
Chapter 3

Numerical Sequences
and Series

3.1. Convergent Sequences

Definition 3.1. A sequence {pn} in a metric space X is said to converge in X if there is
a point p ∈ X with the following property: For every number ε > 0, there exists an integer
N ∈ N such that whenever n ∈ N and n ≥ N it follows that d(pn, p) < ε. That is, {pn} is
said to converge in X if the following is true:

∃p ∈ X ∀ε > 0 ∃N ∈ N ∀n ∈ N (n ≥ N =⇒ d(pn, p) < ε).

In this case, we also say that {pn} converges to p, or p is a limit of {pn}, and we write
pn → p, or

lim
n→∞

pn = p, or simply, lim pn = p.

Note that convergence is a concept not only depending on the given sequence but also
on the metric space X in which the sequence and its limit are considered.

If a sequence {pn} does not converge in X, then we say that it diverges in X.

A sequence {pn} in a metric space X is said to be bounded if the set E = {pn : n ∈ N}
(i.e., the range of {pn}) is bounded in X; that is, for some q ∈ X and number M > 0,

d(pn, q) ≤M ∀n ∈ N.

Theorem 3.1. Let {pn} be a sequence in a metric space X.

(a) {pn} converges to a limit p ∈ X if and only if every neighborhood of p contains pn
for all but finitely many n ∈ N.

(b) If {pn} converges to p ∈ X and to q ∈ X, then p = q.

(c) If {pn} converges, then {pn} is bounded.

Proof. (a) Note that d(pn, p) < ε⇐⇒ pn ∈ Nε(p).

(b) Suppose, for the contrary, p 6= q. Then δ = d(p, q) > 0. Since pn → p and pn → q,
there exist integers N1, N2 ∈ N such that

d(pn, p) <
1

2
δ (∀n ≥ N1), d(pn, q) <

1

2
δ (∀n ≥ N2).
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2 3. Numerical Sequences and Series

Let N = max{N1, N2}, or for the same purpose, one could let N = N1 + N2. Then
d(pN , p) <

1
2δ and d(pN , q) <

1
2δ. Hence, by the triangle inequality, we have

d(p, q) ≤ d(p, pN ) + d(pN , q) <
1

2
δ +

1

2
δ = δ = d(p, q),

which is a contradiction.

(c) Suppose pn → p. Then there exists an N ∈ N such that

d(pn, p) < 1 ∀ n ≥ N.
Let M = max{1, d(p1, p), · · · , d(pN , p)}. Then d(pn, p) ≤M for all n ∈ N; this proves {pn}
is bounded. �

Theorem 3.2. Let X be a metric space, E ⊆ X, and p ∈ X. Then p is a limit point of E
if and only if there is a sequence {pn} in E such that pn 6= p and pn → p.

Proof. First suppose p ∈ E′. Then, for each n ∈ N, there is a point pn ∈ N1/n(p) such

that pn 6= p and pn ∈ E. Given each ε > 0, let N ∈ N be such that 1
N < ε. Then for n ∈ N

if n ≥ N then

d(pn, p) <
1

n
≤ 1

N
< ε.

By definition, we have pn → p.

Conversely, suppose there is a sequence {pn} in E such that pn 6= p and pn → p. Let
Nr(p) be any neighborhood of p, where r > 0. Since pn → p, there is N ∈ N such that
d(pn, p) < r for all n ≥ N. Hence pN ∈ Nr(p), pN ∈ E, and pN 6= p. By definition,
p ∈ E′. �

Example 3.1. Show

lim(
n+ 1

n
) = 1.

Proof. Let an = n+1
n and a = 1. Then the inequality

|an − a| =
∣∣∣∣n+ 1

n
− 1

∣∣∣∣ =
1

n
< ε

is the same as n > 1
ε . The existence of N ∈ N is guaranteed by the Archimedean property:

there always exists an N ∈ N such that N > 1
ε . The actual proof goes as follows.

Let ε > 0 be arbitrary. By the Archimedean property, there exists an N ∈ N such that
N > 1

ε . Then whenever n ∈ N we have 1/n ≤ 1/N < ε and hence

|an − a| =
∣∣∣∣n+ 1

n
− 1

∣∣∣∣ =
1

n
< ε.

Therefore, by definition, lim an = 1. �

Theorem 3.3 (Algebraic Limit Theorem). Suppose {an}, {bn} are sequences of real
numbers, and lim an = a, lim bn = b exist in R. Then

(i) lim(can) = ca for all c ∈ R;

(ii) lim(an + bn) = a+ b;

(iii) lim(anbn) = ab;

(iv) lim(an/bn) = a/b, provided bn 6= 0 and b 6= 0.

Warning: We can use these formulas only when both the limits lim an and lim bn exist.
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Proof. We only include the proof for the product and quotient theorem.
Proof of (iii): Note that

anbn − ab = anbn − anb+ anb− ab = an(bn − b) + (an − a)b.

Therefore, by the Triangle Inequality,

|anbn − ab| ≤ |an(bn − b)|+ |(an − a)b| = |an||bn − b|+ |an − a||b|.

Given ε > 0, in order to make |anbn − ab| < ε, it suffices to make each of the two terms on
the right hand side < ε/2. Since (an) converges, it is bounded and so |an| ≤ M (∀ n ∈ N)
for some number M > 0. Hence the two terms are bounded as follows:

|an||bn − b| ≤M |bn − b|, |an − a||b| ≤ |an − a|(|b|+ 1)

(here we change |b| ≥ 0 to |b| + 1 > 0 for the division later). Now, given arbitrary ε > 0,
since (an)→ a, we have N1 ∈ N such that

|an − a| <
ε

2(|b|+ 1)
∀n ≥ N1.

Since (bn)→ b, we have N2 ∈ N such that

|bn − b| <
ε

2M
∀n ≥ N2.

Let N = max{N1, N2} (or N = N1 + N2). Then, for this N , whenever n ≥ N , it follows
that

|an − a| <
ε

2(|b|+ 1)
, |bn − b| <

ε

2M
;

hence

|an − a||b| ≤
ε|b|

2(|b|+ 1)
<
ε

2
, |an||bn − b| ≤M |bn − b| <

ε

2
,

and finally, it follows that, whenever n ≥ N ,

|anbn − ab| ≤ |an||bn − b|+ |an − a||b| < ε/2 + ε/2 = ε.

By definition, (anbn)→ ab.

Proof of (iv): Note that

an
bn
− a

b
=
ban − abn

bnb
=
b(an − a) + a(b− bn)

bnb
.

Hence

(3.1)

∣∣∣∣anbn − a

b

∣∣∣∣ ≤ |b||an − a||bnb|
+
|a||b− bn|
|bnb|

.

Since (bn) → b 6= 0, with ε = |b|/2 > 0, there exists an N1 ∈ N such that |bn − b| < |b|/2
for all n ≥ N1. Hence, by the triangle inequality, |bn| ≥ |b| − |bn − b| ≥ |b|/2 for all n ≥ N1.
So, for all n ≥ N1, we have |bnb| ≥ |b|2/2 and hence∣∣∣∣anbn − a

b

∣∣∣∣ ≤ |b||an − a||bnb|
+
|a||b− bn|
|bnb|

≤ 2

|b|
|an − a|+

2|a|
|b|2
|bn − b| ≤

2

|b|
|an − a|+

2|a|+ 1

|b|2
|bn − b|.

We then use the convergences as before to select N2 and N3 in N such that

|an − a| <
ε|b|
4

whenever n ≥ N2
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and

|bn − b| <
ε|b|2

2(2|a|+ 1)
whenever n ≥ N3.

