Chapter 8

Numerical Sequences
and Series

3.1. Convergent Sequences

Definition 3.1. A sequence {p,} in a metric space X is said to converge in X if there is
a point p € X with the following property: For every number ¢ > 0, there exists an integer
N € N such that whenever n € N and n > N it follows that d(p,,p) < e. That is, {p,} is
said to converge in X if the following is true:

dpeXVe>0INeNVneN (n>N = d(pp,p) <e).

In this case, we also say that {p,} converges to p, or p is a limit of {p,}, and we write
Pn — p, OF
lim p, =p, orsimply, limp, =p.

n—o0

Note that convergence is a concept not only depending on the given sequence but also
on the metric space X in which the sequence and its limit are considered.

If a sequence {p,} does not converge in X, then we say that it diverges in X.

A sequence {p,} in a metric space X is said to be bounded if the set F = {p,,: n € N}
(i.e., the range of {p,}) is bounded in X; that is, for some ¢ € X and number M > 0,

d(pn,q) <M VYneN.
Theorem 3.1. Let {p,} be a sequence in a metric space X.

(a) {pn} converges to a limit p € X if and only if every neighborhood of p contains py,
for all but finitely many n € N.

(b) If {pn} converges to p € X and to q € X, then p = q.
(¢) If {pn} converges, then {p,} is bounded.

Proof. (a) Note that d(p,,p) < € <= p, € Nc(p).

(b) Suppose, for the contrary, p # g. Then § = d(p,q) > 0. Since p,, — p and p, — q,
there exist integers N1, No € N such that

1 1
d(pn,p) < 55 (Vn>N1), d(pn,q) < 55 (Vn > Na).

1



2 3. Numerical Sequences and Series

Let N = max{Nj, Nao}, or for the same purpose, one could let N = N; + Na. Then
d(pn,p) < %5 and d(pn,q) < %5. Hence, by the triangle inequality, we have

1.1
d(p,q) < d(p,pn) +d(pn,q) < 55 + 55 =6 =d(p,q),

which is a contradiction.
(c) Suppose p, — p. Then there exists an N € N such that
d(pn,p) <1 ¥n>N.
Let M = max{1, d(p1,p),- - ,d(pn,p)}. Then d(p,,p) < M for all n € N; this proves {p,}
is bounded. O

Theorem 3.2. Let X be a metric space, E C X, and p € X. Then p is a limit point of E
if and only if there is a sequence {py,} in E such that p, # p and p, — p.

Proof. First suppose p € E’. Then, for each n € N, there is a point p, € Ny,(p) such

that p, # p and p, € E. Given each € > 0, let N € N be such that % < €. Then for n € N
if n > N then

< <
_ €.
N

S|

d(pn,p) <
By definition, we have p,, — p.

Conversely, suppose there is a sequence {p,} in E such that p, # p and p, — p. Let
N;(p) be any neighborhood of p, where r > 0. Since p, — p, there is N € N such that
d(pn,p) < r for all n > N. Hence py € N,(p), py € E, and py # p. By definition,
peE. O

EXAMPLE 3.1. Show
n+1

lim( )= 1.

Proof. Let a, = “t! and a = 1. Then the inequality

1
= — <€
n

n+1
n

-1

lan —a| =

is the same as n > % The existence of N € N is guaranteed by the Archimedean property:
there always exists an N € N such that N > % The actual proof goes as follows.

Let € > 0 be arbitrary. By the Archimedean property, there exists an IV € N such that
N > 1. Then whenever n € N we have 1/n < 1/N < € and hence
1

—1‘=<6.
n

n—+1
n

lan — al =

Therefore, by definition, lima,, = 1. ]
Theorem 3.3 (Algebraic Limit Theorem). Suppose {a,},{bn} are sequences of real

numbers, and lim a, = a, limb, = b exist in R. Then
(i) lim(can) = ca for all c € R;

(ii) lim(ay, + b,) = a + b;

(iii) lim(anby,) = ab;

(iv) lim(an/bn) = a/b, provided b, # 0 and b # 0.

Warning: We can use these formulas only when both the limits lim a,, and lim b, ezist.
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Proof. We only include the proof for the product and quotient theorem.
Proof of (iii): Note that

anby, — ab = ayby, — apb + apb — ab = a,(by, — b) + (a, — a)bd.
Therefore, by the Triangle Inequality,
|lanbn — abl < |an(by — )| + [(an — a)b] = [an||by — b] + |an — al[b].
Given € > 0, in order to make |a,b, — ab| < ¢, it suffices to make each of the two terms on

the right hand side < €/2. Since (ay,) converges, it is bounded and so |a,| < M (¥ n € N)
for some number M > 0. Hence the two terms are bounded as follows:

|anlbn = 0] < M|b, —b],  |an — al|b] < |an —al([b] + 1)

(here we change |[b] > 0 to |b| +1 > 0 for the division later). Now, given arbitrary e > 0,
since (a,) — a, we have N; € N such that
€
anp —a|l < ——— Vn>Nj.
an =l < g =
Since (b,) — b, we have Ny € N such that

|bn—b|<ﬁ anNQ

Let N = max{Nj, No} (or N = Nj + N3). Then, for this N, whenever n > N, it follows

that
€

bp — b < —;
| | <537

lan, —a] <

¢
2(]o] + 1)’
hence

b
an—alltl < =2 o €
2(]b| + 1) 2

and finally, it follows that, whenever n > N,
|anb, — ab| < |ap||bn — bl + |an, — al|b] < €/2+¢€/2 =e.

an]1b = b] < Mby — ] < 5.

By definition, (a,b,) — ab.

Proof of (iv): Note that
a, a _ ba, —ab, b(an, —a) + a(b—by)

b, b byb b,b
Hence
an a| _ |bllan —al| | |a|[b— by
3.1 oz
(3.1) by b= |bub| Db

Since (b,) — b # 0, with € = |b|/2 > 0, there exists an N7 € N such that |b, — b| < |b|/2
for all n > Nj. Hence, by the triangle inequality, |b,| > [b] — |b, — b| > |b]/2 for all n > Nj.
So, for all n > Ny, we have |b,b| > [b|?/2 and hence

an al _ |bllan —al  lal[b— by
2 N ] |brb]
2 2al 2 oal + 1
lan —al + 5 by — b| < —|an —a| + |br, — b
’b’ b2 o] 0]

We then use the convergences as before to select No and N3 in N such that

la, —al < | | whenever n > N



4 3. Numerical Sequences and Series

and
by — b| < elbf* h > N
— —————  whenever n .
" 2(2]al + 1) =
Finally, let N = max{Ny, No, N3}. Then, whenever n > N, it follows that
a, a 2 2al +1
In Ol e S —al+ 20T, b < /24 /2 =
bn b — |b‘ |an (I| + |b|2 | n | 6/ + 6/ €

0

Theorem 3.4 (Order Limit Theorem). Suppose {ay},{bn} are sequences of real num-
bers. Assume lima, = a and lim b, = b both exist. If a, < b, for alln > Ny, where Ny € N
s some integer, then a < b.

