Numerical Sequences and Series

3.1. Convergent Sequences

Definition 3.1. A sequence $\{p_n\}$ in a metric space X is said to **converge** in X if there is a point $p \in X$ with the following property: For every number $\epsilon > 0$, there exists an integer $N \in \mathbf{N}$ such that whenever $n \in \mathbf{N}$ and $n \ge N$ it follows that $d(p_n, p) < \epsilon$. That is, $\{p_n\}$ is said to converge in X if the following is true:

$$\exists p \in X \ \forall \epsilon > 0 \ \exists N \in \mathbf{N} \ \forall n \in \mathbf{N} \ (n \ge N \Longrightarrow d(p_n, p) < \epsilon).$$

In this case, we also say that $\{p_n\}$ converges to p, or p is a limit of $\{p_n\}$, and we write $p_n \to p$, or

$$\lim_{n \to \infty} p_n = p, \quad or \ simply, \quad \lim p_n = p.$$

Note that convergence is a concept not only depending on the given sequence but also on the metric space X in which the sequence and its limit are considered.

If a sequence $\{p_n\}$ does not converge in X, then we say that it **diverges** in X.

A sequence $\{p_n\}$ in a metric space X is said to be **bounded** if the set $E = \{p_n : n \in \mathbb{N}\}$ (i.e., the range of $\{p_n\}$) is bounded in X; that is, for some $q \in X$ and number M > 0,

$$d(p_n,q) \leq M \quad \forall n \in \mathbf{N}.$$

Theorem 3.1. Let $\{p_n\}$ be a sequence in a metric space X.

- (a) $\{p_n\}$ converges to a limit $p \in X$ if and only if every neighborhood of p contains p_n for all but finitely many $n \in \mathbf{N}$.
- (b) If $\{p_n\}$ converges to $p \in X$ and to $q \in X$, then p = q.
- (c) If $\{p_n\}$ converges, then $\{p_n\}$ is bounded.

Proof. (a) Note that $d(p_n, p) < \epsilon \iff p_n \in N_{\epsilon}(p)$.

(b) Suppose, for the contrary, $p \neq q$. Then $\delta = d(p,q) > 0$. Since $p_n \to p$ and $p_n \to q$, there exist integers $N_1, N_2 \in \mathbf{N}$ such that

$$d(p_n, p) < \frac{1}{2}\delta \ (\forall n \ge N_1), \quad d(p_n, q) < \frac{1}{2}\delta \ (\forall n \ge N_2).$$

Let $N = \max\{N_1, N_2\}$, or for the same purpose, one could let $N = N_1 + N_2$. Then $d(p_N, p) < \frac{1}{2}\delta$ and $d(p_N, q) < \frac{1}{2}\delta$. Hence, by the triangle inequality, we have

$$d(p,q) \le d(p,p_N) + d(p_N,q) < \frac{1}{2}\delta + \frac{1}{2}\delta = \delta = d(p,q),$$

which is a contradiction.

(c) Suppose $p_n \to p$. Then there exists an $N \in \mathbf{N}$ such that

$$d(p_n, p) < 1 \quad \forall \ n \ge N.$$

Let $M = \max\{1, d(p_1, p), \dots, d(p_N, p)\}$. Then $d(p_n, p) \leq M$ for all $n \in \mathbb{N}$; this proves $\{p_n\}$ is bounded.

Theorem 3.2. Let X be a metric space, $E \subseteq X$, and $p \in X$. Then p is a limit point of E if and only if there is a sequence $\{p_n\}$ in E such that $p_n \neq p$ and $p_n \rightarrow p$.

Proof. First suppose $p \in E'$. Then, for each $n \in \mathbf{N}$, there is a point $p_n \in N_{1/n}(p)$ such that $p_n \neq p$ and $p_n \in E$. Given each $\epsilon > 0$, let $N \in \mathbf{N}$ be such that $\frac{1}{N} < \epsilon$. Then for $n \in \mathbf{N}$ if $n \geq N$ then

$$d(p_n, p) < \frac{1}{n} \le \frac{1}{N} < \epsilon.$$

By definition, we have $p_n \to p$.

Conversely, suppose there is a sequence $\{p_n\}$ in E such that $p_n \neq p$ and $p_n \rightarrow p$. Let $N_r(p)$ be any neighborhood of p, where r > 0. Since $p_n \rightarrow p$, there is $N \in \mathbb{N}$ such that $d(p_n, p) < r$ for all $n \geq N$. Hence $p_N \in N_r(p)$, $p_N \in E$, and $p_N \neq p$. By definition, $p \in E'$.

EXAMPLE 3.1. Show

$$\lim(\frac{n+1}{n}) = 1.$$

Proof. Let $a_n = \frac{n+1}{n}$ and a = 1. Then the inequality

$$|a_n - a| = \left|\frac{n+1}{n} - 1\right| = \frac{1}{n} < \epsilon$$

is the same as $n > \frac{1}{\epsilon}$. The existence of $N \in \mathbf{N}$ is guaranteed by the Archimedean property: there always exists an $N \in \mathbf{N}$ such that $N > \frac{1}{\epsilon}$. The actual proof goes as follows.

Let $\epsilon > 0$ be arbitrary. By the Archimedean property, there exists an $N \in \mathbb{N}$ such that $N > \frac{1}{\epsilon}$. Then whenever $n \in N$ we have $1/n \leq 1/N < \epsilon$ and hence

$$|a_n - a| = \left|\frac{n+1}{n} - 1\right| = \frac{1}{n} < \epsilon.$$

Therefore, by definition, $\lim a_n = 1$.

Theorem 3.3 (Algebraic Limit Theorem). Suppose $\{a_n\}, \{b_n\}$ are sequences of real numbers, and $\lim a_n = a$, $\lim b_n = b$ exist in **R**. Then

- (i) $\lim(ca_n) = ca \text{ for all } c \in \mathbf{R};$
- (ii) $\lim(a_n + b_n) = a + b;$
- (iii) $\lim(a_n b_n) = ab;$
- (iv) $\lim(a_n/b_n) = a/b$, provided $b_n \neq 0$ and $b \neq 0$.

Warning: We can use these formulas only when both the limits $\lim a_n$ and $\lim b_n$ exist.