Finally, let N = max{N1, N2, N3}. Then, whenever n ≥ N , it follows that∣∣∣∣anbn − a

b

∣∣∣∣ ≤ 2

|b|
|an − a|+

2|a|+ 1

|b|2
|bn − b| < ε/2 + ε/2 = ε.

�

Theorem 3.4 (Order Limit Theorem). Suppose {an}, {bn} are sequences of real num-
bers. Assume lim an = a and lim bn = b both exist. If an ≤ bn for all n ≥ N0, where N0 ∈ N
is some integer, then a ≤ b.

Proof. Suppose, for the contrary, a > b. Then lim(an− bn) = a− b > 0. Using ε = a−b
2 > 0,

we have an N ∈ N such that

|(an − bn)− (a− b)| < ε =
a− b

2
∀n ≥ N.

Hence a− b− ε < an − bn < a− b+ ε for all n ≥ N. But a− b− ε = a−b
2 > 0; this implies

that an − bn > a−b
2 > 0 for all n ≥ N. So an > bn for all n ≥ N ; in particular, an > bn for

n = N0 +N > N0, which contradicts the assumption an ≤ bn for all n ≥ N0. �

Theorem 3.5. Consider the Euclidean space Rk.

(a) Suppose xn ∈ Rk for each n ∈ N , and let xn = (a1,n, a2,n, . . . , ak,n), where aj,n ∈
R (1 ≤ j ≤ k). Then xn → x = (a1, a2, . . . , ak) ∈ Rk if and only if

lim
n→∞

aj,n = aj (1 ≤ j ≤ k).

(b) Suppose {xn}, {yn} are sequences in Rk, {βn} is a sequence of real numbers, and
xn → x, yn → y, βn → β. Then

lim(xn + yn) = x + y, lim(xn · yn) = x · y, lim(βnxn) = βx.

3.2. Subsequences

Definition 3.2. Let {pn} be a sequence in a metric space X, and let n1 < n2 < n3 < · · ·
be an increasing sequence of natural numbers. Then the sequence

{pnk}
∞
k=1 = {pn1 , pn2 , pn3 , · · · }

is called a subsequence of {pn}. Note that the order of the terms in a subsequence is kept
unchanged as in the original sequence.

If a subsequence {pnk} converges in X, then its limit is called a subsequential limit
of {pn} in X.

Theorem 3.6. A sequence {pn} in a metric space X converges to p ∈ X if and only if
every subsequence of {pn} converges to p.

Proof. Clearly, a sequence is also a subsequence of itself. Thus, to prove the theorem,
we need to prove that if pn → p then every subsequence {pnk} also converges to p. Since
1 ≤ n1 < n2 < · · · are integers, clearly, nk ≥ k for k ∈ N. Given ε > 0, let N ∈ N be such
that d(pn, p) < ε for all n ≥ N. Then, for all k ≥ N , since nk ≥ k ≥ N , it follows that
d(pnk , p) < ε. By definition, lim

k→∞
pnk = p. �
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Theorem 3.7. Every sequence in a compact metric space contains a convergent subse-
quence.

Proof. Let X be a compact metric space and {pn} be a sequence in X. Let E be the range
of {pn}.

If E is finite, then there is a p ∈ E such that pn = p for infinitely many n ∈ N. Hence,
there is a sequence {ni} in N with n1 < n2 < · · · , such that pni = p for all i ∈ N. The
subsequence so obtained is constant and hence converges to p.

If E is infinite, then, as an infinite subset of a compact set X, E has a limit point p ∈ X.
Choose n1 ∈ N so that d(pn1 , p) < 1. Having chosen n1 < n2 < · · · < ni−1 in N, since every
neighborhood of p contains infinitely many points of E, there exists an ni > ni−1 in N such
that d(pni , p) < 1/i. Then, the subsequence {pni} converges to p. �

Corollary 3.8 (Bolzano-Weierstrass Theorem). Every bounded sequence in Rk con-
tains a convergent subsequence.

Proof. The closure of the range of every bounded sequence is a compact set of Rk which
contains the given sequence. Then use the theorem above. �

Theorem 3.9. The set of all subsequential limits of a sequence in a metric space X is a
closed subset of X.

Proof. Let {pn} be a sequence in X and let E∗ be the set of all subsequential limits of
{pn} in X. To show E∗ is closed, let q be a limit point of E∗ (if E∗ has no limit points then
E∗ is closed). We need to show q ∈ E∗.

Take n1 = 1 and let d(p1, q) ≤ M for some M > 0. Now assume 1 = n1 < n2 <
· · · < ni−1 are chosen in N. Since q is a limit point of E∗, there is an x ∈ E∗ such that
d(x, q) < M/i. Since x ∈ E∗, there exists a subsequence of {pn} converging to x; hence
there is an integer ni > ni−1 such that d(pni , x) < M/i. Thus, we obtain a subsequence
{pni} that satisfies

d(pni , q) ≤ d(pni , x) + d(x, q) < 2M/i

for all i ∈ N. Hence {pni} converges to q, proving q ∈ E∗. �

3.3. Cauchy Sequences

Definition 3.3. A sequence {pn} of a metric space is called a Cauchy sequence if, for
every ε > 0, there exists an N ∈ N such that whenever m,n ≥ N in N it follows that
d(pn, pm) < ε; that is,

∀ ε > 0 ∃ N ∈ N ∀ m,n ∈ N (m,n ≥ N =⇒ d(pn, pm) < ε).

Definition 3.4. Let E be a nonempty subset of a metric space X, and let S be the set of
all numbers of the form d(p, q), with p ∈ E and q ∈ E. The number supS (may be +∞) is
called the diameter of E, and is denoted by diamE.

If {pn} is a sequence in X and En is the set consisting of {pk : k ≥ n}, then {pn} is a
Cauchy sequence if and only if

lim
n→∞

diamEn = 0.

Theorem 3.10. Let X be a metric space.
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(a) For any subset E of X,

diamĒ = diamE.

(b) If {Kn} is a sequence of compact sets in X such that Kn+1 ⊆ Kn for all n ∈ N
and satisfies

lim
n→∞

diamKn = 0,

then ∩∞n=1Kn consists of exactly one point.

Proof. (a) Since E ⊆ Ē, it is clear that diamE ≤ diamĒ. To prove the other direction, let
ε > 0, and take any p, q in Ē. Then, there exist p′, q′ in E such that d(p′, p) < ε, d(q′, q) < ε.

(For example, if p ∈ E then take p′ = p; if p /∈ E then p ∈ E′ and hence p′ ∈ N̂ε(p) ∩ E
exists.) Hence

d(p, q) ≤ d(p, p′) + d(p′, q′) + d(q′, q) < 2ε+ d(p′, q′) ≤ 2ε+ diamE.

It follows that

diamĒ = sup
p,q∈Ē

d(p, q) ≤ 2ε+ diamE.

As ε > 0 is arbitrary, this implies diamĒ ≤ diamE; (a) is proved.

(b) Let K = ∩∞n=1Kn. Then by the Nested Compact Set Theorem, K 6= ∅. Since
K ⊆ Kn for all n ∈ N, we have

0 ≤ diamK ≤ diamKn → 0.

Hence diamK = 0, which shows that K consists of exactly one point. �

Theorem 3.11. We have the following.

(a) In a metric space, every convergent sequence is a Cauchy sequence.

(b) In a compact metric space, every Cauchy sequence converges.

(c) In Rk, a sequence converges if and only if it is a Cauchy sequence.