Proof. Suppose, for the contrary, a > b. Then lim(a,, —b,) = a—b > 0. Using € = aT_b >0,

we have an NV € N such that

(n — ) — (a—b) <e= 22"

2
Hencea —b—e<a, —b, <a—b+eforalln>N.Buta—b—¢= “771’ > 0; this implies
that a, — b, > aT_b > 0 for all n > N. So a,, > b, for all n > N; in particular, a,, > b, for
n = Ny + N > Ny, which contradicts the assumption a,, < b, for all n > Nj. ]

Vn > N.

Theorem 3.5. Consider the Euclidean space RF.
(a) Suppose x, € R for each n € N, and let x, = (a1,n, a2,n, - - - , k), where aj, €
R(1<j<k). Thenx, = x = (a1,as,...,a;) € R¥ if and only if
lim aj, =a; (1<j<k).

n—oo
(b) Suppose {x,},{yn} are sequences in R¥, {B,} is a sequence of real numbers, and
Xn = X, Vn =Y, Bn — B. Then

lim(x, +y,) =x+y, lm(x, y,) =x-y, lm(8.,x,)=/x.

3.2. Subsequences

Definition 3.2. Let {p,} be a sequence in a metric space X, and let n; < ng < nz < ---
be an increasing sequence of natural numbers. Then the sequence

{pnk}zozl = {pn17pn27pn31 o }

is called a subsequence of {p,}. Note that the order of the terms in a subsequence is kept
unchanged as in the original sequence.

If a subsequence {py, } converges in X, then its limit is called a subsequential limit
of {pp} in X.

Theorem 3.6. A sequence {p,} in a metric space X converges to p € X if and only if
every subsequence of {p,} converges to p.

Proof. Clearly, a sequence is also a subsequence of itself. Thus, to prove the theorem,
we need to prove that if p, — p then every subsequence {p,, } also converges to p. Since
1 <ny <ng <--- are integers, clearly, ny > k for k € N. Given ¢ > 0, let N € N be such
that d(pn,p) < € for all n > N. Then, for all £ > N, since ny > k > N, it follows that
d(pn,,p) < €. By definition, kli_g)lopnk =p. O
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Theorem 3.7. Every sequence in a compact metric space contains a convergent subse-
quence.

Proof. Let X be a compact metric space and {p,} be a sequence in X. Let E be the range
of {pn}.

If F is finite, then there is a p € F such that p, = p for infinitely many n € N. Hence,
there is a sequence {n;} in N with n; < ng < ---, such that p,, = p for all i € N. The
subsequence so obtained is constant and hence converges to p.

If F is infinite, then, as an infinite subset of a compact set X, F has a limit point p € X.
Choose n1 € N so that d(pp,,p) < 1. Having chosen n; < ng < --- < n;—1 in N, since every
neighborhood of p contains infinitely many points of F, there exists an n; > n;—1 in N such
that d(pp,,p) < 1/i. Then, the subsequence {p,,} converges to p. O

Corollary 3.8 (Bolzano-Weierstrass Theorem). Every bounded sequence in R* con-
tains a convergent subsequence.

Proof. The closure of the range of every bounded sequence is a compact set of R* which
contains the given sequence. Then use the theorem above. O

Theorem 3.9. The set of all subsequential limits of a sequence in a metric space X is a
closed subset of X.

Proof. Let {p,} be a sequence in X and let E* be the set of all subsequential limits of
{pn} in X. To show E* is closed, let ¢ be a limit point of E* (if E* has no limit points then
E* is closed). We need to show g € E*.

Take ny = 1 and let d(p1,q) < M for some M > 0. Now assume 1 = n; < ng <
-+« < m;_1 are chosen in N. Since ¢ is a limit point of E*, there is an x € E* such that
d(x,q) < M/i. Since € E*, there exists a subsequence of {p,} converging to x; hence
there is an integer n; > m;_1 such that d(p,,,z) < M/i. Thus, we obtain a subsequence
{pn,} that satisfies

d(pn;,q) < d(pn,, z) +d(z,q) <2M/i

for all i € N. Hence {py,} converges to ¢, proving ¢ € E*. g

3.3. Cauchy Sequences

Definition 3.3. A sequence {p,} of a metric space is called a Cauchy sequence if, for
every € > 0, there exists an N € N such that whenever m,n > N in N it follows that
d(pn,pm) < € that is,

Ve>03INeNVmneN(mn>N= dpn,pm) <e€).

Definition 3.4. Let E be a nonempty subset of a metric space X, and let .S be the set of
all numbers of the form d(p, q), with p € E and ¢ € E. The number sup S (may be +00) is
called the diameter of E, and is denoted by diamFE.

If {pn} is a sequence in X and E, is the set consisting of {py: k > n}, then {p,} is a
Cauchy sequence if and only if

lim diamF,, = 0.
n—oo

Theorem 3.10. Let X be a metric space.
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(a) For any subset E of X,
diamF = diamFE.
(b) If {K,} is a sequence of compact sets in X such that K,+1 C K,, for alln € N

and satisfies
lim diamK, =0,

n—oo

then NS, K, consists of exactly one point.

Proof. (a) Since E C E, it is clear that diamE < diamFE. To prove the other direction, let
€ > 0, and take any p, ¢ in E. Then, there exist p, ¢’ in E such that d(p/,p) < ¢, d(¢’,q) < e.
(For example, if p € E then take p’ = p; if p ¢ E then p € E’ and hence p’ € Ng(p) nNE
exists.) Hence

d(p,q) < d(p,p") +d(p'.q¢)+d(d,q) <2e+d(p',q) < 2e+ diamFE.

It follows that

diamFE = sup d(p,q) < 2¢ + diamFE.
pacE

As € > 0 is arbitrary, this implies diamFE < diamFE; (a) is proved.
(b) Let K = N9, K,. Then by the Nested Compact Set Theorem, K # (). Since
K C K, for all n € N, we have
0 < diamK < diamK,, — 0.

Hence diamK = 0, which shows that K consists of exactly one point. g

Theorem 3.11. We have the following.