Proof. We only include the proof for the product and quotient theorem. *Proof of (iii):* Note that

$$a_n b_n - ab = a_n b_n - a_n b + a_n b - ab = a_n (b_n - b) + (a_n - a)b_n b_n - ab = a_n b_n - a_n b_n$$

Therefore, by the Triangle Inequality,

$$|a_n b_n - ab| \le |a_n (b_n - b)| + |(a_n - a)b| = |a_n||b_n - b| + |a_n - a||b|.$$

Given $\epsilon > 0$, in order to make $|a_n b_n - ab| < \epsilon$, it suffices to make each of the two terms on the right hand side $< \epsilon/2$. Since (a_n) converges, it is bounded and so $|a_n| \le M$ ($\forall n \in \mathbf{N}$) for some number M > 0. Hence the two terms are bounded as follows:

$$|a_n||b_n - b| \le M|b_n - b|, \quad |a_n - a||b| \le |a_n - a|(|b| + 1)$$

(here we change $|b| \ge 0$ to |b| + 1 > 0 for the division later). Now, given arbitrary $\epsilon > 0$, since $(a_n) \to a$, we have $N_1 \in \mathbf{N}$ such that

$$|a_n - a| < \frac{\epsilon}{2(|b| + 1)} \quad \forall n \ge N_1.$$

Since $(b_n) \to b$, we have $N_2 \in \mathbf{N}$ such that

$$|b_n - b| < \frac{\epsilon}{2M} \quad \forall n \ge N_2.$$

Let $N = \max\{N_1, N_2\}$ (or $N = N_1 + N_2$). Then, for this N, whenever $n \ge N$, it follows that

$$|a_n - a| < \frac{\epsilon}{2(|b|+1)}, \quad |b_n - b| < \frac{\epsilon}{2M};$$

hence

$$|a_n - a||b| \le \frac{\epsilon|b|}{2(|b|+1)} < \frac{\epsilon}{2}, \quad |a_n||b_n - b| \le M|b_n - b| < \frac{\epsilon}{2},$$

and finally, it follows that, whenever $n \ge N$,

$$|a_n b_n - ab| \le |a_n| |b_n - b| + |a_n - a| |b| < \epsilon/2 + \epsilon/2 = \epsilon.$$

By definition, $(a_n b_n) \to ab$.

Proof of (iv): Note that

$$\frac{a_n}{b_n} - \frac{a}{b} = \frac{ba_n - ab_n}{b_n b} = \frac{b(a_n - a) + a(b - b_n)}{b_n b}$$

Hence

(3.1)
$$\left|\frac{a_n}{b_n} - \frac{a}{b}\right| \le \frac{|b||a_n - a|}{|b_n b|} + \frac{|a||b - b_n|}{|b_n b|}.$$

Since $(b_n) \to b \neq 0$, with $\epsilon = |b|/2 > 0$, there exists an $N_1 \in \mathbf{N}$ such that $|b_n - b| < |b|/2$ for all $n \ge N_1$. Hence, by the triangle inequality, $|b_n| \ge |b| - |b_n - b| \ge |b|/2$ for all $n \ge N_1$. So, for all $n \ge N_1$, we have $|b_n b| \ge |b|^2/2$ and hence

$$\begin{aligned} \left| \frac{a_n}{b_n} - \frac{a}{b} \right| &\leq \frac{|b||a_n - a|}{|b_n b|} + \frac{|a||b - b_n|}{|b_n b|} \\ &\leq \frac{2}{|b|}|a_n - a| + \frac{2|a|}{|b|^2}|b_n - b| \leq \frac{2}{|b|}|a_n - a| + \frac{2|a| + 1}{|b|^2}|b_n - b| \end{aligned}$$

We then use the convergences as before to select N_2 and N_3 in **N** such that

$$|a_n - a| < \frac{\epsilon |b|}{4}$$
 whenever $n \ge N_2$

and

$$|b_n - b| < \frac{\epsilon |b|^2}{2(2|a|+1)}$$
 whenever $n \ge N_3$.

Finally, let $N = \max\{N_1, N_2, N_3\}$. Then, whenever $n \ge N$, it follows that

$$\left|\frac{a_n}{b_n} - \frac{a}{b}\right| \le \frac{2}{|b|}|a_n - a| + \frac{2|a| + 1}{|b|^2}|b_n - b| < \epsilon/2 + \epsilon/2 = \epsilon.$$

Theorem 3.4 (Order Limit Theorem). Suppose $\{a_n\}, \{b_n\}$ are sequences of real numbers. Assume $\lim a_n = a$ and $\lim b_n = b$ both exist. If $a_n \leq b_n$ for all $n \geq N_0$, where $N_0 \in \mathbf{N}$ is some integer, then $a \leq b$.

Proof. Suppose, for the contrary, a > b. Then $\lim(a_n - b_n) = a - b > 0$. Using $\epsilon = \frac{a-b}{2} > 0$, we have an $N \in \mathbf{N}$ such that

$$|(a_n - b_n) - (a - b)| < \epsilon = \frac{a - b}{2} \quad \forall n \ge N.$$

Hence $a - b - \epsilon < a_n - b_n < a - b + \epsilon$ for all $n \ge N$. But $a - b - \epsilon = \frac{a - b}{2} > 0$; this implies that $a_n - b_n > \frac{a - b}{2} > 0$ for all $n \ge N$. So $a_n > b_n$ for all $n \ge N$; in particular, $a_n > b_n$ for $n = N_0 + N > N_0$, which contradicts the assumption $a_n \le b_n$ for all $n \ge N_0$.

Theorem 3.5. Consider the Euclidean space \mathbf{R}^k

(a) Suppose $\mathbf{x}_n \in \mathbf{R}^k$ for each $n \in N$, and let $\mathbf{x}_n = (a_{1,n}, a_{2,n}, \dots, a_{k,n})$, where $a_{j,n} \in \mathbf{R}$ $(1 \leq j \leq k)$. Then $\mathbf{x}_n \to \mathbf{x} = (a_1, a_2, \dots, a_k) \in \mathbf{R}^k$ if and only if

$$\lim_{n \to \infty} a_{j,n} = a_j \quad (1 \le j \le k).$$

(b) Suppose {x_n}, {y_n} are sequences in R^k, {β_n} is a sequence of real numbers, and x_n → x, y_n → y, β_n → β. Then

 $\lim(\mathbf{x}_n + \mathbf{y}_n) = \mathbf{x} + \mathbf{y}, \quad \lim(\mathbf{x}_n \cdot \mathbf{y}_n) = \mathbf{x} \cdot \mathbf{y}, \quad \lim(\beta_n \mathbf{x}_n) = \beta \mathbf{x}.$

3.2. Subsequences

Definition 3.2. Let $\{p_n\}$ be a sequence in a metric space X, and let $n_1 < n_2 < n_3 < \cdots$ be an increasing sequence of natural numbers. Then the sequence

$${p_{n_k}}_{k=1}^{\infty} = {p_{n_1}, p_{n_2}, p_{n_3}, \cdots}$$

is called a **subsequence** of $\{p_n\}$. Note that the order of the terms in a subsequence is kept unchanged as in the original sequence.

If a subsequence $\{p_{n_k}\}$ converges in X, then its limit is called a **subsequential limit** of $\{p_n\}$ in X.

Theorem 3.6. A sequence $\{p_n\}$ in a metric space X converges to $p \in X$ if and only if every subsequence of $\{p_n\}$ converges to p.

