valid for the general equation (1.3) with
smooth applied field a and anisotropy energy density ϕ.

1.4.4. Energy identity and weak ω-limit sets. In Section 6, we first prove an energy
identity for the global weak solutions to the Landau-Lifshitz equation (1.3).

Theorem 1.4. The global weak solution m to (1.7) with bounded initial data sat-
isfies the energy identity

E(m(t))− E(m(s)) = γα

∫ t

s

∫
Ω

|m×Heff |2 dxdτ ∀ 0 ≤ s ≤ t <∞. (1.13)

Furthermore, if γα < 0, then mt ∈ L2((0,∞);L2(Ω; R3)).
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Therefore, the global-in-time regularity for weak solutions (even for regular so-
lutions) is that

m ∈ L∞((0,∞);L∞(Ω; R3)) with mt ∈ L2((0,∞);L2(Ω; R3)).

But this regularity is not enough to have strong convergence as t → ∞; it would
be enough if one has mt ∈ L1((0,∞);L2(Ω; R3)) (see [20]). Therefore, it is quite
challenging to study the asymptotic behaviors for even the regular solutions. The
solution orbits for general initial data may not have strong ω-limit points; we thus
study the weak ω-limit set:

ω∗(m0) = {m̃ | ∃ tj ↑ ∞ such that m(tj) ⇀ m̃ weakly in L2(Ω; R3)}. (1.14)

We then prove the following estimate of ω∗(m0) for the so-called soft-case, where
there is no anisotropy energy (ϕ = 0).

Theorem 1.5. Let γα < 0, ϕ = 0 and a ∈ L∞(Ω; R3). Then, for any m0 ∈
L∞(Ω; R3) with |m0(x)| = 1 a.e. on Ω, it follows that

ω∗(m0) ⊆ {m̃ ∈ L∞(Ω; R3) | |m̃|2 + 2|m̃× (a +Hm̃)| ≤ 1 a.e. on Ω}. (1.15)

For more results on a further special case when a = 0, see [32, 33].

1.4.5. A special dynamics on R3. Finally, in Section 7, we study a special case
of (1.7) when applied field a(x) = a is constant, domain Ω is an ellipsoid, and
initial datum m0 is a constant unit vector. In this case, it is well-known that the
magnetostatic stray field Hm induced by any constant field m has constant value
on ellipsoid domain Ω (see, e.g., [27]). Hence, problem (1.7) reduces to an ODE
system on R3: {

ṁ = Φ(m), t > 0,

m(0) = m0,
(1.16)

for some smooth function Φ: R3 → R3; see (7.4) below. The dynamics of sys-
tem (1.16) will be studied by the classical ODE theory using an explicit Lyapunov
function.

2. Finite-time local L2-Stability.

2.1. Helmholtz decompositions. In order to study the field Hm, we review the
standard orthogonal (Helmholtz) decomposition:

L2(R3; R3) = L2
‖(R

3; R3)⊕ L2
⊥(R3; R3),

where L2
‖(R

3; R3), L2
⊥(R3; R3) are the subspaces of curl-free or divergence-free func-

tions in the sense of distributions, respectively. This decomposition can be explic-
itly given in terms of the Fourier transform m̂ of vector-field m ∈ L2(R3; R3):
m = m‖ + m⊥, where

m̂‖ = (ξ · m̂)ξ/|ξ|2, m̂⊥ = m̂− (ξ · m̂)ξ/|ξ|2 = −ξ × (ξ × m̂)/|ξ|2.

The projection operator P‖(f) = f‖ also extends to a bounded linear operator

on Lp(R3; R3) for all 1 < p <∞, with operator norm bounded by C0p when p ≥ 2,
where C0 is an abstract constant independent of p ≥ 2 (see Stein [28]).

With this projection operator, we see easily that the magnetostatic stray field
Hm is given by Hm = −P‖(mχΩ).
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2.2. Decomposition of Hm. The following lemma enables us to split Hm into
two parts: one is bounded in L∞, the other bounded in L2(Ω); see also [10, Lemma
5.2] and [19, Lemma 6.2].

Lemma 2.1. Let m ∈ L∞(Ω; R3) and Hm = −P‖(mχΩ). Then, for all λ ≥ e,

Hm = Hλ + (Hm −Hλ) on R3, where Hλ is a function such that

‖Hλ‖L∞ ≤ C lnλ, ‖Hm −Hλ‖L2 ≤ C|Ω| 12 /λ, (2.1)

with constant C = C ′0‖m‖L∞ for an absolute constant C ′0.

Proof. For the convenience of the reader, we include a proof of this result. Define
Hλ = Hmχ{|Hm(x)|≤C lnλ}, where C > 0 is a constant to be selected later. Since
Hm = −m̃‖ with m̃ = mχΩ, we have, for all p ≥ 2,

‖Hm −Hλ‖2L2 =

∫
|m̃‖|>C lnλ

|m̃‖|2 dx ≤ ‖m̃‖‖2Lp |{x : |m̃‖| > C lnλ}|
p−2
p

≤ ‖m̃‖‖2Lp
1

(C lnλ)p−2
‖m̃‖‖p−2

Lp = ‖m̃‖‖pLp
1

(C lnλ)p−2
.

The boundedness of P‖ on Lp(R3; R3) yields that, for all p ≥ 2,

‖m̃‖‖Lp ≤ C0p‖m̃‖Lp ≤ C0p‖m‖L∞(Ω)|Ω|1/p,

where C0 is independent of p ≥ 2 (see [28]). Hence,

‖Hm −Hλ‖2L2 ≤ |Ω|(C1p)
p/(C lnλ)p−2,

where C1 = C0 ‖m‖L∞ . We now select C = 4eC1 and p = 4 lnλ ≥ 4 to obtain

‖Hm −Hλ‖2L2 ≤ |Ω|(C1p)
p/(C lnλ)p−2 = |Ω|(C lnλ)2/λ4;

so, ‖Hm − Hλ‖L2 ≤ C|Ω| 12 (lnλ)/λ2 ≤ C|Ω| 12 /λ, using lnλ ≤ λ for λ ≥ e. This
proves (2.1).

2.3. Proof of Theorem 1.2. We now prove our main stability result, Theorem
1.2.

Assume mk (k = 1, 2) is any weak solution to the problem (1.7) with given
applied field ak and initial datum mk

0 satisfying

‖ak‖L∞ + ‖mk
0‖L∞ ≤ R for k = 1, 2, (2.2)

where R > 0 is a given constant. Then, Theorem 1.2 will be proved once we prove
the following result.