(a) In a metric space, every convergent sequence is a Cauchy sequence.
(b) In a compact metric space, every Cauchy sequence converges.

(c) In R¥, a sequence converges if and only if it is a Cauchy sequence.

Proof. (a) Assume X is a metric space and sequence {p,} in X converges to p € X. Then,
for every € > 0, there exists an NV € N such that whenever n > N in N it follows that
d(pn,p) < €/2. Hence, whenever n,m > N in N, it follows by the triangle inequality that

€ €
d(pnpm) < d(pn,p) +d(pm,p) < 5+ 5 =€

By definition, {p,} is a Cauchy sequence.
(b) Let {p,} be a Cauchy sequence in a compact metric space X. For each n € N let
E, ={pk: k > n}. Then

lim diamFE, = 0.
n—,oo

Also, since E, 1 C E,, it follows that E, .1 C E, for all n € N. Also, as a closed subset of
a compact set X, each E,, is compact. Hence {E,} is a nested sequence of compacts with
diamFE,, — 0. Hence N2>, E,, = {p} for a unique p € X. We show that p,, — p.

Let € > 0 be given. There is an integer N € N such that diamFE,, < € for all n > N.
Since p € E, for all n € N, it follows that d(p,,p) < diamFE, < € for all n > N. Hence
DPn — D.

(c) From (a), we only have to show that a Cauchy sequence in R¥ converges. Let {p,}
be a Cauchy sequence in R¥. We first prove {p,} is bounded. Since there exists an N € N
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such that d(pn, pm) < 1 for all n,m € N and n,m > N, with m = N, we have d(p,,pn) < 1
for all n > N. Let

M = max{1, d(p1,pn), - ,d(pN-1,PN)}

Then d(pn,pn) < M for all n € N; thus {p,} is bounded. Let E = {p,: n € N}; then FE
and E are both bounded subsets of R*, and hence E is compact. Then (c) follows from
(b). O

Definition 3.5. A metric space in which every Cauchy sequence converges is called a
complete metric space.

Theorem 3.11 says that all compact metric spaces and all Euclidean spaces are a complete
metric space. However, the set Q viewed as a sub-metric space of R is not complete.

3.4. Monotonic Convergence in R

Definition 3.6. A sequence {a,} in R is said to be monotonically increasing if a, <
an+1 for all n € N, and is said to be monotonically decreasing if a, > a,41 for all
n € N.

A sequence in R is said to be monotonic if it is either monotonically increasing or
monotonically decreasing.

A sequence {a,} in R is said to be bounded above if there exists M € R such that
an < M for all n € N. Similarly, {a,} is said to be bounded below if there exists M € R
such that a,, > M for all n € N.

Theorem 3.12 (Monotonic Convergence Theorem). Suppose {a,} is a monotonic
sequence in R. Then {a,} converges if and only if {a,} is bounded.

Proof. We only prove the theorem when {a,} is monotonically increasing in R. Since every
convergent sequence in a metric space is bounded, it suffices to show that if {a,} is bounded
above then {a,} converges in R. Thus assume, for some real number M > 0, a, < M for
all n € N. Consider the set S = {a,: n € N}. Then S is nonempty and bounded above
(with M being an upper-bound). So a = sup S exists in R. We prove a,, — a. Since a is an
upper-bound for S, we have

an <a VY néeN.

On the other hand, given arbitrary ¢ > 0, since a = sup S, there exists an ay € .S such that
a — € < apy. Then, by the monotonicity of a,,

ap>ay >a—¢€¢ VYn>N.

Combining above inequalities, we have a — € < a,, < a < a,, + €; that is, |a, — a| < € for all
n > N. Hence, by definition, lim a,, = a. ]

The MCT is useful for determining the convergence of a real sequence without explicitly
knowing the actual limit and checking the e-N definition.

EXAMPLE 3.2. Show that the sequence

V2, \/Ni,\/z\/z\/i,m

converges and find the limit.
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Solution. Let a, be the n-th term of this sequence; that is, a1 = v/2, a2 = V/2v/2,--- . We
have
Gn+1 = V2an; hence aiﬂ =2a,, Vn=123,---
Using induction we easily show that
V2 <a, <2, an < any1 Vn € N.

Hence {ay} is bounded and monotonically increasing. Therefore, by the MCT, lima,, = a
exists. Moreover. the order limit theorem says V2 < a < 2. Since {an+1} is a subsequence
of {a,}, we have that lima,+1 = a. So, taking the limit on both sides of a%_H = 2a,, we
have a? = 2a. Since a # 0, it follows that a = 2; that is, lima,, = 2. ]

3.5. Upper and Lower Limits

Definition 3.7. A sequence {a,} in R is said to converge to +oo, written
ap, — +oo or lim a, = 400,
n—oo

if, for every real M there is an N € N such that a,, > M for all n > N.

Similarly, {a,} is said to converge to —oo, written
anp — —oo or lim a, = —o0,
n—oo

if, for every real M there is an N € N such that a, < M for all n > N.

Obviously, a, - —00 <= —a, — +0o0. Frequently we write lim a,, = £oo. Clearly if
lim a,, = 00, then lima,, = oo for all subsequences {ay, }.

Lemma 3.13. A real sequence {a,} is not bounded above (or below) if and only if there
exists a monotonically increasing (or decreasing) subsequence {an, } such that a,, — 400
(or —c0).

Proof. (i) Assume {a,} is bounded, say, a,, < M for all n € N, for some M € R. Then
there is no subsequence {ay, } converging to +oo, since otherwise, there would be a K € N
such that a,, > M + 1 for all £ > K, a contradiction.

(ii) Assume {a,} is not bounded above. Then, for every M € R, there is an n € N such
that a, > M. First, with M = 1, we have a,, > 1. Suppose that n; <ns < --- < mn;_; are
defined, then, with M = i + max{ay,az, -+ ,an, ,}, we have n; € N such that a,, > M;
clearly, n; > n;—1 and ay,, > ¢ + ay,_,. In this way, we obtain a monotonically increasing
subsequence {a,, } such that a,, > k for all k£ € N; hence a,, — +00.