Proof. Clearly, a sequence is also a subsequence of itself. Thus, to prove the theorem, we need to prove that if $p_n \to p$ then every subsequence $\{p_{n_k}\}$ also converges to p. Since $1 \le n_1 < n_2 < \cdots$ are integers, clearly, $n_k \ge k$ for $k \in \mathbb{N}$. Given $\epsilon > 0$, let $N \in \mathbb{N}$ be such that $d(p_n, p) < \epsilon$ for all $n \ge N$. Then, for all $k \ge N$, since $n_k \ge k \ge N$, it follows that $d(p_{n_k}, p) < \epsilon$. By definition, $\lim_{k \to \infty} p_{n_k} = p$.

Theorem 3.7. Every sequence in a compact metric space contains a convergent subsequence.

Proof. Let X be a compact metric space and $\{p_n\}$ be a sequence in X. Let E be the range of $\{p_n\}$.

If E is finite, then there is a $p \in E$ such that $p_n = p$ for infinitely many $n \in \mathbf{N}$. Hence, there is a sequence $\{n_i\}$ in \mathbf{N} with $n_1 < n_2 < \cdots$, such that $p_{n_i} = p$ for all $i \in \mathbf{N}$. The subsequence so obtained is constant and hence converges to p.

If E is infinite, then, as an infinite subset of a compact set X, E has a limit point $p \in X$. Choose $n_1 \in \mathbf{N}$ so that $d(p_{n_1}, p) < 1$. Having chosen $n_1 < n_2 < \cdots < n_{i-1}$ in \mathbf{N} , since every neighborhood of p contains infinitely many points of E, there exists an $n_i > n_{i-1}$ in \mathbf{N} such that $d(p_{n_i}, p) < 1/i$. Then, the subsequence $\{p_{n_i}\}$ converges to p.

Corollary 3.8 (Bolzano-Weierstrass Theorem). Every bounded sequence in \mathbf{R}^k contains a convergent subsequence.

Proof. The closure of the range of every bounded sequence is a compact set of \mathbf{R}^k which contains the given sequence. Then use the theorem above.

Theorem 3.9. The set of all subsequential limits of a sequence in a metric space X is a closed subset of X.

Proof. Let $\{p_n\}$ be a sequence in X and let E^* be the set of all subsequential limits of $\{p_n\}$ in X. To show E^* is closed, let q be a limit point of E^* (if E^* has no limit points then E^* is closed). We need to show $q \in E^*$.

Take $n_1 = 1$ and let $d(p_1, q) \leq M$ for some M > 0. Now assume $1 = n_1 < n_2 < \cdots < n_{i-1}$ are chosen in **N**. Since q is a limit point of E^* , there is an $x \in E^*$ such that d(x,q) < M/i. Since $x \in E^*$, there exists a subsequence of $\{p_n\}$ converging to x; hence there is an integer $n_i > n_{i-1}$ such that $d(p_{n_i}, x) < M/i$. Thus, we obtain a subsequence $\{p_{n_i}\}$ that satisfies

$$d(p_{n_i}, q) \le d(p_{n_i}, x) + d(x, q) < 2M/n$$

for all $i \in \mathbf{N}$. Hence $\{p_{n_i}\}$ converges to q, proving $q \in E^*$.

3.3. Cauchy Sequences

Definition 3.3. A sequence $\{p_n\}$ of a metric space is called a **Cauchy sequence** if, for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that whenever $m, n \geq N$ in \mathbb{N} it follows that $d(p_n, p_m) < \epsilon$; that is,

$$\forall \epsilon > 0 \exists N \in \mathbf{N} \forall m, n \in \mathbf{N} (m, n \ge N \Longrightarrow d(p_n, p_m) < \epsilon).$$

Definition 3.4. Let *E* be a nonempty subset of a metric space *X*, and let *S* be the set of all numbers of the form d(p,q), with $p \in E$ and $q \in E$. The number sup *S* (may be $+\infty$) is called the **diameter** of *E*, and is denoted by diam*E*.

If $\{p_n\}$ is a sequence in X and E_n is the set consisting of $\{p_k : k \ge n\}$, then $\{p_n\}$ is a Cauchy sequence if and only if

$$\lim_{n \to \infty} \operatorname{diam} E_n = 0.$$

Theorem 3.10. Let X be a metric space.

(a) For any subset E of X,

$$\operatorname{diam} E = \operatorname{diam} E.$$

(b) If $\{K_n\}$ is a sequence of compact sets in X such that $K_{n+1} \subseteq K_n$ for all $n \in \mathbb{N}$ and satisfies

$$\lim_{n \to \infty} \operatorname{diam} K_n = 0,$$

then $\bigcap_{n=1}^{\infty} K_n$ consists of exactly one point.

Proof. (a) Since $E \subseteq E$, it is clear that diam $E \leq$ diamE. To prove the other direction, let $\epsilon > 0$, and take any p, q in \overline{E} . Then, there exist p', q' in E such that $d(p', p) < \epsilon$, $d(q', q) < \epsilon$. (For example, if $p \in E$ then take p' = p; if $p \notin E$ then $p \in E'$ and hence $p' \in \hat{N}_{\epsilon}(p) \cap E$ exists.) Hence

$$d(p,q) \le d(p,p') + d(p',q') + d(q',q) < 2\epsilon + d(p',q') \le 2\epsilon + \text{diam}E.$$

It follows that

diam
$$\overline{E} = \sup_{p,q\in\overline{E}} d(p,q) \le 2\epsilon + \operatorname{diam} E.$$

As $\epsilon > 0$ is arbitrary, this implies diam $E \leq \text{diam}E$; (a) is proved.

(b) Let $K = \bigcap_{n=1}^{\infty} K_n$. Then by the Nested Compact Set Theorem, $K \neq \emptyset$. Since $K \subseteq K_n$ for all $n \in \mathbf{N}$, we have

$$0 \le \operatorname{diam} K \le \operatorname{diam} K_n \to 0.$$

Hence $\operatorname{diam} K = 0$, which shows that K consists of exactly one point.

Theorem 3.11. We have the following.

- (a) In a metric space, every convergent sequence is a Cauchy sequence.
- (b) In a compact metric space, every Cauchy sequence converges.
- (c) In \mathbf{R}^k , a sequence converges if and only if it is a Cauchy sequence.

Proof. (a) Assume X is a metric space and sequence $\{p_n\}$ in X converges to $p \in X$. Then, for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that whenever $n \ge N$ in \mathbb{N} it follows that $d(p_n, p) < \epsilon/2$. Hence, whenever $n, m \ge N$ in \mathbb{N} , it follows by the triangle inequality that

$$d(p_n, p_m) \le d(p_n, p) + d(p_m, p) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

By definition, $\{p_n\}$ is a Cauchy sequence.