Theorem 2.2. Given any 0 < T <∞, there exist constants C = C(R, T ) > 0, c =
c(R, T ) > 0 and ρ = ρ(R, T ) > 0 such that, if µ = max{‖m1

0 − m2
0‖L2 , ‖a1 −

a2‖L2} ≤ c, then one has, for all t ∈ [0, T ],

‖m1(t)−m2(t)‖L2(Ω) ≤ C µρ. (2.3)

Proof. Step 1. Let δm = m1(t)−m2(t) and δF = Fa1(x,m1, H1)−Fa2(x,m2, H2),
where Hk = Hmk for k = 1, 2. Then ∂t(δm) = δF and hence

∂t(‖δm(t)‖L2) ≤ ‖∂t(δm(t))‖L2 = ‖δF (t)‖L2 .

So we have

‖δm(t)‖L2 − ‖δm0‖L2 ≤
∫ t

0

‖δF (s)‖L2 ds. (2.4)



LANDAU-LIFSHITZ EQUATIONS OF NO-EXCHANGE ENERGY MODELS 605

Step 2. The function L(m,n) defined by (1.8) above can be written as

L(m,n) = B(m) · n, (2.5)

where B(m) is a 3× 3-matrix for each m ∈ R3; note that each element of B(m) is
a quadratic function of m. Given any mk,nk ∈ R3 (k = 1, 2), letting δm = m1 −
m2, δn = n1−n2, by virtue of L(m1,n1)−L(m2,n2) = [L(m1,n1)−L(m2,n1)] +
L(m2,n1 − n2), one can write

L(m1,n1)− L(m2,n2) = A(m1,m2,n1) · δm + B(m2) · δn, (2.6)

where A(m1,m2,n1) is a matrix function given by

A(m1,m2,n1) =

∫ 1

0

∂L
∂m

(tm1 + (1− t)m2,n1) dt. (2.7)

Step 3. By Remark 1 above, it follows that ‖mk(t)‖L∞ ≤ R (k = 1, 2) for all t ≥ 0.
From Fak(x,mk, Hk) = −L(mk, ϕ′(mk))+L(mk,ak(x))+L(mk, Hk), by (2.2) and
(2.6), we obtain the following point-wise estimate for δF :

|δF | ≤ A|δH|+B(|H1|+ 1)|δm|+D|δa|, (2.8)

where δH = H1 −H2 = Hδm, δa = a1(x)− a2(x), and A = A(R), B = B(R), D =
D(R) are constants depending only on R. We apply Lemma 2.1 to function H1(t) =
−P‖(m1(t)χΩ). For any λ ≥ e, let H1 = Hλ

1 + (H − Hλ
1 ), where Hλ

1 is given in

Lemma 2.1 with constant C = C ′0‖m1(t)‖L∞ ≤ C ′0R. So, by (2.8), we have the
L2(Ω)-norm estimate:

‖δF‖L2 ≤A‖δH‖L2 +B(C lnλ+ 1)‖δm‖L2

+B
C|Ω| 12
λ
‖δm‖L∞ +D‖δa‖L2

≤(A′ +B′ lnλ)‖δm‖L2 +
C ′

λ
+D‖δa‖L2 ,

(2.9)

using ‖δH‖L2 ≤ ‖Hδm‖L2(R3) ≤ ‖δm‖L2 , where constants A′, B′, C ′ depend on R.
Step 4. From (2.4) and (2.9), it follows that

‖δm(t)‖L2 − ‖δm0‖L2 ≤
∫ t

0

‖δF (s)‖L2 ds

≤
∫ t

0

(
(A′ +B′ lnλ)‖δm(s)‖L2 +

C ′

λ
+D‖a‖L2

)
ds

=
C ′t

λ
+ ‖δa‖L2Dt+ (A′ +B′ lnλ)

∫ t

0

‖δm(s)‖L2 ds.

From this, a Gronwall inequality yields

‖δm(t)‖L2 ≤
(
‖δm0‖L2 +

C ′t

λ
+ ‖δa‖L2Dt

)
eA
′t+B′t lnλ

≤
(
‖δm0‖L2 +DT‖δa‖L2 +

C ′t

λ

)
eA
′tλB

′t ∀ 0 ≤ t ≤ T.
(2.10)

Step 5. We consider two cases.
Case 1. Assume both δm0 = 0 and δa = 0. Then, by (2.10),

‖δm(t)‖L2 ≤ C ′teA
′tλB

′t−1. (2.11)

Let t0 = 1
B′+1 . If 0 ≤ t ≤ t0, then B′t − 1 < 0 and hence, by (2.11) with λ → ∞,

we have δm(t) = 0 for all t ∈ [0, t0]. With mk(t0) as initial datum at time t0, we
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obtain δm(t) = 0 on [t0, 2t0]; eventually, we have δm(t) = 0 for all t ≥ 0; hence
(2.3) holds. This also shows the uniqueness of the weak solution to the system.
Case 2. Assume 0 < ‖δm0‖L2 + DT‖δa‖L2 ≤ 1/e < 1. In this case, setting
λ = (‖δm0‖L2 +DT‖δa‖L2)−1 ≥ e in (2.10), we obtain

‖δm(t)‖L2 ≤ (1 + C ′t)eA
′t(‖δm0‖L2 +DT‖δa‖L2)1−B′t.

Let t1 = 1
2(B′+1) and C1 = (1 +C ′t1)eA

′t1 > 1. Then 1−B′t ≥ 1
2 for all 0 ≤ t ≤ t1;

hence
‖δm(t)‖L2 ≤ C1(‖δm0‖L2 +DT‖δa‖L2)

1
2 ∀ 0 ≤ t ≤ t1.

Adding DT‖δa‖L2 to both sides, we obtain

‖δm(t)‖L2 +DT‖δa‖L2 ≤ C2 (‖δm0‖L2 +DT‖δa‖L2)
1
2 ∀ 0 ≤ t ≤ t1, (2.12)

where C2 = C1 + 1 depends only on R.
Step 6. Combining Cases 1 and 2 in Step 5 above, with the constants t1 = t1(R) and
C2 = C2(R) > 1 determined above, we have that, if ‖δm0‖L2 + DT ‖δa‖L2 ≤ 1/e,
then

‖δm(t)‖L2 +DT‖δa‖L2 ≤ C2 (‖δm0‖L2 +DT‖δa‖L2)
1
2 ∀ 0 ≤ t ≤ t1. (2.13)

Assume
C2(‖δm0‖L2 +DT‖δa‖L2)

1
2 ≤ 1/e. (2.14)

Then, by (2.13), ‖δm(t1)‖L2 + DT‖δa‖L2 ≤ 1/e. With mk(t1) as initial datum at
time t1, we apply (2.13) again to obtain

‖δm(t1 + t)‖L2 +DT‖δa‖L2 ≤C2(‖δm(t1)‖L2 +DT‖δa‖L2)
1
2

≤C1+ 1
2

2 (‖δm0‖L2 +DT‖δa‖L2)
1
4 ∀ 0 ≤ t ≤ t1.