Proof. (a) Assume X is a metric space and sequence {pn} in X converges to p ∈ X. Then,
for every ε > 0, there exists an N ∈ N such that whenever n ≥ N in N it follows that
d(pn, p) < ε/2. Hence, whenever n,m ≥ N in N, it follows by the triangle inequality that

d(pn, pm) ≤ d(pn, p) + d(pm, p) <
ε

2
+
ε

2
= ε.

By definition, {pn} is a Cauchy sequence.

(b) Let {pn} be a Cauchy sequence in a compact metric space X. For each n ∈ N let
En = {pk : k ≥ n}. Then

lim
n→∞

diamĒn = 0.

Also, since En+1 ⊆ En, it follows that Ēn+1 ⊆ Ēn for all n ∈ N. Also, as a closed subset of
a compact set X, each Ēn is compact. Hence {Ēn} is a nested sequence of compacts with
diamĒn → 0. Hence ∩∞n=1Ēn = {p} for a unique p ∈ X. We show that pn → p.

Let ε > 0 be given. There is an integer N ∈ N such that diamĒn < ε for all n ≥ N.
Since p ∈ Ēn for all n ∈ N, it follows that d(pn, p) ≤ diamĒn < ε for all n ≥ N. Hence
pn → p.

(c) From (a), we only have to show that a Cauchy sequence in Rk converges. Let {pn}
be a Cauchy sequence in Rk. We first prove {pn} is bounded. Since there exists an N ∈ N
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such that d(pn, pm) < 1 for all n,m ∈ N and n,m ≥ N, with m = N , we have d(pn, pN ) < 1
for all n ≥ N. Let

M = max{1, d(p1, pN ), · · · , d(pN−1, pN )}.
Then d(pn, pN ) ≤ M for all n ∈ N; thus {pn} is bounded. Let E = {pn : n ∈ N}; then E
and Ē are both bounded subsets of Rk, and hence Ē is compact. Then (c) follows from
(b). �

Definition 3.5. A metric space in which every Cauchy sequence converges is called a
complete metric space.

Theorem 3.11 says that all compact metric spaces and all Euclidean spaces are a complete
metric space. However, the set Q viewed as a sub-metric space of R is not complete.

3.4. Monotonic Convergence in R

Definition 3.6. A sequence {an} in R is said to be monotonically increasing if an ≤
an+1 for all n ∈ N, and is said to be monotonically decreasing if an ≥ an+1 for all
n ∈ N.

A sequence in R is said to be monotonic if it is either monotonically increasing or
monotonically decreasing.

A sequence {an} in R is said to be bounded above if there exists M ∈ R such that
an ≤M for all n ∈ N. Similarly, {an} is said to be bounded below if there exists M ∈ R
such that an ≥M for all n ∈ N.

Theorem 3.12 (Monotonic Convergence Theorem). Suppose {an} is a monotonic
sequence in R. Then {an} converges if and only if {an} is bounded.

Proof. We only prove the theorem when {an} is monotonically increasing in R. Since every
convergent sequence in a metric space is bounded, it suffices to show that if {an} is bounded
above then {an} converges in R. Thus assume, for some real number M > 0, an ≤ M for
all n ∈ N. Consider the set S = {an : n ∈ N}. Then S is nonempty and bounded above
(with M being an upper-bound). So a = supS exists in R. We prove an → a. Since a is an
upper-bound for S, we have

an ≤ a ∀ n ∈ N.

On the other hand, given arbitrary ε > 0, since a = supS, there exists an aN ∈ S such that
a− ε < aN . Then, by the monotonicity of an,

an ≥ aN > a− ε ∀ n ≥ N.

Combining above inequalities, we have a− ε < an ≤ a < an + ε; that is, |an − a| < ε for all
n ≥ N. Hence, by definition, lim an = a. �

The MCT is useful for determining the convergence of a real sequence without explicitly
knowing the actual limit and checking the ε-N definition.

Example 3.2. Show that the sequence

√
2,

√
2
√

2,

√
2

√
2
√

2, · · ·

converges and find the limit.
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Solution. Let an be the n-th term of this sequence; that is, a1 =
√

2, a2 =
√

2
√

2, · · · . We
have

an+1 =
√

2an; hence a2
n+1 = 2an, ∀ n = 1, 2, 3, · · · .

Using induction we easily show that
√

2 ≤ an ≤ 2, an ≤ an+1 ∀n ∈ N.

Hence {an} is bounded and monotonically increasing. Therefore, by the MCT, lim an = a
exists. Moreover. the order limit theorem says

√
2 ≤ a ≤ 2. Since {an+1} is a subsequence

of {an}, we have that lim an+1 = a. So, taking the limit on both sides of a2
n+1 = 2an, we

have a2 = 2a. Since a 6= 0, it follows that a = 2; that is, lim an = 2. �

3.5. Upper and Lower Limits

Definition 3.7. A sequence {an} in R is said to converge to +∞, written

an → +∞ or lim
n→∞

an = +∞,

if, for every real M there is an N ∈ N such that an ≥M for all n ≥ N.
Similarly, {an} is said to converge to −∞, written

an → −∞ or lim
n→∞

an = −∞,

if, for every real M there is an N ∈ N such that an ≤M for all n ≥ N.
Obviously, an → −∞ ⇐⇒ −an → +∞. Frequently we write lim an = ±∞. Clearly if

lim an = ±∞, then lim ank = ±∞ for all subsequences {ank}.

Lemma 3.13. A real sequence {an} is not bounded above (or below) if and only if there
exists a monotonically increasing (or decreasing) subsequence {ank} such that ank → +∞
(or −∞).

Proof. (i) Assume {an} is bounded, say, an ≤ M for all n ∈ N, for some M ∈ R. Then
there is no subsequence {ank} converging to +∞, since otherwise, there would be a K ∈ N
such that ank ≥M + 1 for all k ≥ K, a contradiction.

(ii) Assume {an} is not bounded above. Then, for every M ∈ R, there is an n ∈ N such
that an > M. First, with M = 1, we have an1 > 1. Suppose that n1 < n2 < · · · < ni−1 are
defined, then, with M = i + max{a1, a2, · · · , ani−1}, we have ni ∈ N such that ani > M ;
clearly, ni > ni−1 and ani ≥ i + ani−1 . In this way, we obtain a monotonically increasing
subsequence {ank} such that ank > k for all k ∈ N; hence ank → +∞.

The case for bounded-below sequences is completely analogous. �

Definition 3.8. Let {an} be a sequence in R. Let E be the set of (extended) real numbers
x (including +∞ and −∞) such that ank → x for some subsequence {ank}. This set E
contains the set E∗ of all subsequential limits of {an} defined in the proof of Theorem 3.9,
plus possibly the extended numbers +∞ or −∞. Let

a∗ = supE, a∗ = inf E.

The (extended real) numbers a∗ and a∗ are called the upper limit and lower limit of the
sequence {an}, respectively; we use the notation

lim sup
n→∞

an = a∗, lim inf
n→∞

an = a∗,

or simply, a∗ = lim sup an, a∗ = lim inf an.
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Example 3.3. (i) Let an = (−1)n(1 + 1
n). Then the set E defined above consists of two

numbers, 1 and −1. (Why?) Hence

lim sup
n→∞

an = 1, lim inf
n→∞

an = −1.

(ii) Let an = n(−1)n . Then the set E defined above consists of {0,+∞}, and hence

lim sup
n→∞

an = +∞, lim inf
n→∞

an = 0.