(b) Let $\{p_n\}$ be a Cauchy sequence in a compact metric space X. For each $n \in \mathbb{N}$ let $E_n = \{p_k : k \ge n\}$. Then

$$\lim_{n \to \infty} \operatorname{diam} \bar{E}_n = 0.$$

Also, since $E_{n+1} \subseteq E_n$, it follows that $\overline{E}_{n+1} \subseteq \overline{E}_n$ for all $n \in \mathbb{N}$. Also, as a closed subset of a compact set X, each \overline{E}_n is compact. Hence $\{\overline{E}_n\}$ is a *nested* sequence of compacts with diam $\overline{E}_n \to 0$. Hence $\bigcap_{n=1}^{\infty} \overline{E}_n = \{p\}$ for a unique $p \in X$. We show that $p_n \to p$.

Let $\epsilon > 0$ be given. There is an integer $N \in \mathbf{N}$ such that $\operatorname{diam} \overline{E}_n < \epsilon$ for all $n \ge N$. Since $p \in \overline{E}_n$ for all $n \in \mathbf{N}$, it follows that $d(p_n, p) \le \operatorname{diam} \overline{E}_n < \epsilon$ for all $n \ge N$. Hence $p_n \to p$.

(c) From (a), we only have to show that a Cauchy sequence in \mathbf{R}^k converges. Let $\{p_n\}$ be a Cauchy sequence in \mathbf{R}^k . We first prove $\{p_n\}$ is bounded. Since there exists an $N \in \mathbf{N}$

such that $d(p_n, p_m) < 1$ for all $n, m \in \mathbb{N}$ and $n, m \ge N$, with m = N, we have $d(p_n, p_N) < 1$ for all $n \ge N$. Let

$$M = \max\{1, d(p_1, p_N), \cdots, d(p_{N-1}, p_N)\}.$$

Then $d(p_n, p_N) \leq M$ for all $n \in \mathbf{N}$; thus $\{p_n\}$ is bounded. Let $E = \{p_n : n \in \mathbf{N}\}$; then E and \overline{E} are both bounded subsets of \mathbf{R}^k , and hence \overline{E} is compact. Then (c) follows from (b).

Definition 3.5. A metric space in which every Cauchy sequence converges is called a **complete metric space**.

Theorem 3.11 says that all compact metric spaces and all Euclidean spaces are a complete metric space. However, the set \mathbf{Q} viewed as a sub-metric space of \mathbf{R} is not complete.

3.4. Monotonic Convergence in R

Definition 3.6. A sequence $\{a_n\}$ in **R** is said to be monotonically increasing if $a_n \leq a_{n+1}$ for all $n \in \mathbf{N}$, and is said to be monotonically decreasing if $a_n \geq a_{n+1}$ for all $n \in \mathbf{N}$.

A sequence in \mathbf{R} is said to be **monotonic** if it is either monotonically increasing or monotonically decreasing.

A sequence $\{a_n\}$ in **R** is said to be **bounded above** if there exists $M \in \mathbf{R}$ such that $a_n \leq M$ for all $n \in \mathbf{N}$. Similarly, $\{a_n\}$ is said to be **bounded below** if there exists $M \in \mathbf{R}$ such that $a_n \geq M$ for all $n \in \mathbf{N}$.

Theorem 3.12 (Monotonic Convergence Theorem). Suppose $\{a_n\}$ is a monotonic sequence in **R**. Then $\{a_n\}$ converges if and only if $\{a_n\}$ is bounded.

Proof. We only prove the theorem when $\{a_n\}$ is monotonically increasing in **R**. Since every convergent sequence in a metric space is bounded, it suffices to show that if $\{a_n\}$ is *bounded above* then $\{a_n\}$ converges in **R**. Thus assume, for some real number M > 0, $a_n \leq M$ for all $n \in \mathbf{N}$. Consider the set $S = \{a_n : n \in \mathbf{N}\}$. Then S is nonempty and bounded above (with M being an upper-bound). So $a = \sup S$ exists in **R**. We prove $a_n \to a$. Since a is an upper-bound for S, we have

$$a_n \leq a \quad \forall \ n \in \mathbf{N}.$$

On the other hand, given arbitrary $\epsilon > 0$, since $a = \sup S$, there exists an $a_N \in S$ such that $a - \epsilon < a_N$. Then, by the monotonicity of a_n ,

$$a_n \ge a_N > a - \epsilon \quad \forall \ n \ge N.$$

Combining above inequalities, we have $a - \epsilon < a_n \le a < a_n + \epsilon$; that is, $|a_n - a| < \epsilon$ for all $n \ge N$. Hence, by definition, $\lim a_n = a$.

The MCT is useful for determining the convergence of a real sequence without explicitly knowing the actual limit and checking the ϵ -N definition.

EXAMPLE 3.2. Show that the sequence

$$\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \cdots$$

converges and find the limit.

Solution. Let a_n be the *n*-th term of this sequence; that is, $a_1 = \sqrt{2}, a_2 = \sqrt{2\sqrt{2}}, \cdots$. We have

 $a_{n+1} = \sqrt{2a_n}$; hence $a_{n+1}^2 = 2a_n$, $\forall n = 1, 2, 3, \cdots$.

Using induction we easily show that

 $\sqrt{2} \le a_n \le 2, \quad a_n \le a_{n+1} \quad \forall n \in \mathbf{N}.$

Hence $\{a_n\}$ is bounded and monotonically increasing. Therefore, by the MCT, $\lim a_n = a$ exists. Moreover, the order limit theorem says $\sqrt{2} \le a \le 2$. Since $\{a_{n+1}\}$ is a subsequence of $\{a_n\}$, we have that $\lim a_{n+1} = a$. So, taking the limit on both sides of $a_{n+1}^2 = 2a_n$, we have $a^2 = 2a$. Since $a \ne 0$, it follows that a = 2; that is, $\lim a_n = 2$.

3.5. Upper and Lower Limits

Definition 3.7. A sequence $\{a_n\}$ in **R** is said to converge to $+\infty$, written

$$a_n \to +\infty$$
 or $\lim_{n \to \infty} a_n = +\infty$,

if, for every real M there is an $N \in \mathbf{N}$ such that $a_n \geq M$ for all $n \geq N$.

Similarly, $\{a_n\}$ is said to converge to $-\infty$, written

$$a_n \to -\infty$$
 or $\lim_{n \to \infty} a_n = -\infty$

if, for every real M there is an $N \in \mathbf{N}$ such that $a_n \leq M$ for all $n \geq N$.

Obviously, $a_n \to -\infty \iff -a_n \to +\infty$. Frequently we write $\lim a_n = \pm\infty$. Clearly if $\lim a_n = \pm\infty$, then $\lim a_{n_k} = \pm\infty$ for all subsequences $\{a_{n_k}\}$.

Lemma 3.13. A real sequence $\{a_n\}$ is not bounded above (or below) if and only if there exists a monotonically increasing (or decreasing) subsequence $\{a_{n_k}\}$ such that $a_{n_k} \to +\infty$ (or $-\infty$).

Proof. (i) Assume $\{a_n\}$ is bounded, say, $a_n \leq M$ for all $n \in \mathbb{N}$, for some $M \in \mathbb{R}$. Then there is no subsequence $\{a_{n_k}\}$ converging to $+\infty$, since otherwise, there would be a $K \in \mathbb{N}$ such that $a_{n_k} \geq M + 1$ for all $k \geq K$, a contradiction.