We have thus proved that, if (2.14) holds then

‖δm(t)‖L2 +DT‖δa‖L2 ≤ C1+ 1
2

2 (‖δm0‖L2 +DT‖δa‖L2)
1
4 ∀ 0 ≤ t ≤ 2t1.

By induction, we obtain that, for k = 1, 2, · · · , if

C
1+ 1

2 +···+ 1

2k−1

2 (‖δm0‖L2 +DT‖δa‖L2)
1

2k ≤ 1/e, (2.15)

then

‖δm(t)‖L2 +DT‖δa‖L2 ≤ C
1+ 1

2 +···+ 1

2k

2 (‖δm0‖L2 +DT‖δa‖L2)
1

2k+1

≤ C2
2 (‖δm0‖L2 +DT‖δa‖L2)

1

2k+1 (2.16)

for all 0 ≤ t ≤ 2kt1.
Step 7. In this step, we complete the proof of the theorem. Let k be the integer
such that 2k−1t1 < T ≤ 2kt1. Define

ρ = ρ(R, T ) = 1/(2k+1), c = c(R, T ) = (C2
2e)
−2k/(1 +DT ).

Assume µ = max{‖δm0‖L2 , ‖δa‖L2} ≤ c. Then

‖δm0‖L2 +DT‖δa‖L2 ≤ (1 +DT )µ ≤ (C2
2e)
−2k ,

from which it is easily seen that (2.15) holds; so, by (2.16),

‖δm(t)‖L2 +DT‖δa‖L2 ≤ C2
2 (‖δm0‖L2 +DT‖δa‖L2)ρ ∀ 0 ≤ t ≤ T.

Therefore,
‖δm(t)‖L2 ≤ C2

2 (1 +DT )ρ µρ ∀ t ∈ [0, T ];

this proves (2.3) with constant C = C2
2 (1 +DT )ρ.
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Remark 2. Theorem 1.2 generalizes our previous result [10, Theorem 5.1] to the
case of different applied fields a(x). A similar stability result including the different
anisotropy functions ϕ(m) can also be proved.

3. Existence of global weak solutions. In this section, we present a proof for
the existence of global weak solution to (1.7) based on the stability theorem proved
above. To this end, we introduce a nonlinear function

F(m) = Fa(x,m, Hm) = −L(m, ϕ′(m)) + L(m,a(x)) + L(m, Hm) (3.1)

for m ∈ L∞(Ω; R3), where Hm is defined by (1.2) and L is defined by (1.8). As
before, we always assume the anisotropy function ϕ : R3 → R3 is smooth.

3.1. Properties of map F for smooth applied fields. In this subsection, we
assume the applied field a belongs to C∞(Ω̄; R3) and show that, in this case, map
F : H2(Ω; R3)→ H2(Ω; R3) and is locally Lipschitz. We need some estimates.

Lemma 3.1. Let Ω ⊂ R3 be a bounded domain with smooth boundary. Then the
following estimates hold on H2(Ω; R3) :

‖m‖L∞(Ω) + ‖m‖W 1,p(Ω) ≤ C0 ‖m‖H2(Ω) ∀ 1 ≤ p ≤ 6, (3.2)

‖Hm‖H2(Ω) ≤ C1 ‖m‖H2(Ω). (3.3)

Proof. We omit the proof, but only mention that (3.2) is a simple consequence of

the well-known embeddings: H2(Ω) ⊂ W 1,6(Ω) ⊂ C
1
2 (Ω̄) ⊂ L∞(Ω) for bounded

smooth domain Ω ⊂ R3, and that estimate (3.3) has been, e.g., proved in [8].
Finally, we remark that, from (3.2) and (3.3), it follows that, with constant C2 =
C0C1,

‖Hm‖L∞(Ω) ≤ C2 ‖m‖H2(Ω) ∀ m ∈ H2(Ω; R3). (3.4)

The main result of the subsection is the following local Lipschitz property of F
on H2(Ω; R3).

Proposition 3.2. F maps space H2(Ω; R3) into itself and is locally Lipschitz on
H2(Ω; R3).

Proof. Since F(0) = 0, the self-mapping property of F will follow from the local
Lipschitz property of F on H2(Ω; R3).

To prove the local Lipschitz property of F , given any two functions m1,m2 ∈
H2(Ω; R3) satisfying

max{‖m1‖H2(Ω), ‖m2‖H2(Ω)} ≤ R, (3.5)

where R <∞ is a constant, we need to show that

‖F(m1)−F(m2)‖H2(Ω) ≤ L ‖m1 −m2‖H2(Ω) (3.6)

for a (local Lipschitz) constant L = L(R) <∞ depending on R.
By (3.1), we write F(m1)−F(m2) = I1 + I2, where

I1 = L(m1,a− ϕ′(m1))− L(m2,a− ϕ′(m2))

and I2 = L(m1, Hm1)− L(m2, Hm2). Let δm = m1 −m2. Then, by (2.6),

I2 = A(m1,m2, Hm1) · δm + B(m2) ·Hδm, (3.7)
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where A,B are functions defined in Step 2 of the proof of Theorem 2.2 above. We
also write I1 as

I1 =

∫ 1

0

d

dt
L(m2 + tδm,a− ϕ′(m2 + tδm)) dt = C(m1,m2,a) · δm, (3.8)

where C(m1,m2,a) is certain smooth function of (m1,m2,a) ∈ R3 × R3 × R3.
Note that C is linear in a. We aim to show

‖Ik‖H2(Ω) ≤ L(R) ‖δm‖H2(Ω) (k = 1, 2)

for some constant L(R) depending on R. By (3.5), (3.4) and Lemma 3.1, it follows
that, for k = 1, 2,

‖mk‖L∞(Ω) + ‖Hmk‖L∞(Ω) + ‖Hmk‖H2(Ω) + ‖∇mk‖L4(Ω) ≤ C3R. (3.9)

We proceed in two steps.
Step 1. Estimation of I1. Clearly, by (3.8) and (3.9),

‖I1‖L2(Ω) ≤ ‖C(m1,m2,a)‖L∞‖δm‖L2 ≤ L(R) ‖δm‖L2(Ω).

We estimate the H2-norm. Denote by ∂j the first partial derivative with respect to
xj and by ∂2

ij the second partial derivative with respect to xj and xi (i, j = 1, 2, 3).
Note that

∂j(I1) = ∂j(C(m1,m2,a)) · δm + C(m1,m2,a) · (δm)xj

and

∂2
ij(I1) = ∂2

ij(C(m1,m2,a)) · δm + ∂j(C(m1,m2,a)) · (δm)xi

+ ∂i(C(m1,m2,a)) · (δm)xj + C(m1,m2,a) · (δm)xixj .

Since ∂j(C(m1,m2,a)) = (∂m1C) ·m1
xj + (∂m2C) ·m2

xj + (∂aC) · axj has L2-norm
controlled by R, we have

‖∂j(I1)‖L2 ≤ ‖∂j(C(m1,m2,a))‖L2‖δm‖L∞ + ‖C(m1,m2,a)‖L∞‖(δm)xj‖L2

≤ L(R) ‖δm‖H2(Ω).