The case for bounded-below sequences is completely analogous. O
Definition 3.8. Let {a,} be a sequence in R. Let E be the set of (extended) real numbers
z (including +oo and —oo) such that a,, — z for some subsequence {ay,}. This set E
contains the set E* of all subsequential limits of {a, } defined in the proof of Theorem 3.9,
plus possibly the extended numbers +o0o or —oo. Let

a*=supE, a,=infFE.
The (extended real) numbers a* and a, are called the upper limit and lower limit of the

sequence {an}, respectively; we use the notation

limsupa, = a*, liminfa, = a.,
n—00 n—0o0

or simply, a* = lim sup a,, a, = liminf a,,.
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ExaMmPLE 3.3. (i) Let a, = (—1)"(1 + 1). Then the set E defined above consists of two
numbers, 1 and —1. (Why?) Hence

limsupa, =1, liminfa, = —1.
n—00 n—r00

(ii) Let a, = n(=D". Then the set E defined above consists of {0, +oo}, and hence

limsup a, = +00, liminfa, = 0.
n—0o0 n—00
(iii) Let {a,} be the sequence of all rational numbers. Then the set E defined is all the
extended real numbers; hence

limsup a, = +00, liminfa, = —occ.
n—o0 n—00

Theorem 3.14. Let {a,} be a sequence in R. Then lim a, = a exists in the extended real
n—oo

system if and only if
lim sup a,, = liminf a,, = a.
n—oo n—00

Proof. If lima, = a, then the set E defined above consists of only one element a; hence
limsup a,, = liminf a,, = a.

Assume lim sup a,, = liminf a,, = a. Then E = {a}.

(i) Assume a = +o00. Then {a,} must be bounded below since otherwise there would
be a subsequence converging to —oo. We show lim a,, = 400; that is,

(3.2) VM INeN VneN (n>N = a, > M).
Suppose (3.2) is false; then, by negating (3.2),
(3.3) IM YN €N Jky €N (ky > N, ay, < M).

We use (3.3) as follows. First, choose ny = k; > 1 such that a,, < M. Once n; is
chosen, with N = n; + 1, there exists ng = ky > n; + 1 such that a,, < M. Continue in
this way, and we get a subsequence {ay, } such that a,, < M. Since {a,} is bounded below,
we have the sequence {ay, } is bounded; hence, by the Bolzano-Weierstrass Theorem, this
sequence has a convergent subsequence converging to a finite number, and this subsequence
is also a subsequence of the original sequence {a,}, showing F has a finite number in it, a
contradiction.

Similarly, if @ = —oo, then it follows that lim a,, = —oco.

(ii) Now assume a is finite. In this case, by Lemma 3.13, {a,} is bounded. Suppose
{an} does not converge to a. Then, by negating the definition of a,, — a,

(3.4) Jeg >0VN e NJky € N (ky > N, |ag, —al > €o).

We use (3.4) as follows. First, choose ny = k1 > 1 such that |a,, — a|] > €. Once
ny is chosen, with N = ny + 1, there exists no = ky > n; + 1 such that |a,, — a| > €.
Continue in this way and we get a subsequence {ay, } such that |a,, —a| > €. Since {ay, } is
bounded, by the Bolzano-Weierstrass Theorem, it has a convergent subsequence converging
to a finite number b which, by the order limit theorem, must satisfy that |b — a| > €p;
this subsequence is also a subsequence of the original {a,}, showing b € E, but b # a, a
contradiction since E = {a}.

This completes the proof. O
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Theorem 3.15. Let {a,} be a sequence in R. Let E and a* be defined as above. Then a*
has the following properties:

(a) a* € E.
(b) If © > a*, then there is an N € N such that a,, < x for alln > N.

Moreover, a* is the only (extended real) number satisfying the properties (a) and (b).

An analogous result is true for a,.

Proof. (a) If a* = +o0, then F is not bounded above; hence {a,} is not bounded above,
and, by Lemma 3.13, there is a subsequence {ay,, } converging to +oo.

If a* is finite, then, for every ¢ > 0, there is x € E such that a* — e < z. Since z is
finite, we have x € E*, where E* is the set defined in the proof of Theorem 3.9; hence,
a* — e < sup E* for all € > 0, which proves that ¢* < sup £* < sup E = a*, and thus
a* =sup B* € E* = E* C F since E* is closed.

If a* = —o0, then E contains only one element —oo; in this case, in fact, the whole
sequence a, — —oo. (See the proof of Theorem 3.14.)

This proves (a) in all cases.

(b) Nothing is to prove if a* = +o0. So let a* < 400, and hence {ay,} is bounded
above. Suppose that there is a number x > a* such that a, > x for infinitely many
n € N. These terms determine a subsequence of {a, } which is bounded and thus, by the
Bolzano-Weierstrass theorem, has a convergent subsequence with limit y > x. Since a
subsequence of a subsequence of {a,} is also a subsequence of {a,}, we have y € E, but
y > x > a*, contradicting the definition of a* = sup E.

Thus a* satisfies (a) and (b).

To show the uniqueness, let p and g both satisfy (a) and (b), and suppose p < g. Choose
x such that p < x < ¢. Since p satisfies (b), there exists an N € N such that a,, < z for all
n > N. So the limit of any convergent subsequence of {a,} must be less than or equal to z;
hence, Vy € E, y < x < ¢, but then g cannot be in E, contradicting (a) for q. O

The following result is useful.
Theorem 3.16. If a, < b, for all n > Ny, where Ny € N 1is a fized integer, then

liminf a,, < liminfb,, limsupa, <limsupb,.
n—o0 n—0o0 n—00 n—00

Remark 3.9. There is another way to define upper and lower limits. Let {a, } be a sequence
of real numbers. Define
xy, = inf{ag | k > n} = inf{an, ant1, ant2, -},
Yn = suplag | k > n} = sup{an, ant1, anta, - }.
If {a,} is not bounded below, then x,, = —oo for all n € N; if {a,} is bounded below,
then {x,} is monotonically increasing, and hence, by Theorem 3.12, {z,,} converges.

Similarly, if {a,} is not bounded above, then y, = +oc for all n € N; if {a,} is bounded
above, then {y,} is monotonically decreasing, and hence again, by Theorem 3.12, {y,}
converges.

Therefore, the limits lim x, and lim ¥, are always well-defined in the extended real
n—oo n— o0

number system. In fact, we have the following.
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Theorem 3.17.

lim z, =liminfa,, lim y, =limsupa,.
n—00 n—o00 n—00 n—00

3.6. Some Special Sequences

We shall use the following simple result, known as the Squeezing Theorem.

Lemma 3.18. Suppose y, < xn < zp, for all n > N, where N € N is some fized number.
If y, = 1 and z, — 1, then x, — .

Proof. Given € > 0, let N € N be such that, for all n > N, |y, — ] < € and |z, — ] < ¢
thus | — e < yp, <z, < 2, <l +¢ that is, |x, — | < € for all n > N. Hence x,, — . O

Theorem 3.19. We have
(a) If p >0, then lim X = 0.
(b) If p >0, then lim {/p = 1.