(ii) Assume $\{a_n\}$ is not bounded above. Then, for every $M \in \mathbf{R}$, there is an $n \in \mathbf{N}$ such that $a_n > M$. First, with M = 1, we have $a_{n_1} > 1$. Suppose that $n_1 < n_2 < \cdots < n_{i-1}$ are defined, then, with $M = i + \max\{a_1, a_2, \cdots, a_{n_{i-1}}\}$, we have $n_i \in \mathbf{N}$ such that $a_{n_i} > M$; clearly, $n_i > n_{i-1}$ and $a_{n_i} \ge i + a_{n_{i-1}}$. In this way, we obtain a monotonically increasing subsequence $\{a_{n_k}\}$ such that $a_{n_k} > k$ for all $k \in \mathbf{N}$; hence $a_{n_k} \to +\infty$.

The case for bounded-below sequences is completely analogous.

Definition 3.8. Let $\{a_n\}$ be a sequence in **R**. Let E be the set of (extended) real numbers x (including $+\infty$ and $-\infty$) such that $a_{n_k} \to x$ for some subsequence $\{a_{n_k}\}$. This set E contains the set E^* of all subsequential limits of $\{a_n\}$ defined in the proof of Theorem 3.9, plus possibly the extended numbers $+\infty$ or $-\infty$. Let

$$a^* = \sup E, \quad a_* = \inf E.$$

The (extended real) numbers a^* and a_* are called the **upper limit** and **lower limit** of the sequence $\{a_n\}$, respectively; we use the notation

$$\limsup_{n \to \infty} a_n = a^*, \quad \liminf_{n \to \infty} a_n = a_*,$$

or simply, $a^* = \limsup a_n$, $a_* = \liminf a_n$.

EXAMPLE 3.3. (i) Let $a_n = (-1)^n (1 + \frac{1}{n})$. Then the set *E* defined above consists of two numbers, 1 and -1. (Why?) Hence

$$\limsup_{n \to \infty} a_n = 1, \quad \liminf_{n \to \infty} a_n = -1.$$

(ii) Let $a_n = n^{(-1)^n}$. Then the set E defined above consists of $\{0, +\infty\}$, and hence

$$\limsup_{n \to \infty} a_n = +\infty, \quad \liminf_{n \to \infty} a_n = 0.$$

(iii) Let $\{a_n\}$ be the sequence of all rational numbers. Then the set E defined is all the extended real numbers; hence

$$\limsup_{n \to \infty} a_n = +\infty, \quad \liminf_{n \to \infty} a_n = -\infty.$$

Theorem 3.14. Let $\{a_n\}$ be a sequence in **R**. Then $\lim_{n\to\infty} a_n = a$ exists in the extended real system if and only if

$$\limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n = a.$$

Proof. If $\lim a_n = a$, then the set *E* defined above consists of only one element *a*; hence $\limsup a_n = \liminf a_n = a$.

Assume $\limsup a_n = \liminf a_n = a$. Then $E = \{a\}$.

(i) Assume $a = +\infty$. Then $\{a_n\}$ must be bounded below since otherwise there would be a subsequence converging to $-\infty$. We show $\lim a_n = +\infty$; that is,

$$(3.2) \qquad \forall M \; \exists N \in \mathbf{N} \; \forall n \in \mathbf{N} \; (n \ge N \Longrightarrow a_n > M).$$

Suppose (3.2) is false; then, by negating (3.2),

$$(3.3) \qquad \exists M \ \forall N \in \mathbf{N} \ \exists k_N \in \mathbf{N} \ (k_N \ge N, \ a_{k_N} \le M).$$

We use (3.3) as follows. First, choose $n_1 = k_1 \ge 1$ such that $a_{n_1} \le M$. Once n_1 is chosen, with $N = n_1 + 1$, there exists $n_2 = k_N \ge n_1 + 1$ such that $a_{n_2} \le M$. Continue in this way, and we get a subsequence $\{a_{n_k}\}$ such that $a_{n_k} \le M$. Since $\{a_n\}$ is bounded below, we have the sequence $\{a_{n_k}\}$ is bounded; hence, by the Bolzano-Weierstrass Theorem, this sequence has a convergent subsequence converging to a finite number, and this subsequence is also a subsequence of the original sequence $\{a_n\}$, showing E has a finite number in it, a contradiction.

Similarly, if $a = -\infty$, then it follows that $\lim a_n = -\infty$.

(ii) Now assume a is finite. In this case, by Lemma 3.13, $\{a_n\}$ is bounded. Suppose $\{a_n\}$ does not converge to a. Then, by negating the definition of $a_n \to a$,

$$(3.4) \qquad \exists \epsilon_0 > 0 \ \forall N \in \mathbf{N} \ \exists k_N \in \mathbf{N} \ (k_N \ge N, \ |a_{k_N} - a| \ge \epsilon_0).$$

We use (3.4) as follows. First, choose $n_1 = k_1 \ge 1$ such that $|a_{n_1} - a| \ge \epsilon_0$. Once n_1 is chosen, with $N = n_1 + 1$, there exists $n_2 = k_N \ge n_1 + 1$ such that $|a_{n_2} - a| \ge \epsilon_0$. Continue in this way and we get a subsequence $\{a_{n_k}\}$ such that $|a_{n_k} - a| \ge \epsilon_0$. Since $\{a_{n_k}\}$ is bounded, by the Bolzano-Weierstrass Theorem, it has a convergent subsequence converging to a finite number b which, by the **order limit theorem**, must satisfy that $|b - a| \ge \epsilon_0$; this subsequence is also a subsequence of the original $\{a_n\}$, showing $b \in E$, but $b \neq a$, a contradiction since $E = \{a\}$.

This completes the proof.

Theorem 3.15. Let $\{a_n\}$ be a sequence in **R**. Let *E* and a^* be defined as above. Then a^* has the following properties:

(a) $a^* \in E$.

(b) If $x > a^*$, then there is an $N \in \mathbb{N}$ such that $a_n < x$ for all $n \ge N$.

Moreover, a^* is the only (extended real) number satisfying the properties (a) and (b). An analogous result is true for a_* .

Proof. (a) If $a^* = +\infty$, then *E* is not bounded above; hence $\{a_n\}$ is not bounded above, and, by Lemma 3.13, there is a subsequence $\{a_{n_k}\}$ converging to $+\infty$.

If a^* is finite, then, for every $\epsilon > 0$, there is $x \in E$ such that $a^* - \epsilon < x$. Since x is finite, we have $x \in E^*$, where E^* is the set defined in the proof of Theorem 3.9; hence, $a^* - \epsilon < \sup E^*$ for all $\epsilon > 0$, which proves that $a^* \leq \sup E^* \leq \sup E = a^*$, and thus $a^* = \sup E^* \in \overline{E^*} = E^* \subseteq E$ since E^* is closed.