(iii) Let {an} be the sequence of all rational numbers. Then the set E defined is all the
extended real numbers; hence

lim sup
n→∞

an = +∞, lim inf
n→∞

an = −∞.

Theorem 3.14. Let {an} be a sequence in R. Then lim
n→∞

an = a exists in the extended real

system if and only if

lim sup
n→∞

an = lim inf
n→∞

an = a.

Proof. If lim an = a, then the set E defined above consists of only one element a; hence
lim sup an = lim inf an = a.

Assume lim sup an = lim inf an = a. Then E = {a}.
(i) Assume a = +∞. Then {an} must be bounded below since otherwise there would

be a subsequence converging to −∞. We show lim an = +∞; that is,

(3.2) ∀M ∃N ∈ N ∀n ∈ N (n ≥ N =⇒ an > M).

Suppose (3.2) is false; then, by negating (3.2),

(3.3) ∃M ∀N ∈ N ∃ kN ∈ N (kN ≥ N, akN ≤M).

We use (3.3) as follows. First, choose n1 = k1 ≥ 1 such that an1 ≤ M. Once n1 is
chosen, with N = n1 + 1, there exists n2 = kN ≥ n1 + 1 such that an2 ≤ M. Continue in
this way, and we get a subsequence {ank} such that ank ≤M. Since {an} is bounded below,
we have the sequence {ank} is bounded; hence, by the Bolzano-Weierstrass Theorem, this
sequence has a convergent subsequence converging to a finite number, and this subsequence
is also a subsequence of the original sequence {an}, showing E has a finite number in it, a
contradiction.

Similarly, if a = −∞, then it follows that lim an = −∞.
(ii) Now assume a is finite. In this case, by Lemma 3.13, {an} is bounded. Suppose

{an} does not converge to a. Then, by negating the definition of an → a,

(3.4) ∃ ε0 > 0 ∀N ∈ N ∃ kN ∈ N (kN ≥ N, |akN − a| ≥ ε0).

We use (3.4) as follows. First, choose n1 = k1 ≥ 1 such that |an1 − a| ≥ ε0. Once
n1 is chosen, with N = n1 + 1, there exists n2 = kN ≥ n1 + 1 such that |an2 − a| ≥ ε0.
Continue in this way and we get a subsequence {ank} such that |ank−a| ≥ ε0. Since {ank} is
bounded, by the Bolzano-Weierstrass Theorem, it has a convergent subsequence converging
to a finite number b which, by the order limit theorem, must satisfy that |b − a| ≥ ε0;
this subsequence is also a subsequence of the original {an}, showing b ∈ E, but b 6= a, a
contradiction since E = {a}.

This completes the proof. �
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Theorem 3.15. Let {an} be a sequence in R. Let E and a∗ be defined as above. Then a∗

has the following properties:

(a) a∗ ∈ E.
(b) If x > a∗, then there is an N ∈ N such that an < x for all n ≥ N.

Moreover, a∗ is the only (extended real) number satisfying the properties (a) and (b).

An analogous result is true for a∗.

Proof. (a) If a∗ = +∞, then E is not bounded above; hence {an} is not bounded above,
and, by Lemma 3.13, there is a subsequence {ank} converging to +∞.

If a∗ is finite, then, for every ε > 0, there is x ∈ E such that a∗ − ε < x. Since x is
finite, we have x ∈ E∗, where E∗ is the set defined in the proof of Theorem 3.9; hence,
a∗ − ε < supE∗ for all ε > 0, which proves that a∗ ≤ supE∗ ≤ supE = a∗, and thus
a∗ = supE∗ ∈ E∗ = E∗ ⊆ E since E∗ is closed.

If a∗ = −∞, then E contains only one element −∞; in this case, in fact, the whole
sequence an → −∞. (See the proof of Theorem 3.14.)

This proves (a) in all cases.

(b) Nothing is to prove if a∗ = +∞. So let a∗ < +∞, and hence {an} is bounded
above. Suppose that there is a number x > a∗ such that an ≥ x for infinitely many
n ∈ N. These terms determine a subsequence of {an} which is bounded and thus, by the
Bolzano-Weierstrass theorem, has a convergent subsequence with limit y ≥ x. Since a
subsequence of a subsequence of {an} is also a subsequence of {an}, we have y ∈ E, but
y ≥ x > a∗, contradicting the definition of a∗ = supE.

Thus a∗ satisfies (a) and (b).

To show the uniqueness, let p and q both satisfy (a) and (b), and suppose p < q. Choose
x such that p < x < q. Since p satisfies (b), there exists an N ∈ N such that an < x for all
n ≥ N. So the limit of any convergent subsequence of {an} must be less than or equal to x;
hence, ∀ y ∈ E, y ≤ x < q, but then q cannot be in E, contradicting (a) for q. �

The following result is useful.

Theorem 3.16. If an ≤ bn for all n ≥ N0, where N0 ∈ N is a fixed integer, then

lim inf
n→∞

an ≤ lim inf
n→∞

bn, lim sup
n→∞

an ≤ lim sup
n→∞

bn.

Remark 3.9. There is another way to define upper and lower limits. Let {an} be a sequence
of real numbers. Define

xn = inf{ak | k ≥ n} = inf{an, an+1, an+2, · · · },
yn = sup{ak | k ≥ n} = sup{an, an+1, an+2, · · · }.

If {an} is not bounded below, then xn = −∞ for all n ∈ N; if {an} is bounded below,
then {xn} is monotonically increasing, and hence, by Theorem 3.12, {xn} converges.

Similarly, if {an} is not bounded above, then yn = +∞ for all n ∈ N; if {an} is bounded
above, then {yn} is monotonically decreasing, and hence again, by Theorem 3.12, {yn}
converges.

Therefore, the limits lim
n→∞

xn and lim
n→∞

yn are always well-defined in the extended real

number system. In fact, we have the following.
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Theorem 3.17.

lim
n→∞

xn = lim inf
n→∞

an, lim
n→∞

yn = lim sup
n→∞

an.

3.6. Some Special Sequences

We shall use the following simple result, known as the Squeezing Theorem.

Lemma 3.18. Suppose yn ≤ xn ≤ zn for all n ≥ N , where N ∈ N is some fixed number.
If yn → l and zn → l, then xn → l.

Proof. Given ε > 0, let N ∈ N be such that, for all n ≥ N , |yn − l| < ε and |zn − l| < ε;
thus l − ε < yn ≤ xn ≤ zn < l + ε, that is, |xn − l| < ε for all n ≥ N. Hence xn → l. �

Theorem 3.19. We have

(a) If p > 0, then lim 1
np = 0.

(b) If p > 0, then lim n
√
p = 1.

(c) lim n
√
n = 1.

(d) If p > 0 and α is real, then lim nα

(1+p)n = 0.

(e) If x ∈ R with |x| < 1, then limxn = 0.

Proof. (a) Take N > (1/ε)1/p in the ε-N definition of the convergence.

(b) If p > 1, let xn = n
√
p− 1. Then xn > 0, and, by the binomial theorem,

1 + nxn ≤ (1 + xn)n = p,

so that

0 < xn ≤
p− 1

n
→ 0.

If p = 1, (b) is trivial; if 0 < p < 1, then the result follows by taking reciprocals.

(c) Let xn = n
√
n− 1. Then xn ≥ 0, and by the binomial theorem, if n ≥ 2,

n = (1 + xn)n ≥ n(n− 1)

2
x2
n.

Hence

0 ≤ xn ≤
√

2

n− 1
(n ≥ 2).