)
)
)
)

(¢) lim ¢/n = 1.
(d) If p > 0 and « is real, then limﬁ =0.

(e) If v € R with |z| < 1, then lim2™ = 0.
Proof. (a) Take N > (1/€)'/? in the e-N definition of the convergence.
(b) If p> 1, let x, = /p — 1. Then x,, > 0, and, by the binomial theorem,
1+nz, <(1+x,)" =p,
so that
0<a, < p;l — 0.
n

If p=1, (b) is trivial; if 0 < p < 1, then the result follows by taking reciprocals.
(c) Let , = ¢n — 1. Then x, > 0, and by the binomial theorem, if n > 2,

-1
n=(1+x,)" > %xi
Hence
2
Osap<yf—— (n22)

(d) Let k be an integer such that k > «, k > 0. For n > 2k,
nin—1)---(n—k+1) ,  nkpF

(1+p)" > x P> S
Hence i
o 27 k!
0< (1ip)” < n® % (n>2k).

Since a — k < 0, it follows that n®~* — 0, by (a).
(e) If x = 0, then (e) is trivial. Assume 0 < |z| < 1. Then
1
2" =z = — =0,
o = lol" = 15

by(d)withaanndp:El‘—1>0. O
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3.7. Infinite Series

Definition 3.10. Let {b,} be a sequence of real numbers. An infinite series, or just a
series, of terms b, is a formal expression of the form

an=b1+52+b3+"'

n=1
The corresponding sequence of partial sums {s,} is defined by
W= by by oot by
for all n € N.
If {s,} converges to a number s € R, then we say that the series Y - | b, converges

(to s € R), and write

oo

Z b, = s.

=1

The number s is called the sum of the series.
If the partial sum sequence {s,} diverges, then we say that the infinite series > >, b,
diverges.

Sometimes, for convenience of notation, we shall consider series of the form

anzbo+b1+b2+--'.
n=0

Frequently, when there is no possible ambiguity, we shall write a series as Y b,, whether n
starts with 0 or 1.

By studying the partial sum sequences, we easily obtain the following result.

Theorem 3.20 (Algebraic Theorem for Series). If Y 72, ap = A and > 32, by, = B,
then

Z (cax + dby) = cA+dB  for all ¢,d € R.
k=1

Note that there is no similar rule for the product series Y -, (arbi) or the quotient
series Y oo (ak/br)-

Theorem 3.21 (Cauchy Criterion for Series). The series Y, aj converges if and
only if, given any € > 0, there exists an N € N such that whenever n > m > N it follows
that

|ams1 4 Gmy2 + -+ an| <e

Proof. Note that s, — sy, = am+1 + @m42 + - - - + a,. Hence the criterion is equivalent to
the Cauchy criterion for the converegnce of partial sum sequence {sy,}. O

Theorem 3.22. If >>° | a, converges, then a, — 0.

Proof. Let {s,} be the sequence of partial sums of series ) a,, and let so = 0. If s,, = s
for some s € R, then, since a,, = s,, — S,,_1, it follows that a,, = s;, — sp_1 —+s—s=0. [

This easy result is often used to show a series diverges by showing the sequence of its
terms does not converge to 0. However, it can not be used to show the convergence simply
from the limit a,, — 0, as seen from the examples later.
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Theorem 3.23 (Comparison Test). Assume {ay} and {by} are sequences of real numbers.
(a) If |ag] < by for all k > Ny, where Ny € N is some integer, and if Y poq by
converges, then > p-; ap converges.

(b) If ar, > by, > 0 for all k > Ny, where Ng € N is some integer, and if > ;- by
diverges, then Y- | ai diverges.

Proof. (a) Given € > 0, by the Cauchy criterion, there exists N € N with N > Ny such
that for all n,m € N with n > m > N it follows that
b1 4 bga + -+ - + by < €.
Hence, by the triangle inequality,
lams1 + amyo + -+ an| < Jamgt| + |amsa| + -+ lan] < bmg1 +bpya + -+ by <,
which, again by the Cauchy criterion, shows that > a,, converges.

(b) If Y a, converges, then by (a), > b, must converge.
U

Remark 3.11. The comparison test (b) gives no information on convergence of the larger
series » p-, ay from the convergence of smaller series Y .- by. In fact, when the smaller
series y p-, by converges, the larger series » - aj could either converge or diverge. For
example, let b, = 7714 and consider either sequence a,, = % or sequence a, = n—lz (See details
later.)

Corollary 3.24 (Absolute Convergence Test). If the series > ;- |a| converges, then
> pe ak converges as well.

Proof. This follows directly from (a) of Theorem 3.23 with by, = |ag|. O

Definition 3.12. We say that the series Y ;- ; aj converges absolutely, or is absolutely
convergent, if Y7, |aj| converges. The previous result says that an absolutely convergent
series always converges.

We say that the series Y -, ar converges conditionally if > 7, a; converges but
> peq |ag| diverges.

Geometric Series.

Theorem 3.25 (Geometric series). Let v € R. If [x| < 1, then

[e.e]
1
3.5 n_1 2 34 ... = )
(3.5) Z x +x+z"+2°+ 1=
n=0
o o
If |x| > 1, then the series > z™ diverges. The series Y x™ is called the geometric series
n=0 n=0
of ratio x.

Proof. If z # 1, then the partial sum sequence {s,} of the series Y ~° 2™ is given by

2 no1_ L—a"
sp=1l4+z+a2"+ - +2 =1 (neN).
The sequence {s,} converges to - if |z| < 1. If |z| > 1, then clearly |2"| = |z|” > 1, and

hence > z™ diverges. O
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3.8. Series of Nonnegative Terms

Theorem 3.26. A series of nonnegative terms converges if and only if its partial sum
sequence is bounded above.

Proof. Note that if b, > 0 then the partial sum sequence {s,} of series > b, is monotoni-
cally increasing. Therefore, in this case, by the (proof of MCT), the partial sum sequence
{sn} converges if and only if it is bounded above. O

Theorem 3.27 (Cauchy’s Theorem). Suppose a; > az > a3 > --- > 0. Then the series

> o2, an converges if and only if the series

oo
Z2ka2k = a1 + 2az + 4ay4 + 8ag + 16a16 + - - -
k=0

converges.

Proof. By Theorem 3.26, it suffices to prove that the partial sum sequence of ) a, is
bounded above if and only if the partial sum sequence of 3" 2a, is bounded above.