If $a^* = -\infty$, then *E* contains only one element $-\infty$; in this case, in fact, the whole sequence $a_n \to -\infty$. (See the proof of Theorem 3.14.)

This proves (a) in all cases.

(b) Nothing is to prove if $a^* = +\infty$. So let $a^* < +\infty$, and hence $\{a_n\}$ is bounded above. Suppose that there is a number $x > a^*$ such that $a_n \ge x$ for infinitely many $n \in \mathbf{N}$. These terms determine a subsequence of $\{a_n\}$ which is bounded and thus, by the **Bolzano-Weierstrass theorem**, has a convergent subsequence with limit $y \ge x$. Since a subsequence of a subsequence of $\{a_n\}$ is also a subsequence of $\{a_n\}$, we have $y \in E$, but $y \ge x > a^*$, contradicting the definition of $a^* = \sup E$.

Thus a^* satisfies (a) and (b).

To show the uniqueness, let p and q both satisfy (a) and (b), and suppose p < q. Choose x such that p < x < q. Since p satisfies (b), there exists an $N \in \mathbb{N}$ such that $a_n < x$ for all $n \ge N$. So the limit of any convergent subsequence of $\{a_n\}$ must be less than or equal to x; hence, $\forall y \in E, y \le x < q$, but then q cannot be in E, contradicting (a) for q.

The following result is useful.

Theorem 3.16. If $a_n \leq b_n$ for all $n \geq N_0$, where $N_0 \in \mathbf{N}$ is a fixed integer, then

 $\liminf_{n \to \infty} a_n \le \liminf_{n \to \infty} b_n, \quad \limsup_{n \to \infty} a_n \le \limsup_{n \to \infty} b_n.$

Remark 3.9. There is another way to define upper and lower limits. Let $\{a_n\}$ be a sequence of real numbers. Define

$$x_n = \inf\{a_k \mid k \ge n\} = \inf\{a_n, a_{n+1}, a_{n+2}, \cdots\},\$$

$$y_n = \sup\{a_k \mid k \ge n\} = \sup\{a_n, a_{n+1}, a_{n+2}, \cdots\}.$$

If $\{a_n\}$ is not bounded below, then $x_n = -\infty$ for all $n \in \mathbb{N}$; if $\{a_n\}$ is bounded below, then $\{x_n\}$ is monotonically increasing, and hence, by Theorem 3.12, $\{x_n\}$ converges.

Similarly, if $\{a_n\}$ is not bounded above, then $y_n = +\infty$ for all $n \in \mathbb{N}$; if $\{a_n\}$ is bounded above, then $\{y_n\}$ is monotonically decreasing, and hence again, by Theorem 3.12, $\{y_n\}$ converges.

Therefore, the limits $\lim_{n \to \infty} x_n$ and $\lim_{n \to \infty} y_n$ are *always* well-defined in the extended real number system. In fact, we have the following.

Theorem 3.17.

$$\lim_{n \to \infty} x_n = \liminf_{n \to \infty} a_n, \quad \lim_{n \to \infty} y_n = \limsup_{n \to \infty} a_n.$$

3.6. Some Special Sequences

We shall use the following simple result, known as the **Squeezing Theorem**.

Lemma 3.18. Suppose $y_n \leq x_n \leq z_n$ for all $n \geq N$, where $N \in \mathbb{N}$ is some fixed number. If $y_n \to l$ and $z_n \to l$, then $x_n \to l$.

Proof. Given $\epsilon > 0$, let $N \in \mathbf{N}$ be such that, for all $n \ge N$, $|y_n - l| < \epsilon$ and $|z_n - l| < \epsilon$; thus $l - \epsilon < y_n \le x_n \le z_n < l + \epsilon$, that is, $|x_n - l| < \epsilon$ for all $n \ge N$. Hence $x_n \to l$. \Box

Theorem 3.19. We have

(a) If
$$p > 0$$
, then $\lim \frac{1}{n^p} = 0$.

- (b) If p > 0, then $\lim \sqrt[n]{p} = 1$.
- (c) $\lim \sqrt[n]{n} = 1.$
- (d) If p > 0 and α is real, then $\lim \frac{n^{\alpha}}{(1+p)^n} = 0$.
- (e) If $x \in \mathbf{R}$ with |x| < 1, then $\lim x^n = 0$.

Proof. (a) Take $N > (1/\epsilon)^{1/p}$ in the ϵ -N definition of the convergence.

(b) If p > 1, let $x_n = \sqrt[n]{p} - 1$. Then $x_n > 0$, and, by the binomial theorem,

$$1 + nx_n \le (1 + x_n)^n = p$$

so that

$$0 < x_n \le \frac{p-1}{n} \to 0.$$

If p = 1, (b) is trivial; if 0 , then the result follows by taking reciprocals.

(c) Let $x_n = \sqrt[n]{n-1}$. Then $x_n \ge 0$, and by the binomial theorem, if $n \ge 2$,

$$n = (1 + x_n)^n \ge \frac{n(n-1)}{2}x_n^2.$$

Hence

$$0 \le x_n \le \sqrt{\frac{2}{n-1}} \quad (n \ge 2).$$

(d) Let k be an integer such that $k > \alpha$, k > 0. For n > 2k,

$$(1+p)^n > \frac{n(n-1)\cdots(n-k+1)}{k!}p^k > \frac{n^k p^k}{2^k k!}.$$

Hence

$$0 < \frac{n^{\alpha}}{(1+p)^n} < \frac{2^k k!}{p^k} n^{\alpha-k} \quad (n > 2k).$$

Since $\alpha - k < 0$, it follows that $n^{\alpha - k} \to 0$, by (a).

(e) If x = 0, then (e) is trivial. Assume 0 < |x| < 1. Then

$$|x^{n}| = |x|^{n} = \frac{1}{(1+p)^{n}} \to 0,$$

by (d) with $\alpha = 0$ and $p = \frac{1}{|x|} - 1 > 0$.

3.7. Infinite Series

Definition 3.10. Let $\{b_n\}$ be a sequence of real numbers. An **infinite series**, or just a **series**, of terms b_n is a formal expression of the form

$$\sum_{n=1}^{\infty} b_n = b_1 + b_2 + b_3 + \cdots .$$

The corresponding sequence of partial sums $\{s_n\}$ is defined by

$$s_n = b_1 + b_2 + \dots + b_n$$

for all $n \in \mathbf{N}$.

If $\{s_n\}$ converges to a number $s \in \mathbf{R}$, then we say that the series $\sum_{n=1}^{\infty} b_n$ converges (to $s \in \mathbf{R}$), and write

$$\sum_{n=1}^{\infty} b_n = s.$$

The number s is called the **sum of the series**.

If the partial sum sequence $\{s_n\}$ diverges, then we say that the infinite series $\sum_{n=1}^{\infty} b_n$ diverges.