(d) Let k be an integer such that k > α, k > 0. For n > 2k,

(1 + p)n >
n(n− 1) · · · (n− k + 1)

k!
pk >

nkpk

2kk!
.

Hence

0 <
nα

(1 + p)n
<

2kk!

pk
nα−k (n > 2k).

Since α− k < 0, it follows that nα−k → 0, by (a).

(e) If x = 0, then (e) is trivial. Assume 0 < |x| < 1. Then

|xn| = |x|n =
1

(1 + p)n
→ 0,

by (d) with α = 0 and p = 1
|x| − 1 > 0. �



12 3. Numerical Sequences and Series

3.7. Infinite Series

Definition 3.10. Let {bn} be a sequence of real numbers. An infinite series, or just a
series, of terms bn is a formal expression of the form

∞∑
n=1

bn = b1 + b2 + b3 + · · · .

The corresponding sequence of partial sums {sn} is defined by

sn = b1 + b2 + · · ·+ bn

for all n ∈ N.

If {sn} converges to a number s ∈ R, then we say that the series
∑∞

n=1 bn converges
(to s ∈ R), and write

∞∑
n=1

bn = s.

The number s is called the sum of the series.

If the partial sum sequence {sn} diverges, then we say that the infinite series
∑∞

n=1 bn
diverges.

Sometimes, for convenience of notation, we shall consider series of the form
∞∑
n=0

bn = b0 + b1 + b2 + · · · .

Frequently, when there is no possible ambiguity, we shall write a series as
∑
bn, whether n

starts with 0 or 1.

By studying the partial sum sequences, we easily obtain the following result.

Theorem 3.20 (Algebraic Theorem for Series). If
∑∞

k=1 ak = A and
∑∞

k=1 bk = B,
then

∞∑
k=1

(cak + dbk) = cA+ dB for all c, d ∈ R.

Note that there is no similar rule for the product series
∑∞

k=1(akbk) or the quotient
series

∑∞
k=1(ak/bk).

Theorem 3.21 (Cauchy Criterion for Series). The series
∑∞

k=1 ak converges if and
only if, given any ε > 0, there exists an N ∈ N such that whenever n > m ≥ N it follows
that

|am+1 + am+2 + · · ·+ an| < ε.

Proof. Note that sn − sm = am+1 + am+2 + · · · + an. Hence the criterion is equivalent to
the Cauchy criterion for the converegnce of partial sum sequence {sn}. �

Theorem 3.22. If
∑∞

n=1 an converges, then an → 0.

Proof. Let {sn} be the sequence of partial sums of series
∑
an, and let s0 = 0. If sn → s

for some s ∈ R, then, since an = sn− sn−1, it follows that an = sn− sn−1 → s− s = 0. �

This easy result is often used to show a series diverges by showing the sequence of its
terms does not converge to 0. However, it can not be used to show the convergence simply
from the limit an → 0, as seen from the examples later.
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Theorem 3.23 (Comparison Test). Assume {ak} and {bk} are sequences of real numbers.

(a) If |ak| ≤ bk for all k ≥ N0, where N0 ∈ N is some integer, and if
∑∞

k=1 bk
converges, then

∑∞
k=1 ak converges.

(b) If ak ≥ bk ≥ 0 for all k ≥ N0, where N0 ∈ N is some integer, and if
∑∞

k=1 bk
diverges, then

∑∞
k=1 ak diverges.

Proof. (a) Given ε > 0, by the Cauchy criterion, there exists N ∈ N with N ≥ N0 such
that for all n,m ∈ N with n > m ≥ N it follows that

bm+1 + bm+2 + · · ·+ bn < ε.

Hence, by the triangle inequality,

|am+1 + am+2 + · · ·+ an| ≤ |am+1|+ |am+2|+ · · ·+ |an| ≤ bm+1 + bm+2 + · · ·+ bn < ε,

which, again by the Cauchy criterion, shows that
∑
an converges.

(b) If
∑
an converges, then by (a),

∑
bn must converge.

�

Remark 3.11. The comparison test (b) gives no information on convergence of the larger
series

∑∞
k=1 ak from the convergence of smaller series

∑∞
k=1 bk. In fact, when the smaller

series
∑∞

k=1 bk converges, the larger series
∑∞

k=1 ak could either converge or diverge. For

example, let bn = 1
n4 and consider either sequence an = 1

n or sequence an = 1
n2 . (See details

later.)

Corollary 3.24 (Absolute Convergence Test). If the series
∑∞

k=1 |ak| converges, then∑∞
k=1 ak converges as well.

Proof. This follows directly from (a) of Theorem 3.23 with bk = |ak|. �

Definition 3.12. We say that the series
∑∞

k=1 ak converges absolutely, or is absolutely
convergent, if

∑∞
k=1 |ak| converges. The previous result says that an absolutely convergent

series always converges.

We say that the series
∑∞

k=1 ak converges conditionally if
∑∞

k=1 ak converges but∑∞
k=1 |ak| diverges.

Geometric Series.

Theorem 3.25 (Geometric series). Let x ∈ R. If |x| < 1, then

(3.5)
∞∑
n=0

xn = 1 + x+ x2 + x3 + · · · = 1

1− x
.

If |x| ≥ 1, then the series
∞∑
n=0

xn diverges. The series
∞∑
n=0

xn is called the geometric series

of ratio x.

Proof. If x 6= 1, then the partial sum sequence {sn} of the series
∑∞

n=0 x
n is given by

sn = 1 + x+ x2 + · · ·+ xn−1 =
1− xn

1− x
(n ∈ N).

The sequence {sn} converges to 1
1−x if |x| < 1. If |x| ≥ 1, then clearly |xn| = |x|n ≥ 1, and

hence
∑
xn diverges. �
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3.8. Series of Nonnegative Terms

Theorem 3.26. A series of nonnegative terms converges if and only if its partial sum
sequence is bounded above.

Proof. Note that if bn ≥ 0 then the partial sum sequence {sn} of series
∑
bn is monotoni-

cally increasing. Therefore, in this case, by the (proof of MCT), the partial sum sequence
{sn} converges if and only if it is bounded above. �

Theorem 3.27 (Cauchy’s Theorem). Suppose a1 ≥ a2 ≥ a3 ≥ · · · ≥ 0. Then the series∑∞
n=1 an converges if and only if the series

∞∑
k=0

2ka2k = a1 + 2a2 + 4a4 + 8a8 + 16a16 + · · ·

converges.

Proof. By Theorem 3.26, it suffices to prove that the partial sum sequence of
∑
an is

bounded above if and only if the partial sum sequence of
∑

2ka2k is bounded above.

Let sn = a1 + a2 + · · ·+ an and

tk =
k∑
j=0

2ja2j = a1 + 2a2 + 4a4 + · · ·+ 2ka2k .

For any n ∈ N, if 2k > n, then

sn ≤ a1 + (a2 + a3) + · · ·+ (a2k + · · ·+ a2k+1−1) ≤ a1 + 2a2 + · · ·+ 2ka2k = tk.

Hence, if {tk} is bounded above, then so is {sn}.
For any k ∈ N, if n > 2k, then

sn ≥ a1 + a2 + (a3 + a4) + · · ·+ (a2k−1+1 + · · ·+ a2k)

≥ 1

2
a1 + a2 + 2a4 + · · ·+ 2k−1a2k =

1

2
tk,

so that tk ≤ 2sn, and hence if {sn} is bounded above, then so is {tk}. �

Theorem 3.28. The series
∑ 1

np converges if p > 1 and diverges if p ≤ 1.