Let s,, = a1 +as+---+a, and
k
t = Z2ja2j =ay + 2as + 4ag + - - + 2Faon.
j=0
For any n € N, if 2% > n, then
sn < ay+ (ag +az) + -4 (age + -+ agrai_y) < ag + 2ag + -+ 2Rag = ty..
Hence, if {t;} is bounded above, then so is {s;}.
For any k € N, if n > 2*, then

sn2a1+a2+(a3+a4)+---+(a2k71+1—i-"-—l-an)

1 - 1
Z§a1+a2+2a4+--~+2 a2k=§tk,
so that ty < 2s,, and hence if {s,} is bounded above, then so is {t}. O

Theorem 3.28. The series Y n—lp converges if p > 1 and diverges if p < 1.

Proof. Clearly, if p < 0, then nip > 1 and hence ) nip diverges. If p > 0 then Theorem
3.27 is applicable, and we are led to the series

0o 1 oo

k- (1-p)k
> Yo =0 2N
k=0 k=0

which is a geometric series with ratio x = 2'7P; hence the result follows. ([l

Theorem 3.29. Let b > 1. Then the series y - o m converges if p > 1 and diverges
ifp < 1.

Proof. If p <0, the series diverges by comparison with % Hence, assume p > 0. By the
previous theorem, the series
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converges if p > 1 and diverges if 0 < p < 1. The result then follows from Cauchy’s
theorem. g

Remark 3.13. Given p > 1 and ¢ > 1, there exists no integer Ny € N such that
1
—— < — V¥n>N,.
n(log,n)? — nd

Hence the convergence result in Theorem 3.29 cannot be deduced from Theorem 3.28 by
using the comparison theorem.

3.9. The Root and Ratio Tests

Theorem 3.30. For any sequence {cn} of positive numbers, it follows that

.. C .. . . C
lim inf —L < liminf /¢, <limsup /¢, < limsup ntl

n—oo  Cp n—0o0 N—00 n—oo Cn

Cn+1 .,
[

Proof. We prove limsup {/c,, < limsup

Let o = limsup CZ—“ If @« = 400, there is nothing to prove. Assume a < +oo. Let

B > «a be any number, and choose an integer NV € N such that

the proof concerning liminf is similar.

Cn+1
Cn
that is, ¢p11 < Be, for all n > N. Hence,

<B Vn2>N;

enip < BPey VpeEN,
or ¢, < enfS~Np™ for all n > N. Hence

Ven < (enS~M)Y"3 Wn > N.

Thus
lim sup /¢, < B,
n—o0
for all 8 > a. Consequently, limsup /c,, < . This completes the proof. O

Theorem 3.31 (Root Test). Given a series Y an, let o = limsup {/|ay| (including
n—oo
a = +00). Then

(a) if a <1, Y an converges absolutely;
(b) if > 1, > ay, diverges;

(¢) if a =1, the test gives no information.

Proof. (a) Assume o < 1. We choose 3 so that o < 5 < 1, and N € N such that

Vlan| < B VYn>N.

That is, |a,| < " foralln > N. Since 0 < 8 < 1, > 5" converges; hence, by the comparison
test, > |an| converges, and thus ) a,, converges absolutely, by Corollary 3.24.

(b) Assume « > 1. Let {a,, } be a subsequence such that

lim ™

k—o0 ‘ank’ -

Hence |ap, | > 1 for k > K, where K € N is some integer. Therefore, {a,} cannot converge
to 0, and hence ) a,, diverges.
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(c) Consider two series >_ 1 and 3 -; for both, we have o = 1, but the first diverges,
n n
while the second one converges. ([l

From Theorem 3.30 and the root test, we easily have the following theorem, which
sometimes may be easier to use than the root test.

Corollary 3.32 (Ratio Test). The series Y ay converges absolutely if limsup [*25] < 1.

n—oo

EXAMPLE 3.4. Sometimes the ratio may fail, but the root test still works. Consider the

series
1+1+1+1+1+1+
3 32 33

an:{@; (=135
(3)2 (n=2,4,6,---),

or asg—1 = (3)*, agx = (3)* for all k € N. Then we have

that is, > ay, where

2
liminf 2% = lim 25— jim (5)F =0,
n—oo Ay k—o0 A9k—1 k—o0 3
lim inf ¥a,, = hm a9 = hm V3k = V1/
n—oo
lim sup a, = hm k-V/ag,_1 = hm "ok = F,
n—oo
1,3
lim sup Intl i 220 Z(5)F = 4o0.

n—oo  Qp k—oo Q9 k—oo 22
Hence, the series converges by the root test, which cannot be concluded by using the ratio
test.

3.10. Summation by Parts

Lemma 3.33. Given two sequences {an} and {b,}, let

n
An:Zak:al—Fag—i--”—Fan
k=1
ifn €N, and Ag = 0. Then, if 1 < p < q, we have

a g—1
Z apbr = Aqbq — Ap_lbp + Z Ak(bk - bk+1).
k=p
Proof.
Zakbk = Z A — Ap—1)by = ZAkbk - ZAk 1b, = ZAkbk - Z Akbita
k=p k=p-1
g—1 q—1 q—1
D Apbp+ Agbg | = | Ap1bp+ Y Apbpar | = Agbg — Ap_1bp + > Ag(br — bra)-
k=p k=p k=p

0

Theorem 3.34. Given two sequences {an} and {b,}, suppose that
(a) the partial sum sequence {Ayn} of {an} is bounded;
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(b) b12b22b32-~20andbn—>0.

Then > anb, converges.

Proof. Let |A,| < M for all n € N, where M > 0 is a fixed finite number. Given € > 0,
there is an integer N € N such that by < 55;. Then, for all p,q € N with ¢ > p > N,

q q—1
Z apbr| = Z Ak(bk - bk+1) + Aqbq — Apflbp
k=p k=p
qg—1
< D NAklIbr = bigr| 4 [Aqgllbg] + [Ap-1]1by|
k=p
qg—1
<M | (br = bryr) + by + by | = 2Mb, < 2Mby < €.
k=p
Hence, by the Cauchy criterion, > anb, converges. (|

Corollary 3.35 (Alternating Series Test). Let {b,} satisfy
by >by>b3>--->0, b, —0.

Then the alternating series

o
Z(—l)”+1bn =b1—by+bg—bs+---
n=1
converges.
Proof. Apply the theorem with a,, = (—1)"*! and b,. O

ExXAMPLE 3.5. (i) The alternating harmonic series:

i(—n"“_l L1 1,

n 2 3 4
n=1

converges by the alternating series test. But since the series of absolute values Z%

diverges, this series converges conditionally.