Sometimes, for convenience of notation, we shall consider series of the form

$$\sum_{n=0}^{\infty} b_n = b_0 + b_1 + b_2 + \cdots .$$

Frequently, when there is no possible ambiguity, we shall write a series as $\sum b_n$, whether n starts with 0 or 1.

By studying the partial sum sequences, we easily obtain the following result.

Theorem 3.20 (Algebraic Theorem for Series). If $\sum_{k=1}^{\infty} a_k = A$ and $\sum_{k=1}^{\infty} b_k = B$, then

$$\sum_{k=1}^{\infty} (ca_k + db_k) = cA + dB \quad for \ all \ c, d \in \mathbf{R}$$

Note that there is no similar rule for the product series $\sum_{k=1}^{\infty} (a_k b_k)$ or the quotient series $\sum_{k=1}^{\infty} (a_k/b_k)$.

Theorem 3.21 (Cauchy Criterion for Series). The series $\sum_{k=1}^{\infty} a_k$ converges if and only if, given any $\epsilon > 0$, there exists an $N \in \mathbf{N}$ such that whenever $n > m \ge N$ it follows that

$$|a_{m+1} + a_{m+2} + \dots + a_n| < \epsilon.$$

Proof. Note that $s_n - s_m = a_{m+1} + a_{m+2} + \cdots + a_n$. Hence the criterion is equivalent to the Cauchy criterion for the convergence of partial sum sequence $\{s_n\}$.

Theorem 3.22. If $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$.

Proof. Let $\{s_n\}$ be the sequence of partial sums of series $\sum a_n$, and let $s_0 = 0$. If $s_n \to s$ for some $s \in \mathbf{R}$, then, since $a_n = s_n - s_{n-1}$, it follows that $a_n = s_n - s_{n-1} \to s - s = 0$. \Box

This easy result is often used to show a series *diverges* by showing the sequence of its terms does not converge to 0. However, it can not be used to show the convergence simply from the limit $a_n \to 0$, as seen from the examples later.

Theorem 3.23 (Comparison Test). Assume $\{a_k\}$ and $\{b_k\}$ are sequences of real numbers.

- (a) If $|a_k| \leq b_k$ for all $k \geq N_0$, where $N_0 \in \mathbf{N}$ is some integer, and if $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges.
- (b) If $a_k \ge b_k \ge 0$ for all $k \ge N_0$, where $N_0 \in \mathbf{N}$ is some integer, and if $\sum_{k=1}^{\infty} b_k$ diverges, then $\sum_{k=1}^{\infty} a_k$ diverges.

Proof. (a) Given $\epsilon > 0$, by the Cauchy criterion, there exists $N \in \mathbf{N}$ with $N \ge N_0$ such that for all $n, m \in \mathbf{N}$ with $n > m \ge N$ it follows that

$$b_{m+1} + b_{m+2} + \dots + b_n < \epsilon.$$

Hence, by the triangle inequality,

 $|a_{m+1} + a_{m+2} + \dots + a_n| \le |a_{m+1}| + |a_{m+2}| + \dots + |a_n| \le b_{m+1} + b_{m+2} + \dots + b_n < \epsilon,$

which, again by the Cauchy criterion, shows that $\sum a_n$ converges.

(b) If $\sum a_n$ converges, then by (a), $\sum b_n$ must converge.

Remark 3.11. The comparison test (b) gives **no information** on convergence of the larger series $\sum_{k=1}^{\infty} a_k$ from the convergence of smaller series $\sum_{k=1}^{\infty} b_k$. In fact, when the smaller series $\sum_{k=1}^{\infty} b_k$ converges, the larger series $\sum_{k=1}^{\infty} a_k$ could either converge or diverge. For example, let $b_n = \frac{1}{n^4}$ and consider either sequence $a_n = \frac{1}{n}$ or sequence $a_n = \frac{1}{n^2}$. (See details later.)

Corollary 3.24 (Absolute Convergence Test). If the series $\sum_{k=1}^{\infty} |a_k|$ converges, then $\sum_{k=1}^{\infty} a_k$ converges as well.

Proof. This follows directly from (a) of Theorem 3.23 with $b_k = |a_k|$.

Definition 3.12. We say that the series $\sum_{k=1}^{\infty} a_k$ converges absolutely, or is absolutely convergent, if $\sum_{k=1}^{\infty} |a_k|$ converges. The previous result says that an absolutely convergent series always converges.

We say that the series $\sum_{k=1}^{\infty} a_k$ converges conditionally if $\sum_{k=1}^{\infty} a_k$ converges but $\sum_{k=1}^{\infty} |a_k|$ diverges.

Geometric Series.

Theorem 3.25 (Geometric series). Let $x \in \mathbf{R}$. If |x| < 1, then

(3.5)
$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots = \frac{1}{1-x}$$

If $|x| \ge 1$, then the series $\sum_{n=0}^{\infty} x^n$ diverges. The series $\sum_{n=0}^{\infty} x^n$ is called the **geometric series** of ratio x.

Proof. If $x \neq 1$, then the partial sum sequence $\{s_n\}$ of the series $\sum_{n=0}^{\infty} x^n$ is given by $s_n = 1 + x + x^2 + \dots + x^{n-1} = \frac{1 - x^n}{1 - x} \quad (n \in \mathbf{N}).$

The sequence $\{s_n\}$ converges to $\frac{1}{1-x}$ if |x| < 1. If $|x| \ge 1$, then clearly $|x^n| = |x|^n \ge 1$, and hence $\sum x^n$ diverges.

3.8. Series of Nonnegative Terms

Theorem 3.26. A series of nonnegative terms converges if and only if its partial sum sequence is bounded above.

Proof. Note that if $b_n \ge 0$ then the partial sum sequence $\{s_n\}$ of series $\sum b_n$ is monotonically increasing. Therefore, in this case, by the (proof of MCT), the partial sum sequence $\{s_n\}$ converges if and only if it is *bounded above*.

Theorem 3.27 (Cauchy's Theorem). Suppose $a_1 \ge a_2 \ge a_3 \ge \cdots \ge 0$. Then the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the series

$$\sum_{k=0}^{\infty} 2^k a_{2^k} = a_1 + 2a_2 + 4a_4 + 8a_8 + 16a_{16} + \cdots$$

converges.

Proof. By Theorem 3.26, it suffices to prove that the partial sum sequence of $\sum a_n$ is bounded above if and only if the partial sum sequence of $\sum 2^k a_{2^k}$ is bounded above.

Let $s_n = a_1 + a_2 + \dots + a_n$ and

$$t_k = \sum_{j=0}^{k} 2^j a_{2^j} = a_1 + 2a_2 + 4a_4 + \dots + 2^k a_{2^k}.$$

For any $n \in \mathbf{N}$, if $2^k > n$, then

$$s_n \le a_1 + (a_2 + a_3) + \dots + (a_{2^k} + \dots + a_{2^{k+1}-1}) \le a_1 + 2a_2 + \dots + 2^k a_{2^k} = t_k.$$

Hence, if $\{t_k\}$ is bounded above, then so is $\{s_n\}$.