Proof. Clearly, if p ≤ 0, then 1
np ≥ 1 and hence

∑ 1
np diverges. If p > 0 then Theorem

3.27 is applicable, and we are led to the series
∞∑
k=0

2k
1

2kp
=
∞∑
k=0

2(1−p)k,

which is a geometric series with ratio x = 21−p; hence the result follows. �

Theorem 3.29. Let b > 1. Then the series
∑∞

n=2
1

n(logb n)p converges if p > 1 and diverges

if p ≤ 1.

Proof. If p ≤ 0, the series diverges by comparison with
∑ 1

n . Hence, assume p > 0. By the
previous theorem, the series

∞∑
k=1

2k
1

2k(logb 2k)p
=

1

(logb 2)p

∞∑
k=1

1

kp
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converges if p > 1 and diverges if 0 < p ≤ 1. The result then follows from Cauchy’s
theorem. �

Remark 3.13. Given p > 1 and q > 1, there exists no integer N0 ∈ N such that

1

n(logb n)p
≤ 1

nq
∀ n ≥ N0.

Hence the convergence result in Theorem 3.29 cannot be deduced from Theorem 3.28 by
using the comparison theorem.

3.9. The Root and Ratio Tests

Theorem 3.30. For any sequence {cn} of positive numbers, it follows that

lim inf
n→∞

cn+1

cn
≤ lim inf

n→∞
n
√
cn ≤ lim sup

n→∞
n
√
cn ≤ lim sup

n→∞

cn+1

cn
.

Proof. We prove lim sup n
√
cn ≤ lim sup cn+1

cn
; the proof concerning liminf is similar.

Let α = lim sup cn+1

cn
. If α = +∞, there is nothing to prove. Assume α < +∞. Let

β > α be any number, and choose an integer N ∈ N such that

cn+1

cn
≤ β ∀n ≥ N ;

that is, cn+1 ≤ βcn for all n ≥ N . Hence,

cN+p ≤ βpcN ∀ p ∈ N,

or cn ≤ cNβ−Nβn for all n ≥ N. Hence

n
√
cn ≤ (cNβ

−N )1/nβ ∀n ≥ N.

Thus

lim sup
n→∞

n
√
cn ≤ β,

for all β > α. Consequently, lim sup n
√
cn ≤ α. This completes the proof. �

Theorem 3.31 (Root Test). Given a series
∑
an, let α = lim sup

n→∞
n
√
|an| (including

α = +∞). Then

(a) if α < 1,
∑
an converges absolutely;

(b) if α > 1,
∑
an diverges;

(c) if α = 1, the test gives no information.

Proof. (a) Assume α < 1. We choose β so that α < β < 1, and N ∈ N such that

n
√
|an| < β ∀n ≥ N.

That is, |an| < βn for all n ≥ N. Since 0 < β < 1,
∑
βn converges; hence, by the comparison

test,
∑
|an| converges, and thus

∑
an converges absolutely, by Corollary 3.24.

(b) Assume α > 1. Let {ank} be a subsequence such that

lim
k→∞

nk

√
|ank | = α.

Hence |ank | > 1 for k ≥ K, where K ∈ N is some integer. Therefore, {an} cannot converge
to 0, and hence

∑
an diverges.
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(c) Consider two series
∑ 1

n and
∑ 1

n2 ; for both, we have α = 1, but the first diverges,
while the second one converges. �

From Theorem 3.30 and the root test, we easily have the following theorem, which
sometimes may be easier to use than the root test.

Corollary 3.32 (Ratio Test). The series
∑
an converges absolutely if lim sup

n→∞
|an+1

an
| < 1.

Example 3.4. Sometimes the ratio may fail, but the root test still works. Consider the
series

1

2
+

1

3
+

1

22
+

1

32
+

1

23
+

1

33
+ · · · ;

that is,
∑
an, where

an =

{
(1

2)
n+1
2 (n = 1, 3, 5, · · · ),

(1
3)

n
2 (n = 2, 4, 6, · · · ),

or a2k−1 = (1
2)k, a2k = (1

3)k for all k ∈ N. Then we have

lim inf
n→∞

an+1

an
= lim

k→∞

a2k

a2k−1
= lim

k→∞
(
2

3
)k = 0,

lim inf
n→∞

n
√
an = lim

k→∞
2k
√
a2k = lim

k→∞

2k
√

3−k =
√

1/3,

lim sup
n→∞

n
√
an = lim

k→∞
2k−1
√
a2k−1 = lim

k→∞

2k−1
√

2−k =
√

1/2,

lim sup
n→∞

an+1

an
= lim

k→∞

a2k+1

a2k
= lim

k→∞

1

2
(
3

2
)k = +∞.

Hence, the series converges by the root test, which cannot be concluded by using the ratio
test.

3.10. Summation by Parts

Lemma 3.33. Given two sequences {an} and {bn}, let

An =

n∑
k=1

ak = a1 + a2 + · · ·+ an

if n ∈ N, and A0 = 0. Then, if 1 ≤ p ≤ q, we have

q∑
k=p

akbk = Aqbq −Ap−1bp +

q−1∑
k=p

Ak(bk − bk+1).

Proof.
q∑

k=p

akbk =

q∑
k=p

(Ak −Ak−1)bk =

q∑
k=p

Akbk −
q∑

k=p

Ak−1bk =

q∑
k=p

Akbk −
q−1∑

k=p−1

Akbk+1

=

q−1∑
k=p

Akbk +Aqbq

−
Ap−1bp +

q−1∑
k=p

Akbk+1

 = Aqbq −Ap−1bp +

q−1∑
k=p

Ak(bk − bk+1).

�

Theorem 3.34. Given two sequences {an} and {bn}, suppose that

(a) the partial sum sequence {An} of {an} is bounded;
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(b) b1 ≥ b2 ≥ b3 ≥ · · · ≥ 0 and bn → 0.

Then
∑
anbn converges.

Proof. Let |An| ≤ M for all n ∈ N, where M > 0 is a fixed finite number. Given ε > 0,
there is an integer N ∈ N such that bN < ε

2M . Then, for all p, q ∈ N with q ≥ p ≥ N ,∣∣∣∣∣∣
q∑

k=p

akbk

∣∣∣∣∣∣ =

∣∣∣∣∣∣
q−1∑
k=p

Ak(bk − bk+1) +Aqbq −Ap−1bp

∣∣∣∣∣∣
≤

q−1∑
k=p

|Ak||bk − bk+1|+ |Aq||bq|+ |Ap−1||bp|

≤M

q−1∑
k=p

(bk − bk+1) + bq + bp

 = 2Mbp ≤ 2MbN < ε.

Hence, by the Cauchy criterion,
∑
anbn converges. �

Corollary 3.35 (Alternating Series Test). Let {bn} satisfy

b1 ≥ b2 ≥ b3 ≥ · · · ≥ 0, bn → 0.

Then the alternating series

∞∑
n=1

(−1)n+1bn = b1 − b2 + b3 − b4 + · · ·

converges.

Proof. Apply the theorem with an = (−1)n+1 and bn. �

Example 3.5. (i) The alternating harmonic series:

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ · · ·

converges by the alternating series test. But since the series of absolute values
∑ 1

n
diverges, this series converges conditionally.

(ii) The series
∞∑
n=1

(−1)n+1

n2
= 1− 1

22
+

1

32
− 1

42
+ · · ·

is also a convergent alternating series, but converges absolutely because the absolute series∑ 1
n2 converges. So there are two tests we can use to deduce the convergence of this series;

however, the alternating series test only asserts the convergence and does not tell whether
the convergence is conditional or absolute.