Similarly, ∂2
ij(C(m1,m2,a)) contains terms up to second derivatives of a and terms

like (∂2
mpmqC)·mk

xi ·m
l
xj and (∂mpC)·mq

xi′xj′
, with certain choices of p, q, k, l ∈ {1, 2}

and i′, j′ ∈ {i, j}. Hence ‖∂2
ij(C(m1,m2,a))‖L2 is bounded by the quantity

C(R)
(
‖|∇m1|2‖L2 + ‖|∇m2|2‖L2 + ‖∇2m1‖L2 + ‖∇2m2‖L2 + ‖a‖H2

)
,

which, due to ‖|∇m|2‖L2 = ‖∇m‖2L4 ≤ C ‖m‖2H2 , is in fact bounded by another
constant C(R). From this, similar to the term ∂j(I1), the L2-norm of the first or
fourth term of ∂2

ij(I1) is bounded by L(R)‖δm‖H2(Ω). The second and third terms

of ∂2
ij(I1) can be estimated as follows:

‖∂j(C(m1,m2,a)) · (δm)xi + ∂i(C(m1,m2,a)) · (δm)xj‖L2

≤ 2‖∇(C(m1,m2,a))‖L4 · ‖∇(δm)‖L4

≤ C(R) (‖m1‖W 1,4 + ‖m2‖W 1,4 + ‖∇a‖L4) · ‖δm‖W 1,4

≤ L(R) ‖δm‖H2(Ω).

This proves ‖I1‖H2(Ω) ≤ L(R)‖δm‖H2(Ω).
Step 2. Estimation of I2. We write I2 = I21 + I22 with

I21 = A(m1,m2, Hm1) · δm, I22 = B(m2) ·Hδm.
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The term I21 is more like term I1, except the constant field a is replaced by the field
Hm1 . Since Hm1 ∈ H2(Ω) and ‖Hm1‖L∞ + ‖Hm1‖H2(Ω) ≤ C1‖m1‖H2(Ω) ≤ C1R,
estimation resulting from Hm1 in A can be handled in a much similar way as the
term a in C of I1.

The term I22 is simpler but slightly different than I1 in that Hδm is in place of
δm. Nevertheless this term can also be estimated in a similar fashion as I1, using
the following estimate on Hδm:

‖Hδm‖L∞(Ω) + ‖∇Hδm‖L4(Ω) + ‖Hδm‖H2(Ω) ≤ C5 ‖δm‖H2(Ω).

We eventually obtain ‖I2‖H2(Ω) ≤ L(R)‖m‖H2(Ω). This completes the proof.

3.2. Existence of global solution for smooth data. We continue to assume
a ∈ C∞(Ω̄; R3) in this subsection. Let X = H2(Ω; R3). With F : X → X defined
above, we formulate the problem (1.7) as an abstract ODE on X by{

dm
dt = F(m),

m(0) = m0.
(3.10)

A solution m to (3.10) on [0, T ] is a function m ∈ C([0, T ];X) that satisfies

m(t) = m0 +

∫ t

0

F(m(s)) ds ∀ 0 ≤ t ≤ T.

We say m is a solution to (3.10) on [0, T ) if m is a solution on [0, T ′] for all
0 < T ′ < T (in this case T could be ∞).

Theorem 3.3. Given any m0 ∈ X, (3.10) has a unique solution m on [0,∞). This
solution is also a global weak solution to problem (1.7).

Proof. Given m0 ∈ X, since F is locally Lipschitz on X, from the abstract theory,
there exists T > 0 such that (3.10) has a unique solution m on [0, T ]. Let

T∗ = sup
{
T > 0

∣∣ (3.10) has a unique solution on [0, T ]
}
.

We claim that T∗ = ∞, which implies that (3.10) has a unique global solution m
defined on [0,∞). Clearly, this solution is also a global weak solution to the Cauchy
problem (1.7) above.

Suppose T∗ < ∞. Then, by the elementary ODE theory, a solution m to (3.10)
would exist on [0, T∗) and satisfy

lim
t→T−∗

‖m(t)‖X =∞.

The following theorem asserts that this finite time blowup is impossible; this com-
pletes the proof of Theorem 3.3.

Theorem 3.4. Given any T > 0, if m is a solution to (3.10) on [0, T ), then

sup
t∈[0,T )

‖m(t)‖X ≤ CT,‖m0‖X <∞. (3.11)

The proof of this theorem involves lots of technical estimates and will be post-
poned to the next individual section.
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3.3. Existence of global weak solution for rough data. In this subsection,
we assume both applied field a and initial datum m0 are in L∞(Ω; R3).

Let aε,mε
0 ∈ C∞(Ω̄; R3) be such that

‖aε‖L∞ + ‖mε
0‖L∞ ≤ R ∀ ε > 0, (3.12)

lim
ε→0+

(‖aε − a‖L2 + ‖mε
0 −m0‖L2) = 0, (3.13)

aε → a, mε
0 →m0 point-wise in Ω. (3.14)

Consider the Cauchy problem (1.7) with applied field aε and initial datum mε
0.

Then, by Theorem 3.3, for each ε > 0, (1.7) has a global weak solution mε. Since
mε · F(mε) = 0, it follows that ∂t(|mε(x, t)|2) = 0 and hence |mε(x, t)| = |mε

0(x)|
for a.e. x ∈ Ω and all t > 0. This implies

‖mε(t)‖L∞ = ‖mε
0‖L∞ ≤ R. (3.15)

For each n ∈ {1, 2, 3, · · · }, our stability result (Theorems 1.2 and 2.2) implies that
sequence {mε} is Cauchy in Banach space C([0, n];L2(Ω; R3)) as ε→ 0+. Therefore,
mε → m in C([0, n];L2(Ω; R3)) as ε → 0+ for some m ∈ C([0, n];L2(Ω; R3)).
(Presumably, m = mn depends on n.) Hence, by (3.13),

m(0) = m0. (3.16)

We also have Hmε → Hm in C([0, n];L2(Ω; R3)). It follows that mε → m and
Hmε → Hm also in L2(Ω× (0, n)) as ε→ 0+. Using a subsequence, we can assume

mε(x, t)→m(x, t), Hmε(x, t)→ Hm(x, t) point-wise in Ω× (0, n).

Therefore, Faε(x,m
ε, Hmε) → Fa(x,m, Hm) point-wise in Ω × (0, n). This shows

∂tm = Fa(x,m, Hm) in the sense of distribution on Ω× (0, n).
Note also that Faε(x,m

ε, Hmε) ∈ L2(Ω; R3) uniformly on ε and t ∈ (0, n);
this implies that ∂tm = Fa(x,m, Hm) holds in L∞((0, n);L2(Ω)) and that m ∈
W 1,∞([0, n);L2(Ω; R3)). Combining with (3.16), we have proved that m = mn is a
weak solution to (1.7) on Ω× (0, n). By the uniqueness of weak solutions, we have
mn+1 = mn on Ω×(0, n); therefore, the sequence {mn}∞1 defines a unique function
m by setting m(x, t) = mn(x, t) with n = [t]+1. It is easy to see that m is a global
weak solution to (1.7).