(ii) The series

°°(—1)"+1_1 11 1

n? rrETET

n=1
is also a convergent alternating series, but converges absolutely because the absolute series
> # converges. So there are two tests we can use to deduce the convergence of this series;
however, the alternating series test only asserts the convergence and does not tell whether
the convergence is conditional or absolute.

(iii) Often, to determine whether a series converges or not, you should first try to use
the absolute convergence test; if it does not work, then try to use other tests.
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3.11. The Number ¢

Definition 3.14. Define

R S I
ezonl Fld ot
n=

2 3!
where 0! =1 andn!=1-2-3---n for n > 1. Since
B RIS VS |
A 1.2 1-2-3 1-2--n
k=0
1 1 1
SLHL4 gt ot gy <3,

it follows from Theorem 3.26 that the series > -, % converges, and the definition makes

sense.

Theorem 3.36.

Proof. Let
"1 1\"
(3.6) Sn = kzzo = <1 + n)

By the binomial theorem,

n n

tnzzn(n—l)-..(n—kz-i-l) zzl‘(l—l)(l—g)-u(l—k_l).

klnk n n n
k=0 k=0

(Note that in this expression the first two terms when k£ = 0,1 are both taken to be 1.)
Hence t,, < s,, so that
limsupt, <e.

Next, if n > m > 2, then

1 1 1 1 2 m—1
th,>14+41+=1—-——)+---+—1——)1——=)---(1— .
W2 T (L= ) et = (= 21— ) (1=
Keep m fixed and let n — oo, and we get
1 1
liminft, >1+1+—+ -4+ —,
2! m!
so that s,, < liminft,, for all m > 2, which gives
e < liminf ¢,.
Therefore, by Theorem 3.14, limt,, = e. (|

Lemma 3.37. Let s, be defined by (3.6). Then

1
O<e—s, < —.
nln

Proof. Clearly,

=1 - 1 1
I — < = .
€ n Z El " (n+1)! Z: (n+ 1)k nln

k=n+1 " k=0
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Theorem 3.38. e is irrational.
Proof. Suppose e is rational. Then e = p/q, where p,q € N. By Lemma 3.37,

1
0 <qgle—sq) < 7

Clearly,
ls. = ql(1 1 1 1
qlsq =q!(1+ —I—E—F"'"i‘a)
is an integer, and by assumption, gle = (¢ — 1)!p € N; hence, ¢!(e — s4) is an integer, which
contradicts with 0 < ¢!(e — s4) < %. O

3.12. Power Series

Definition 3.15. Given a sequence {a,}72 of real numbers, the series

(o]

Zan:c" = ag+ a1z + asx® + asz® + - - -

n=0
is called a power series. The numbers a,, are called the coefficients of the power series,
and x is a real number.

In general, the convergence of a power series depends on the choice of variable . On
the set of all = such that the power converges, the sum ) a,z" defines a function. The
following theorem characterizes this set.

Theorem 3.39. Given a power series Y anx™, let

1
a =limsup {/|a,|, R=—,
a

n—o0

(if @ = 0, then R = 4005 if @ = 400, then R = 0). This number R is called the radius of
convergence of the power series.

Then, the series Y an,x™ converges absolutely if |x| < R, and diverges if |x| > R. The
series may converge or diverge if |x| = R.

Proof. Let b, = apz™. Then {/|b,| = |z| ¥/|an| and hence
limsup {/|b,| = |z|limsup V/|a,| = |z|/R.
n—o0 n—oo
Consequently, the conclusion follows from the root test. O

Corollary 3.40. If a power series Y an,x™ converges at some x = xg # 0, then > apz™
converges absolutely for all x with |x| < |xg].

Proof. If > a,x™ converges at x = x¢ # 0, then its radius of convergence R > |z¢|; hence

> anz™ converges absolutely for all  with |z| < |zg| < R. O
EXAMPLE 3.6. (1) The power series > n"z™ has R = 0, and only converges when
xz =0.
(2) The power series » %T,L has R = +oo (easily seen using the ratio test), and converges
for all z € R.

(3) The power series ) ‘fl—z has R = 1; it also converges for all z € R with |z| < 1.
(4) The power series > % has R = 1; it converges if x = —1, but diverges if z = 1.



20 3. Numerical Sequences and Series

3.13. Multiplication of Series

Definition 3.16. Given > 7 ja, and Y -7 by, let
n
Cn = Zakbn,k (n=0,1,2,--).

Then the series > ¢, is called the product of the two given series.

To motivate this definition, let us consider two power series

o o
E anx", E bpx™.
n=0 n=0

If we multiply the two series term-by-term and collect the like terms, we get

<i ana:"> <i bna:"> = i cpa”
n=0 n=0 n=0

Setting x = 1, we arrive at the above definition.

EXAMPLE 3.7. We show that even if a,, and ) b, both converge the product series >_ ¢,
may diverge.

Let a, = b, = E/;l—f Then, by the alternating series test, > a, converges. Compute

(-1
Cn = Aflp—
Z’“ " Z\/k:—irl\/n il Z\/n—k+1)(k+1)
Note that, for all k,

(n—k+1)(k+1):(g+1)2— +1)%
hence,

2 2 1
e >3 2 =2l Sy
k:0n+2 n-+ 2

Hence Y ¢, diverges.

However, we have the following result.

Theorem 3.41. Suppose > a,, converges absolutely and _ b, converges. Let

o) ) n
Zan:A, an:B, anzak‘bn—k‘ (n:O’]_’Q’)
n=0 n=0 k=0

Then > ¢y, converges, and

Proof. Let
n n n
Anzzaka Bn:ZbIm anzck-
k=0 k=0 k=0

Let 8, = B,, — B, and let

n
Tn = Z akﬁnfk = aO/Bn + alﬂn—l 4+ anﬂ(]-

k=0
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Then
Cn = aobo + (aobl +a1b0) +- 4+ (aobn +(11bn_1 +- - +anb0) = aan + a1Bn_1 +- - +ant
= aO(B+5n)+a1(B+5n—l)+' : +an(B+/80) = AnB"i_aOﬂn"i_alﬁn—l"i_' : '+an50 - AnB+7n

It suffices to show that v, — 0. Let € > 0 be given. Let o = >_ |ay|. Since 5, — 0, we
can choose an N € N such that |§,| < € for all n > N. Hence, if n > N, then

[Vl < [Boan + -+ + BNan—N| + [BNt1an-N-1 + - - - + Bnao]
< ‘BOHan| 4+t |BNHan—N’ + ca.
Keeping N fixed, and letting n — oo, we get

lim sup [y | < e,
n—oo

since ap — 0 as k — oo. Since € > 0 is arbitrary, we have proved lim |y, | = 0. O

Theorem 3.42 (Abel’s theorem). If > ay, Y. b, and their product series Y, ¢, all con-

verge, then
5 (55
n=0 n=0 n=0

Proof. The proof uses the continuity of power series, and will not be discussed here. [
3.14. Rearrangements

o o0 o
Definition 3.17. Given two series ) an and ) b,, we say that ) b, is a rearrange-
n=1 n=1 n=1

o
ment of Y a, if there exists a 1-1 function f from N onto N such that

n=1

bn:af(n) vV neN.