(iii) Often, to determine whether a series converges or not, you should first try to use
the absolute convergence test; if it does not work, then try to use other tests.
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3.11. The Number e

Definition 3.14. Define

e =

∞∑
n=0

1

n!
= 1 + 1 +

1

2!
+

1

3!
+ · · · ,

where 0! = 1 and n! = 1 · 2 · 3 · · ·n for n ≥ 1. Since

sn =
n∑
k=0

1

k!
= 1 + 1 +

1

1 · 2
+

1

1 · 2 · 3
+ · · ·+ 1

1 · 2 · · ·n

< 1 + 1 +
1

2
+

1

22
+ · · ·+ 1

2n−1
< 3,

it follows from Theorem 3.26 that the series
∑∞

n=0
1
n! converges, and the definition makes

sense.

Theorem 3.36.

lim
n→∞

(
1 +

1

n

)n
= e.

Proof. Let

(3.6) sn =
n∑
k=0

1

k!
, tn =

(
1 +

1

n

)n
By the binomial theorem,

tn =
n∑
k=0

n(n− 1) · · · (n− k + 1)

k!nk
=

n∑
k=0

1

k!
(1− 1

n
)(1− 2

n
) · · · (1− k − 1

n
).

(Note that in this expression the first two terms when k = 0, 1 are both taken to be 1.)
Hence tn ≤ sn, so that

lim sup tn ≤ e.
Next, if n ≥ m ≥ 2, then

tn ≥ 1 + 1 +
1

2!
(1− 1

n
) + · · ·+ 1

m!
(1− 1

n
)(1− 2

n
) · · · (1− m− 1

n
).

Keep m fixed and let n→∞, and we get

lim inf tn ≥ 1 + 1 +
1

2!
+ · · ·+ 1

m!
,

so that sm ≤ lim inf tn, for all m ≥ 2, which gives

e ≤ lim inf tn.

Therefore, by Theorem 3.14, lim tn = e. �

Lemma 3.37. Let sn be defined by (3.6). Then

0 < e− sn <
1

n!n
.

Proof. Clearly,

e− sn =

∞∑
k=n+1

1

k!
<

1

(n+ 1)!

∞∑
k=0

1

(n+ 1)k
=

1

n!n
.

�
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Theorem 3.38. e is irrational.

Proof. Suppose e is rational. Then e = p/q, where p, q ∈ N. By Lemma 3.37,

0 < q!(e− sq) <
1

q
.

Clearly,

q!sq = q!(1 + 1 +
1

2!
+ · · ·+ 1

q!
)

is an integer, and by assumption, q!e = (q− 1)!p ∈ N; hence, q!(e− sq) is an integer, which
contradicts with 0 < q!(e− sq) < 1

q . �

3.12. Power Series

Definition 3.15. Given a sequence {an}∞n=0 of real numbers, the series
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + · · ·

is called a power series. The numbers an are called the coefficients of the power series,
and x is a real number.

In general, the convergence of a power series depends on the choice of variable x. On
the set of all x such that the power converges, the sum

∑
anx

n defines a function. The
following theorem characterizes this set.

Theorem 3.39. Given a power series
∑
anx

n, let

α = lim sup
n→∞

n
√
|an|, R =

1

α
,

(if α = 0, then R = +∞; if α = +∞, then R = 0). This number R is called the radius of
convergence of the power series.

Then, the series
∑
anx

n converges absolutely if |x| < R, and diverges if |x| > R. The
series may converge or diverge if |x| = R.

Proof. Let bn = anx
n. Then n

√
|bn| = |x| n

√
|an| and hence

lim sup
n→∞

n
√
|bn| = |x| lim sup

n→∞
n
√
|an| = |x|/R.

Consequently, the conclusion follows from the root test. �

Corollary 3.40. If a power series
∑
anx

n converges at some x = x0 6= 0, then
∑
anx

n

converges absolutely for all x with |x| < |x0|.

Proof. If
∑
anx

n converges at x = x0 6= 0, then its radius of convergence R ≥ |x0|; hence∑
anx

n converges absolutely for all x with |x| < |x0| ≤ R. �

Example 3.6. (1) The power series
∑
nnxn has R = 0, and only converges when

x = 0.

(2) The power series
∑ xn

n! hasR = +∞ (easily seen using the ratio test), and converges
for all x ∈ R.

(3) The power series
∑ xn

n2 has R = 1; it also converges for all x ∈ R with |x| ≤ 1.

(4) The power series
∑ xn

n has R = 1; it converges if x = −1, but diverges if x = 1.
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3.13. Multiplication of Series

Definition 3.16. Given
∑∞

n=0 an and
∑∞

n=0 bn, let

cn =
n∑
k=0

akbn−k (n = 0, 1, 2, · · · ).

Then the series
∑
cn is called the product of the two given series.

To motivate this definition, let us consider two power series
∞∑
n=0

anx
n,

∞∑
n=0

bnx
n.

If we multiply the two series term-by-term and collect the like terms, we get( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

)
=

∞∑
n=0

cnx
n.

Setting x = 1, we arrive at the above definition.

Example 3.7. We show that even if
∑
an and

∑
bn both converge the product series

∑
cn

may diverge.

Let an = bn = (−1)n√
n+1

. Then, by the alternating series test,
∑
an converges. Compute

cn =
n∑
k=0

akan−k =
n∑
k=0

(−1)k√
k + 1

(−1)n−k√
n− k + 1

= (−1)n
n∑
k=0

1√
(n− k + 1)(k + 1)

.

Note that, for all k,

(n− k + 1)(k + 1) = (
n

2
+ 1)2 − (

n

2
− k)2 ≤ (

n

2
+ 1)2;

hence,

|cn| ≥
n∑
k=0

2

n+ 2
=

2(n+ 1)

n+ 2
≥ 1.

Hence
∑
cn diverges.

However, we have the following result.

Theorem 3.41. Suppose
∑
an converges absolutely and

∑
bn converges. Let

∞∑
n=0

an = A,

∞∑
n=0

bn = B, cn =

n∑
k=0

akbn−k (n = 0, 1, 2, · · · ).

Then
∑
cn converges, and

∞∑
n=0

cn = AB.

Proof. Let

An =

n∑
k=0

ak, Bn =

n∑
k=0

bk, Cn =

n∑
k=0

ck.

Let βn = Bn −B, and let

γn =
n∑
k=0

akβn−k = a0βn + a1βn−1 + · · ·+ anβ0.



3.14. Rearrangements 21

Then

Cn = a0b0 + (a0b1 +a1b0) + · · ·+ (a0bn+a1bn−1 + · · ·+anb0) = a0Bn+a1Bn−1 + · · ·+anB0

= a0(B+βn)+a1(B+βn−1)+· · ·+an(B+β0) = AnB+a0βn+a1βn−1+· · ·+anβ0 = AnB+γn.

It suffices to show that γn → 0. Let ε > 0 be given. Let α =
∑
|an|. Since βn → 0, we

can choose an N ∈ N such that |βn| < ε for all n ≥ N. Hence, if n ≥ N , then

|γn| ≤ |β0an + · · ·+ βNan−N |+ |βN+1an−N−1 + · · ·+ βna0|
≤ |β0||an|+ · · ·+ |βN ||an−N |+ εα.

Keeping N fixed, and letting n→∞, we get

lim sup
n→∞

|γn| ≤ εα,

since ak → 0 as k →∞. Since ε > 0 is arbitrary, we have proved lim |γn| = 0. �

Theorem 3.42 (Abel’s theorem). If
∑
an,

∑
bn and their product series

∑
cn all con-

verge, then ( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
=

∞∑
n=0

cn.