Finally, we have proved the following theorem.

Theorem 3.5. Let a ∈ L∞(Ω; R3). Given any initial datum m0 ∈ L∞(Ω; R3), the
problem (1.7) has a unique global weak solution.

4. Proof of Theorem 3.4. In this separate section, we give the proof of Theorem
3.4. This involves the special form of function L(m,n) and several estimates.

In what follows, assume a ∈ C∞(Ω̄; R3), 0 < T < ∞ and m is a solution to
(3.10) on [0, T ) with initial datum m0 ∈ H2(Ω; R3). Assume

‖m0‖L∞(Ω) = R > 0.

Then, similar to (3.15) above, we have

‖m(t)‖L∞ = ‖m0‖L∞ = R, ‖m(t)‖L2 = ‖m0‖L2 ≤ R|Ω| 12 ∀ 0 ≤ t < T. (4.1)

We would like to show

sup
t∈[0,T )

‖m(t)‖H2(Ω) ≤ CT,‖m0‖H2
<∞. (4.2)
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Let

y(t) = 1 + ‖m(t)‖2H2(Ω) = 1 + ‖m(t)‖2L2 + ‖∇m(t)‖2L2 + ‖∇2m(t)‖2L2 .

The goal is to show

y′(t) ≤ Cy(t)(1 + ln y(t)) ∀ 0 < t < T, (4.3)

where C = C(R) is a constant depending on R. Once (4.3) is proved, one easily
obtains that

ln(y(t)) ≤ (ln(y(0)) + 1) eCT <∞ ∀ t ∈ [0, T ),

from which (4.2) follows.
The rest of the section is devoted to proving (4.3).

4.1. Energy estimates. It is convenient to use the special structure of function L
to write function F(m) as follows:

F(m) = B(m) · a− B(m) · ϕ′(m) + B(m) ·Hm,

where B(m) is a 3× 3 matrix defined in (2.5) above, whose elements are quadratic
functions of m; hence B′′(m) = D is a constant tensor. However, this special
structure of B is not used; in fact, the following arguments are valid for arbitrary
smooth functions B.

Differentiating equation in (3.10) with respect to xi yields

dmxi

dt
= B′(m) ·mxi · a + B(m) · axi
− B′(m) ·mxi · ϕ′(m)− B(m) · ϕ′′(m) ·mxi

+ B′(m) ·mxi ·Hm + B(m) · (Hm)xi .

(4.4)

Further differentiating equation (4.4) with respect to xj yields

dmxixj

dt
= D ·mxj ·mxi · a + B′ ·mxixj · a + B′ ·mxi · axj
+ B′ ·mxj · axi + B · axixj
− D ·mxj ·mxi · ϕ′ − B′ ·mxixj · ϕ′ − B′ ·mxi · ϕ′′ ·mxj

− B′ ·mxj · ϕ′′ ·mxi − B · ϕ′′′ ·mxj ·mxi − B · ϕ′′ ·mxixj

+ D ·mxj ·mxi ·Hm + B′ ·mxixj ·Hm + B′ ·mxi · (Hm)xj

+ B′ ·mxj · (Hm)xi + B · (Hm)xixj .

(4.5)

Dot-product of (4.4) with mxi and of (4.5) with mxixj and integration over x ∈ Ω
yield the following identities:

1

2

d

dt

(
‖mxi‖2L2

)
=

∫
Ω

(
mxi ·

dmxi

dt

)
dx, (4.6)

1

2

d

dt

(
‖mxixj‖2L2

)
=

∫
Ω

(
mxixj ·

dmxixj

dt

)
dx. (4.7)

The energy estimates involve estimating the right-hand sides of (4.6) and (4.7)

with terms
dmxi

dt ,
dmxixj

dt given by the right-hand sides of (4.4) and (4.5).
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4.2. More subtle inequalities. To handle the terms involved in the integrals on
the right-hand sides of (4.6) and (4.7), more subtle inequalities are needed.

Lemma 4.1. Let Ω ⊂ R3 be a bounded domain with smooth boundary. Then

‖∇n‖L4 ≤ C6 ‖n‖
1
2

L∞‖n‖
1
2

H2 ,

‖Hn‖L∞(Ω) ≤ C‖n‖L∞ (1 + ln+(‖n‖H2)),
∀ n ∈ H2(Ω; R3), (4.8)

where ln+ t = max{ln t, 0} for t > 0 and C‖n‖L∞ <∞ depends on ‖n‖L∞(Ω).

Proof. The first inequality of (4.8) is a consequence of the well-known Gagliardo-
Nirenberg inequality:

‖∇jf‖Lq(Rn) ≤ C ‖f‖1−θLr(Rn)‖∇
lf‖θLp(Rn),

where θ = j/l ∈ (0, 1) and 1/q = θ/p + (1 − θ)/r, 1 ≤ p, r ≤ ∞. Here j = 1, l =
2, p = 2, q = 4, r = ∞ and θ = 1/2. While the second inequality of (4.8) is a
Judovic-type inequality proved, e.g., in [19, Lemma 7.2].

The following result is an immediate consequence of this lemma and (4.1).

Proposition 4.2. For the solution m(t), with y(t) defined above, it follows that

‖∇m(t)‖4L4(Ω) ≤ C7 y(t),

‖Hm(t)‖L∞(Ω) ≤ C8 (1 + ln y(t)),
∀ 0 ≤ t < T, (4.9)

where C7, C8 are constants depending on R = ‖m0‖L∞ .

4.3. Energy estimates (continued) and proof of (4.3). First of all, the inte-
gral on right-hand side of (4.6) is bounded by

C(R)

∫
Ω

(
|∇m|2 + |∇m|+ |∇m|2|Hm|+ |∇m||∇(Hm)|

)
dx.