If > b, is a rearrangement of > a,, we see that every term of > b, appears exactly
once in Y a, and, vice-versa, every term of »_ a, appears ezactly once in »_ b,. However,
their partial sum sequences may differ greatly.

Now, if a series ) a, and one of its rearrangements » b, both converge, do we have
that > b, = > a,? The answer is no, in general.
ExampPLE 3.8. Consider the convergent alternating harmonic series
oo
1 1 1 1 1 1
S = S Y e e
;( ) n 2 + 3 4 * 5 6 +

Let s, be the partial sum. Then so > % and hence S > % Also

1 1 1 1 1 1
S = - (=)
2 2 4+6 8+ +(=1) 2n+
1 1 1 1 1 1
=0+-+0--4+0+-4+0—-=4+--+0+———-+0——+0+---
T FOm OGO gt 0 g F 0= o O
where all the odd terms are 0. So
1 3 1 1 1 1 1 1 1 1
S+-§=-8=140+-—=+-4+04+=-—-4+-4+04+— — =+ ---
+2 2 + +3 2+5+ +7 4+9+ +11 6+

11 1 1 1 1 1 1

:1 — — — — — — — — _— = =

37375 7 ate e
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which becomes a rearrangement of S = 1— % + % - % + % - % +---; but certainly their sums
are not, equal since S # 0.

In fact, Riemann proved the following theorem.

Theorem 3.43 (Riemann’s theorem). Let Y a, converge conditionally. Suppose —oo <
a < f < +oo. Then there exists a rearrangement » b, of > a, whose partial sum sequence
{Byn} satisfies
(3.7) liminf B, = «, limsup B, = 3.

n—00 n—00

In particular, for any —oo < a < 400, there exists a rearrangement »_ b, of > a, such

that > by, = a.

Proof. Let

pn:m;a"7 qn:|an|2an (n € N).
Then p, — g = an, Pn+qn = |anl|, pn > 0,¢, > 0. Since > a,, converges but »_ |a,| diverges,
it follows that both >  p, and ) ¢, must diverge.

Now let Py, Py, P3,--- denote the nonnegative terms in the sequence {a,} in the order
they occur, and let Q1,Q2, @3, -+ denote the absolute values of the negative terms in {a,},
also in their original order.

The series Y P, > @, differ from > p,, > ¢, only by zero terms, and hence both
diverge.

We shall construct sequences {my}, {k,} of increasing positive integers, such that the
series

(38) Pr+Pot 4Py —Q1—Q2— = Qpy + Py p1+ -+ Py = Q1 — = Q-+
which clearly is a rearrangement of _ a,, satisfies (3.7).
Let {an}, {6n} be real sequences, such that o, — «, 5, — 5, a, < B, and 1 > 0.

Let m1, k1 be the smallest positive integers such that

Po+P++Pp >0, Pi+BPat -+ Py —Q1— - —Qp <ai;
let mo > m1, ko > k1 be the smallest positive integers such that
Pit Pyt + P —Qu— —Quy + Pry1+ -+ + Py > Ba,
Pt Pt + Py —Q1— = Qi + P+ -+ Py — Q1 — - — Qi < 2

this process continues without stopping in a finite number of steps since P, — 0,Q,, — 0
and both Y P,, > @, diverge.

If z,,, y, denote the partial sums of (3.8) whose last terms are P,,,, —Qy,, , respectively,
then x,, — Py, < Bn <z, and y, < ap, < yn + Qf,,; hence

|zn — Bl < P,y = 0, |yn — an| < Q,, — 0.
Hence z,, — 3, y, — a.

For every k € N, let Sy be the partial of (3.8) of first k terms. The last term of Sy is
either P; for some m;_1+1 < j < m;, where i = i(k) € N is such that i(k) — oo as k — oo,
or @, for some k;—1 +1 < p < kg, where ¢ = q(k) € N is such that ¢(k) — oo as k — oo.

In the first case, if j = m; then S = x;; if m;_1 +1 < j < m; then oy < Sk < B;. In
the second case, if p = k, then Sy, = yg; if kg—1 < p < kg then oy < S, < 3. Therefore, any
convergent subsequence of {S;} can only have a limit in [«, 5]. This proves (3.7). O
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However, the situation is totally different if ) a,, converges absolutely.

Theorem 3.44. If Z |an| converges, then, for any rearrangement function (i.e., 1-1 cor-

respondence) f: N —> N it follows that
o
Z = agm)
n=1 n=1

Proof. Let by = ay, for k € N. For n,m € N, define
Sp=a1+a2+ --+an; tym=b1+by+- -+ bn.

Let s, — A as n — oo. We show that t,, - A as m — o0o. Given any € > 0, we find an
N € N such that

lsy — Al < €/2, Z lax| <€/2 ¥ n>m>N.

k=m+1
Since f: N — N is 1-1 and onto, let {i1,42,--- ,iny} € N be such that f(ix) = k for each
k=1,2,--- . N. Let

M:max{il,ig,--- ,iN}.
Then M > N.Let m € N be such that m > M. Then, since {i, i3, - ,in} C {1,2,3,--- ,m},
it follows that
tm:bl+b2+---+bm:af(1)+af(2)+~--+af(m)
ag(in) + sty + o A + D agG)
jeJ

:a1+a2+---+aN+Zaf(j)

jeJ
=sv+ ) as),
jeJ
where J = {1,2,3,--- ,m} \ {i1,42, -+ ,in}. Since J N {i1,i2, - ,in} = 0, we have f(j) >
N +1forall jeJ Let K =max{f(j) : j€J} >N+1. Then N+ 1< f(j) < K for all
j € J and hence

K
Z“f(j) < Z lagi)l < Z lag| < €/2.
jed jeJ k=N+1

Finally, it follows that, for all m > M,

[t — Al < |sn — A+ > ag)
JjeJ
<e€/2+4 Z la) <e€/2+¢€/2=c¢
jeJ
This proves t,, — A as m — oo. O
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