Proof. The proof uses the continuity of power series, and will not be discussed here. �

3.14. Rearrangements

Definition 3.17. Given two series
∞∑
n=1

an and
∞∑
n=1

bn, we say that
∞∑
n=1

bn is a rearrange-

ment of
∞∑
n=1

an if there exists a 1-1 function f from N onto N such that

bn = af(n) ∀ n ∈ N.

If
∑
bn is a rearrangement of

∑
an, we see that every term of

∑
bn appears exactly

once in
∑
an and, vice-versa, every term of

∑
an appears exactly once in

∑
bn. However,

their partial sum sequences may differ greatly.

Now, if a series
∑
an and one of its rearrangements

∑
bn both converge, do we have

that
∑
bn =

∑
an? The answer is no, in general.

Example 3.8. Consider the convergent alternating harmonic series

S =
∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · .

Let sn be the partial sum. Then s2k >
1
2 and hence S ≥ 1

2 . Also

1

2
S =

1

2
− 1

4
+

1

6
− 1

8
+ · · ·+ (−1)n+1 1

2n
+ · · ·

= 0 +
1

2
+ 0− 1

4
+ 0 +

1

6
+ 0− 1

8
+ · · ·+ 0 +

1

2(2k − 1)
+ 0− 1

4k
+ 0 + · · · ,

where all the odd terms are 0. So

S +
1

2
S =

3

2
S = 1 + 0 +

1

3
− 1

2
+

1

5
+ 0 +

1

7
− 1

4
+

1

9
+ 0 +

1

11
− 1

6
+ · · ·

= 1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+ · · · ,
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which becomes a rearrangement of S = 1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + · · · ; but certainly their sums

are not equal since S 6= 0.

In fact, Riemann proved the following theorem.

Theorem 3.43 (Riemann’s theorem). Let
∑
an converge conditionally. Suppose −∞ ≤

α ≤ β ≤ +∞. Then there exists a rearrangement
∑
bn of

∑
an whose partial sum sequence

{Bn} satisfies

(3.7) lim inf
n→∞

Bn = α, lim sup
n→∞

Bn = β.

In particular, for any −∞ ≤ α ≤ +∞, there exists a rearrangement
∑
bn of

∑
an such

that
∑
bn = α.

Proof. Let

pn =
|an|+ an

2
, qn =

|an| − an
2

(n ∈ N).

Then pn−qn = an, pn+qn = |an|, pn ≥ 0, qn ≥ 0. Since
∑
an converges but

∑
|an| diverges,

it follows that both
∑
pn and

∑
qn must diverge.

Now let P1, P2, P3, · · · denote the nonnegative terms in the sequence {an} in the order
they occur, and let Q1, Q2, Q3, · · · denote the absolute values of the negative terms in {an},
also in their original order.

The series
∑
Pn,

∑
Qn differ from

∑
pn,

∑
qn only by zero terms, and hence both

diverge.

We shall construct sequences {mn}, {kn} of increasing positive integers, such that the
series

(3.8) P1 +P2 + · · ·+Pm1−Q1−Q2−· · ·−Qk1 +Pm1+1 + · · ·+Pm2−Qk1+1−· · ·−Qk2 + · · · ,
which clearly is a rearrangement of

∑
an, satisfies (3.7).

Let {αn}, {βn} be real sequences, such that αn → α, βn → β, αn < βn and β1 > 0.

Let m1, k1 be the smallest positive integers such that

P1 + P2 + · · ·+ Pm1 > β1, P1 + P2 + · · ·+ Pm1 −Q1 − · · · −Qk1 < α1;

let m2 > m1, k2 > k1 be the smallest positive integers such that

P1 + P2 + · · ·+ Pm1 −Q1 − · · · −Qk1 + Pm1+1 + · · ·+ Pm2 > β2,

P1 + P2 + · · ·+ Pm1 −Q1 − · · · −Qk1 + Pm1+1 + · · ·+ Pm2 −Qk1+1 − · · · −Qk2 < α2;

this process continues without stopping in a finite number of steps since Pn → 0, Qn → 0
and both

∑
Pn,

∑
Qn diverge.

If xn, yn denote the partial sums of (3.8) whose last terms are Pmn , −Qkn , respectively,
then xn − Pmn ≤ βn < xn and yn < αn ≤ yn +Qkn ; hence

|xn − βn| ≤ Pmn → 0, |yn − αn| ≤ Qkn → 0.

Hence xn → β, yn → α.

For every k ∈ N, let Sk be the partial of (3.8) of first k terms. The last term of Sk is
either Pj for some mi−1 +1 ≤ j ≤ mi, where i = i(k) ∈ N is such that i(k)→∞ as k →∞,
or Qp for some kq−1 + 1 ≤ p ≤ kq, where q = q(k) ∈ N is such that q(k)→∞ as k →∞.

In the first case, if j = mi then Sk = xi; if mi−1 + 1 ≤ j < mi then αi ≤ Sk ≤ βi. In
the second case, if p = kq then Sk = yq; if kq−1 ≤ p < kq then αq ≤ Sk ≤ βq. Therefore, any
convergent subsequence of {Sk} can only have a limit in [α, β]. This proves (3.7). �
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However, the situation is totally different if
∑
an converges absolutely.

Theorem 3.44. If
∞∑
n=1
|an| converges, then, for any rearrangement function (i.e., 1-1 cor-

respondence) f : N→ N, it follows that
∞∑
n=1

an =
∞∑
n=1

af(n).

Proof. Let bk = af(k) for k ∈ N. For n,m ∈ N, define

sn = a1 + a2 + · · ·+ an; tm = b1 + b2 + · · ·+ bm.

Let sn → A as n → ∞. We show that tm → A as m → ∞. Given any ε > 0, we find an
N ∈ N such that

|sN −A| < ε/2,
n∑

k=m+1

|ak| < ε/2 ∀ n > m ≥ N.

Since f : N → N is 1-1 and onto, let {i1, i2, · · · , iN} ⊆ N be such that f(ik) = k for each
k = 1, 2, · · · , N. Let

M = max{i1, i2, · · · , iN}.
ThenM ≥ N. Letm ∈ N be such thatm ≥M. Then, since {i1, i2, · · · , iN} ⊆ {1, 2, 3, · · · ,m},
it follows that

tm = b1 + b2 + · · ·+ bm = af(1) + af(2) + · · ·+ af(m)

= af(i1) + af(i2) + · · ·+ af(iN ) +
∑
j∈J

af(j)

= a1 + a2 + · · ·+ aN +
∑
j∈J

af(j)

= sN +
∑
j∈J

af(j),

where J = {1, 2, 3, · · · ,m} \ {i1, i2, · · · , iN}. Since J ∩ {i1, i2, · · · , iN} = ∅, we have f(j) ≥
N + 1 for all j ∈ J. Let K = max{f(j) : j ∈ J} ≥ N + 1. Then N + 1 ≤ f(j) ≤ K for all
j ∈ J and hence ∣∣∣∣∣∣

∑
j∈J

af(j)

∣∣∣∣∣∣ ≤
∑
j∈J
|af(j)| ≤

K∑
k=N+1

|ak| < ε/2.

Finally, it follows that, for all m ≥M ,

|tm −A| ≤ |sN −A|+

∣∣∣∣∣∣
∑
j∈J

af(j)

∣∣∣∣∣∣
< ε/2 +

∑
j∈J
|af(j)| < ε/2 + ε/2 = ε.

This proves tm → A as m→∞. �
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