The third term is bounded by C(R)‖Hm‖L∞(Ω)‖∇m‖2L2 and hence, by (4.9b),
is bounded by C(R)y(t)(1 + ln y(t)), while all the other terms are bounded by
C(R)‖m‖2H2 and hence by C(R)y(t). Therefore,

d

dt

(
‖mxi‖2L2

)
≤ C(R)y(t)(1 + ln y(t)), ∀ 0 < t < T. (4.10)

Similarly, the integrand of the right-hand side of (4.7) is bounded by constant
C(R) times

|∇m|2|∇2m|+ |∇2m|2 + |∇m||∇2m|+ |∇2m|+ |∇2m||∇2(Hm)|

+|∇m|2|Hm||∇2m|+ |Hm||∇2m|2 + |∇m||∇2m||∇(Hm)|.
Integrals of terms in the first group can all be bounded by Cy(t). Integrals of the
first two terms in the second group can be bounded by constant times

‖Hm‖L∞(Ω)(‖∇m‖4L4 + ‖∇2m‖2L2),

which, by (4.9a-b), is bounded by Cy(t)(1 + ln y(t)). Finally, the integral of the last
term in the second group can be estimated as follows:∫

Ω

|∇m||∇2m||∇(Hm)|dx ≤ ‖|∇m| · |∇(Hm)|‖L2(Ω)‖|∇2m|‖L2(Ω)

≤ ‖∇m‖L4(Ω)‖∇(Hm)‖L4(Ω)‖|∇2m|‖L2(Ω),
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which, by using Lemma 4.1, is bounded by

≤ C‖m‖
1
2

H2(Ω)‖Hm‖
1
2

L∞(Ω)‖Hm‖
1
2

H2(Ω)‖m‖H2(Ω)

≤ C‖m‖
1
2

H2(Ω)‖Hm‖
1
2

L∞(Ω)‖m‖
1
2

H2(Ω)‖m‖H2(Ω) = C‖m‖2H2(Ω)‖Hm‖
1
2

L∞(Ω)

≤ C y(t) · (1 + ln y(t))
1
2 ≤ C y(t)(1 + ln y(t)).

Therefore, by (4.7), we have obtained that

d

dt

(
‖mxixj‖2L2

)
≤ C(R)y(t)(1 + ln y(t)), ∀ 0 < t < T. (4.11)

Summing up i, j = 1, 2, 3 in (4.10) and (4.11) and using (3.15), we obtain (4.3).

Remark 3. By the local Lipschitz property of F(m), from (4.2), one easily obtains

sup
t∈[0,T )

‖mt‖H2(Ω) ≤ CT,‖m0‖H2
<∞. (4.12)

In next section, we prove higher time regularity for solutions.

5. Higher time regularity. The higher time regularity has been studied for
Landau-Lifshitz equation with exchange energy in [6]. We study a higher time
regularity of weak solutions for simple Landau-Lifshitz equation{

mt = γm×Hm + γαm× (m×Hm) in Ω× (0,∞),

m(0) = m0,
(5.1)

where Ω is a bounded smooth domain in R3 and m0 ∈ H2(Ω; R3).

Theorem 5.1. For any time T > 0, the solution m to (5.1) satisfies, for p =
0, 1, 2, · · · ,

sup
t∈[0,T ]

‖∂p+1
t m‖H2(Ω) ≤ C <∞, (5.2)

where C is constant depending on T, p and ‖m0‖H2(Ω).

Proof. We use induction on p. The case for p = 0 is already mentioned in Remark
3 above. Let us assume (5.2) holds for all powers up to p− 1. We consider the case
for p. Note that ∂it(Hm) = H∂itm

and hence, by (3.4),

‖H∂itm
‖H2(Ω) ≤ C‖∂itm‖H2(Ω).

Therefore, by the induction assumption, it follows that, for all t ∈ [0, T ],

‖∂it(Hm)‖H2(Ω) ≤ C‖∂itm‖H2(Ω) ≤ CT,p,‖m0‖H2
<∞ ∀ 0 ≤ i ≤ p. (5.3)

Taking pth-derivatives with respect to t to equation (5.1) yields

∂p+1
t m = γ

∑
i+j=p

∂itm× ∂
j
tHm + γα

∑
i+j+k=p

∂itm× (∂jtm× ∂ktHm). (5.4)

We need to prove ‖∂p+1
t m‖H2(Ω) ≤ CT,p,‖m0‖H2

<∞.

5.1. Estimation of ‖∂p+1
t m‖L2(Ω). Since, ∀ 0 ≤ i ≤ p,

‖∂it(Hm)‖L∞(Ω) ≤ C‖∂it(Hm)‖H2(Ω) ≤ CT,p,‖m0‖H2
<∞,

the L2-norm of each term on the right-hand side of (5.4) can be bounded by the
L∞-norms of its factors, which are in turn bounded by constant CT,p,‖m0‖H2

. Hence
we have

‖∂p+1
t m‖L2(Ω) ≤ CT,p,‖m0‖H2

. (5.5)
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5.2. Estimation of ‖∂p+1
t ∇m‖L2(Ω). Taking ∂l = ∂xl on equation (5.1) yields

∂lmt = γ∂l(m×Hm) + γα∂l(m× (m×Hm))

= γmxl ×Hm + γm× (Hm)xl + γαm× (mxl ×Hm)

+ γαm× (m× (Hm)xl) + γαmxl × (m×Hm)

(5.6)

Taking pth derivative with respect to t on Eq. (5.6) yields

∂p+1
t mxl =γ

∑
i+j=p

∂itmxl × ∂
j
tHm + γ

∑
i+j=p

∂itm× ∂
j
t (Hm)xl

γα
∑

i+j+k=p

∂itm× (∂jtm× ∂kt (Hm)xl)

+ γα
∑

i+j+k=p

∂itm× (∂jtmxl × ∂ktHm)

+ γα
∑

i+j+k=p

∂itmxl × (∂jtm× ∂ktHm)

In order to estimate ‖∂p+1
t mxl‖L2(Ω), it is sufficient to estimate the following L2-

norms:

‖
∑
i+j=p

∂itmxl × ∂
j
tHm‖L2(Ω).

‖
∑
i+j=p

∂itm× ∂
j
t (Hm)xl‖L2(Ω).

‖
∑

i+j+k=p

∂itm× (∂jtm× ∂kt (Hm)xl)‖L2(Ω).

‖
∑

i+j+k=p

∂itm× (∂jtmxl × ∂ktHm)‖L2(Ω).

‖
∑

i+j+k=p

∂itmxl × (∂jtm× ∂ktHm)‖L2(Ω).

All these norms can be estimated in the same way: For each of the individual
cross-product integrands, use the L2-norm of a sole factor with xl-derivative and
use the L∞-norms for the other factor or factors. All these norms can be bounded
by constant CT,p,‖m0‖H2

<∞. Finally, summing up l = 1, 2, 3, we have proved

‖∂p+1
t ∇m‖L2(Ω) ≤ CT,p,‖m0‖H2

<∞. (5.7)

5.3. Estimation of ‖∂p+1
t 4m‖L2(Ω). Differentiating (5.6) with respect to xl and

summing up over l = 1, 2, 3 yields that

4mt = γ4m×Hm + γm×4Hm + γ
∑
l

mxl × (Hm)xl

+ γα[4m× (m×Hm) + m× (4m×Hm) + m× (m×4Hm)]

+ γα
∑
l

[mxl × (mxl ×Hm) + mxl × (m× (Hm)xl) + m× (mxl × (Hm)xl)].

(5.8)

Differentiating equation (5.8) p times with respect to t will yield a formula for

∂p+1
t 4m. To estimate ‖∂p+1

t 4m‖L2(Ω), we do not need to estimate every single
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term because lots of them are similar; it is sufficient to estimate the following 4
L2-norms:

‖
∑
i+j=p

∂it4m× ∂jtHm‖L2(Ω). (5.9)

‖
∑
i+j=p

∂itmxl × ∂
j
t (Hm)xl‖L2(Ω). (5.10)

‖
∑

i+j+k=p

∂it4m× (∂jtm× ∂ktHm)‖L2(Ω). (5.11)

‖
∑

i+j+k=p

∂itmxl × (∂jtmxl × ∂ktHm)‖L2(Ω). (5.12)

For (5.9), we use

‖∂it4m× ∂jtHm‖L2(Ω) ≤ ‖∂jtHm‖L∞‖∂it4m‖L2(Ω).

For (5.10), we use

‖∂itmxl × ∂
j
t (Hm)xl‖L2(Ω) ≤ ‖∂it∇m‖L4(Ω)‖∂jt∇Hm‖L4(Ω).

For (5.11), we use

‖∂it4m× (∂jtm× ∂ktHm)‖L2(Ω) ≤ ‖∂jtm‖L∞‖∂ktHm‖L∞‖∂it4m‖L2(Ω).

For (5.12), we use

‖∂itmxl × (∂jtmxl × ∂ktHm)‖L2 ≤ ‖∂ktHm‖L∞‖∂it∇m‖L4‖∂jt∇m‖L4 .

Finally, from these estimates, we obtain

‖∂p+1
t 4m‖L2(Ω) ≤ CT,p,‖m0‖H2

<∞. (5.13)

Combining (5.5), (5.7) and (5.13), we have shown that

‖∂p+1
t m‖H2(Ω) ≤ CT,p,‖m0‖H2

<∞.

This completes the induction process and hence the proof.

Remark 4. Theorem 5.1 is also valid for the general equation (3.10) with smooth
functions ϕ(m) and a(x); the proof should be similar.

6. Energy identity and weak ω-limit sets. We first prove an energy identity
for global weak solutions to the Landau-Lifshitz equation (1.3). We write the initial
value problem as {

mt = L(m,Heff) in Ω× (0,∞),

m(0) = m0,
(6.1)

in terms of the Landau-Lifshitz interaction function L defined by (1.8), where the
effective magnetic field Heff is given by (1.4).
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6.1. The energy identity. Let E(m) be defined by (1.1). Assume a, m0 ∈
L∞(Ω; R3).

Theorem 6.1. The global weak solution m to (6.1) satisfies the energy identity

E(m(t))− E(m(s)) = γα

∫ t

s

∫
Ω

|m×Heff |2 dxdτ ∀ 0 ≤ s ≤ t <∞. (6.2)

Furthermore, if γα < 0, then mt ∈ L2((0,∞);L2(Ω; R3)).

Proof. Note that

L(m,n) · n = −αγ|m× n|2 ∀ m,n ∈ R3. (6.3)

By the definition of Heff = − ∂E
∂m in the L2 sense, it follows that

d

dt
(E(m(t))) = −

∫
Ω

Heff ·mt dx = γα

∫
Ω

|m×Heff |2 dx

for a.e. t ∈ (0,∞). Hence (6.2) follows.
If γα < 0, by (6.2), one has

∫∞
0

∫
Ω
|m ×Heff |2 dxdt ≤ E(m0)/|αγ| < ∞. Also

from the equation (6.1),

|mt|2 =|L(m,Heff)|2 = γ2|m×Heff |2

+ (γα)2|m|2|m×Heff |2 ≤ C |m×Heff |2,

where constant C depends on ‖m0‖L∞ . Hence mt ∈ L2((0,∞);L2(Ω; R3)).

6.2. Weak ω-limit sets and estimation for the soft-case. The stability the-
orem and all the regularity estimates previously established for (6.1) are for finite
time; the only global-in-time regularity for the solutions (even for the regular solu-
tions) is that

m ∈ L∞((0,∞);L∞(Ω; R3)) with mt ∈ L2((0,∞);L2(Ω; R3)).

But this regularity is not enough to have strong convergence as t→∞; it would be
enough if one has mt ∈ L1((0,∞);L2(Ω; R3)) (see [20]). Therefore, it is quite chal-
lenging to study the asymptotic behaviors of even regular solutions. The solution
orbits for general initial data may not have strong ω-limit points; we thus study the
weak ω-limit points.

Given m0 ∈ L∞(Ω; R3), let m be the global weak solution to the initial value
problem (6.1) and define the weak ω-limit set for m to be

ω∗(m0) = {m̃ | ∃ tj ↑ ∞ such that m(tj) ⇀ m̃ weakly in L2(Ω; R3)}. (6.4)

We give an estimate of ω∗(m0) for the so-called soft-case, where there is no
anisotropy energy (ϕ = 0). For more results on further special case when a = 0,
see [32, 33].

Theorem 6.2. Let γα < 0, ϕ = 0 and a ∈ L∞(Ω; R3). Then, for any m0 ∈
L∞(Ω; R3) with |m0(x)| = 1 a.e. on Ω, it follows that

ω∗(m0) ⊆ {m̃ ∈ L∞(Ω; R3) | |m̃|2 + 2|m̃× (a +Hm̃)| ≤ 1 a.e. on Ω}. (6.5)

Proof. Let m be the global weak solution to (6.1) with the given initial datum m0.
Then |m(t)| = 1 a.e. on Ω for all t ≥ 0. Assume m(tj) ⇀ m̃ weakly in L2(Ω; R3)
for a sequence tj ↑ ∞. In the following, we show that

|m̃|2 + 2|m̃× (a +Hm̃)| ≤ 1 a.e. on Ω. (6.6)
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Let e(t) = E(m(t)). Then, by (6.2), e(t) is non-increasing and bounded and hence
e(t) has limit as t→∞; this again by (6.2) implies

e(tj + 1)− e(tj) = γα

∫ tj+1

tj

‖m(t)× (a +Hm(t))‖2L2 dt→ 0.

Hence there exists some sj ∈ [tj , tj + 1] such that

‖m(sj)× (a +Hm(sj))‖L2(Ω) → 0. (6.7)

By Theorem 6.1, mt ∈ L2((0,∞);L2(Ω; R3)); hence

‖m(sj)−m(tj)‖L2 ≤
∫ sj

tj

‖mt(t)‖L2dt ≤ (sj − tj)
1
2

(∫ sj

tj

‖mt‖2L2dt

) 1
2

→ 0,

which yields m(sj) ⇀ m̃ weakly in L2(Ω; R3). Therefore, by (6.7), (6.6) follows
from the following proposition with mj = m(sj). This completes the proof.

Proposition 6.3. Let mj ⇀ m̃ weakly in L2(Ω; R3) and satisfy

(a) |mj | = 1 a.e.Ω; (b) ‖mj × (a +Hmj )‖L2(Ω) → 0.

Then m̃ satisfies the condition (6.6) above.

Proof. This result can be proved by a similar method of [32, Theorem 1.1]. However,
we present a different but direct proof based on the div-curl lemma [29].

For any m ∈ L∞(Ω; R3), let Gm = mχΩ +Hm. Then divGm = 0 on R3. Denote

Gj = a +Gmj
, Hj = a +Hmj

; G̃ = a +Gm̃, H̃ = a +Hm̃.

Then Gj ⇀ G̃, Hj ⇀ H̃ weakly in L2(Ω; R3) and, by the div-curl lemma [29],∫
Ω

Gj ·Hjφdx→
∫

Ω

G̃ · H̃φ dx ∀ φ ∈ C∞0 (Ω). (6.8)

Since mj = Gj −Hj on Ω, it follows that

|mj |2 + 2|mj × (a +Hmj )| =|Gj −Hj |2 + 2|Gj ×Hj |
=|Gj |2 + |Hj |2 + 2|Gj ×Hj | − 2Gj ·Hj .

(6.9)

Note that function f(m,n) = |m|2 + |n|2 +2|m×n| is convex on (m,n) ∈ R3×R3.
Hence, for all φ ∈ C∞0 (Ω) with φ ≥ 0, one has

lim inf
j→∞

∫
Ω

(|Gj |2 + |Hj |2 + 2|Gj ×Hj |)φ ≥
∫

Ω

(|G̃|2 + |H̃|2 + 2|G̃× H̃|)φ. (6.10)

By assumptions (a), (b), from (6.8)–(6.10), it follows that∫
Ω

(|G̃|2 + |H̃|2 + 2|G̃× H̃| − 2G̃ · H̃)φdx ≤
∫

Ω

φdx

for all φ ∈ C∞0 (Ω) with φ ≥ 0. This implies

|G̃|2 + |H̃|2 + 2|G̃× H̃| − 2G̃ · H̃ ≤ 1 a.e. Ω,

which, exactly, is equivalent to (6.6). This completes the proof.
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7. A special dynamics. In this final section, we study a special case of (6.1) where
applied field a(x) = a is constant, domain Ω is an ellipsoid, and initial datum m0 is
a constant unit vector. Therefore, in (6.1), the effective magnetic field Heff is now
given by

Heff = −ϕ′(m) + a +Hm

as above, but with constant vector a. In what follows, we assume ellipsoid domain
Ω is given by

Ω = {x ∈ R3 |
3∑
i=1

x2
i /ai < 1},

where ai > 0 are constants.

7.1. The associated ODE system on R3. It is well-known that (see, e.g., [27]),
for the ellipsoid domain Ω given as above, the magneto-static stray field Hm induced
by any constant field m has constant value on Ω given by

Hm|Ω = −Λm (∀ m ∈ R3), (7.1)

where Λ is a diagonal matrix of positive numbers. In fact, Λ = diag (b1, b2, b3) with

bi =
1

2

∫ ∞
0

√
a1a2a3 dt

(ai + t)
√

(a1 + t)(a2 + t)(a3 + t)
. (7.2)

Note that, if Ω is a ball in R3, all bi’s are equal to 1/3.
Let m0 be a constant unit vector. Then, from (7.1) and the uniqueness of

solution, problem (6.1) reduces to the following ODE system on m ∈ R3:{
ṁ = Φ(m), t > 0,

m(0) = m0,
(7.3)

where ṁ = dm
dt and function Φ: R3 → R3 is defined by

Φ(m) = L(m,−ϕ′(m) + a− Λm), ∀ m ∈ R3. (7.4)

Since m ·Φ(m) = 0, system (7.3) also preserves the length of m(t). Thus we have
|m(t)| = 1 for all t ≥ 0. Moreover, L(m,n) = 0 if and only if m × n = 0; hence,
the equilibrium points of (7.3), that is, the solutions of Φ(m) = 0 on unit sphere
|m| = 1, are characterized by vectors m ∈ R3 for which there is a real number
λ ∈ R such that

− ϕ′(m) + a− Λm = λm, |m| = 1. (7.5)

This condition is equivalent to m being a critical point of the function

P (m) =
1

2
Λm ·m− a ·m + ϕ(m) (7.6)

on unit sphere |m| = 1.
In most cases, there will be at least two distinct equilibrium points for system

(7.3); for example, all maximum or minimum points of P on |m| = 1 (always exist)
are such points.
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7.2. Special dynamics. The dynamics of system (7.3) can be studied by the clas-
sical ODE theory. For example, we have the following result.

Theorem 7.1. Function P defined by (7.6) is a Lyapunov function for system
(7.3). Assume γα < 0. The ω-limit set of (7.3) for any initial unit vector m0 ∈ R3

is contained in the set of all critical points of P on unit sphere.

Proof. Since Heff = −ϕ′(m) + a − Λm = −∇P (m), ∀ m ∈ R3, it follows that for
solution m = m(t) of (7.3), by (6.3),

d

dt
P (m(t)) = ∇P (m) · ṁ = −Heff · L(m,Heff) = γα|m×Heff |2 ≤ 0.

Hence P is a Lyapunov function for system (7.3).
To show the second part of the theorem, assume γα < 0 and m(tj) → m̄ for a

sequence tj ↑ ∞. Let p(t) = P (m(t)). Then p(t) is smooth, non-increasing and has
limit as t→∞. Hence p(tj + 1)−p(tj) = p′(sj)→ 0 for some sj ∈ (tj , tj + 1). Since
p′(t) = γα|m×Heff |2 and γα < 0, this implies

|m(sj)×Heff(sj)| = |m(sj)×∇P (m(sj))| → 0. (7.7)

As above, since ṁ ∈ L2(0,∞), one has

|m(sj)−m(tj)| ≤
∫ sj

tj

|ṁ|dt ≤ (sj − tj)
1
2

(∫ sj

tj

|ṁ|2dt

) 1
2

→ 0.

This implies m(sj) → m̄; hence, by (7.7), |m̄×∇P (m̄)| = 0, which proves m̄ is a
critical point of P on unit sphere. This completes the proof.

Finally, we give a special result for a = 0 and ϕ = 0.

Proposition 7.2. Let b1, b2, b3 be positive numbers determined by (7.2). If bk =
min{b1, b2, b3}, then ±ek are asymptotically stable equilibrium points for the system
(7.3), where {e1, e2, e3} are the standard basis vectors of R3.

Proof. Without loss of generality, let us assume b1 = min{b1, b2, b3}. It is trivial
to see that P has a strict relative minimum at ±e1. According to the Lyapunov
stability theorem, ±e1 are asymptotically stable equilibrium points for (7.3).
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