For any $k \in \mathbf{N}$, if $n > 2^k$, then

$$s_n \ge a_1 + a_2 + (a_3 + a_4) + \dots + (a_{2^{k-1}+1} + \dots + a_{2^k})$$
$$\ge \frac{1}{2}a_1 + a_2 + 2a_4 + \dots + 2^{k-1}a_{2^k} = \frac{1}{2}t_k,$$

so that $t_k \leq 2s_n$, and hence if $\{s_n\}$ is bounded above, then so is $\{t_k\}$.

Theorem 3.28. The series $\sum \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.

Proof. Clearly, if $p \leq 0$, then $\frac{1}{n^p} \geq 1$ and hence $\sum \frac{1}{n^p}$ diverges. If p > 0 then Theorem 3.27 is applicable, and we are led to the series

$$\sum_{k=0}^{\infty} 2^k \frac{1}{2^{kp}} = \sum_{k=0}^{\infty} 2^{(1-p)k},$$

which is a geometric series with ratio $x = 2^{1-p}$; hence the result follows.

Theorem 3.29. Let b > 1. Then the series $\sum_{n=2}^{\infty} \frac{1}{n(\log_b n)^p}$ converges if p > 1 and diverges if $p \le 1$.

Proof. If $p \leq 0$, the series diverges by comparison with $\sum \frac{1}{n}$. Hence, assume p > 0. By the previous theorem, the series

$$\sum_{k=1}^{\infty} 2^k \frac{1}{2^k (\log_b 2^k)^p} = \frac{1}{(\log_b 2)^p} \sum_{k=1}^{\infty} \frac{1}{k^p}$$

converges if p > 1 and diverges if 0 . The result then follows from Cauchy's theorem.

Remark 3.13. Given p > 1 and q > 1, there exists no integer $N_0 \in \mathbb{N}$ such that

$$\frac{1}{n(\log_b n)^p} \le \frac{1}{n^q} \quad \forall \ n \ge N_0.$$

Hence the convergence result in Theorem 3.29 cannot be deduced from Theorem 3.28 by using the comparison theorem.

3.9. The Root and Ratio Tests

Theorem 3.30. For any sequence $\{c_n\}$ of positive numbers, it follows that

$$\liminf_{n \to \infty} \frac{c_{n+1}}{c_n} \le \liminf_{n \to \infty} \sqrt[n]{c_n} \le \limsup_{n \to \infty} \sqrt[n]{c_n} \le \limsup_{n \to \infty} \frac{c_{n+1}}{c_n}.$$

Proof. We prove $\limsup \sqrt[n]{c_n} \le \limsup \frac{c_{n+1}}{c_n}$; the proof concerning limit is similar.

Let $\alpha = \limsup \frac{c_{n+1}}{c_n}$. If $\alpha = +\infty$, there is nothing to prove. Assume $\alpha < +\infty$. Let $\beta > \alpha$ be any number, and choose an integer $N \in \mathbf{N}$ such that

$$\frac{c_{n+1}}{c_n} \le \beta \quad \forall \, n \ge N;$$

that is, $c_{n+1} \leq \beta c_n$ for all $n \geq N$. Hence,

$$c_{N+p} \leq \beta^p c_N \quad \forall p \in \mathbf{N},$$

or $c_n \leq c_N \beta^{-N} \beta^n$ for all $n \geq N$. Hence

$$\sqrt[n]{c_n} \le (c_N \beta^{-N})^{1/n} \beta \quad \forall n \ge N.$$

Thus

$$\limsup \sqrt[n]{c_n} \le \beta,$$

for all $\beta > \alpha$. Consequently, $\limsup \sqrt[n]{c_n} \le \alpha$. This completes the proof.

Theorem 3.31 (Root Test). Given a series $\sum a_n$, let $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$ (including $\alpha = +\infty$). Then

- (a) if $\alpha < 1$, $\sum a_n$ converges absolutely;
- (b) if $\alpha > 1$, $\sum a_n$ diverges;
- (c) if $\alpha = 1$, the test gives no information.

Proof. (a) Assume $\alpha < 1$. We choose β so that $\alpha < \beta < 1$, and $N \in \mathbb{N}$ such that

$$\sqrt[n]{|a_n|} < \beta \quad \forall n \ge N.$$

That is, $|a_n| < \beta^n$ for all $n \ge N$. Since $0 < \beta < 1$, $\sum \beta^n$ converges; hence, by the comparison test, $\sum |a_n|$ converges, and thus $\sum a_n$ converges absolutely, by Corollary 3.24.

(b) Assume $\alpha > 1$. Let $\{a_{n_k}\}$ be a subsequence such that

$$\lim_{k \to \infty} \sqrt[n_k]{|a_{n_k}|} = \alpha.$$

Hence $|a_{n_k}| > 1$ for $k \ge K$, where $K \in \mathbb{N}$ is some integer. Therefore, $\{a_n\}$ cannot converge to 0, and hence $\sum a_n$ diverges.

(c) Consider two series $\sum \frac{1}{n}$ and $\sum \frac{1}{n^2}$; for both, we have $\alpha = 1$, but the first diverges, while the second one converges.

From Theorem 3.30 and the **root test**, we easily have the following theorem, which sometimes may be easier to use than the root test.

Corollary 3.32 (Ratio Test). The series $\sum a_n$ converges absolutely if $\limsup_{n \to \infty} |\frac{a_{n+1}}{a_n}| < 1$.

EXAMPLE 3.4. Sometimes the ratio may fail, but the root test still works. Consider the series

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \cdots;$$

that is, $\sum a_n$, where

$$a_n = \begin{cases} \left(\frac{1}{2}\right)^{\frac{n+1}{2}} & (n = 1, 3, 5, \cdots), \\ \left(\frac{1}{3}\right)^{\frac{n}{2}} & (n = 2, 4, 6, \cdots), \end{cases}$$

or $a_{2k-1} = (\frac{1}{2})^k$, $a_{2k} = (\frac{1}{3})^k$ for all $k \in \mathbf{N}$. Then we have

$$\lim_{n \to \infty} \inf_{a_n} \frac{a_{n+1}}{a_n} = \lim_{k \to \infty} \frac{a_{2k}}{a_{2k-1}} = \lim_{k \to \infty} (\frac{2}{3})^k = 0,$$

$$\lim_{n \to \infty} \inf_{n \to \infty} \sqrt[n]{a_n} = \lim_{k \to \infty} \sqrt[2k]{a_{2k}} = \lim_{k \to \infty} \sqrt[2k]{3^{-k}} = \sqrt{1/3},$$

$$\lim_{n \to \infty} \sup_{n \to \infty} \sqrt[n]{a_n} = \lim_{k \to \infty} \sqrt[2k-1]{a_{2k-1}} = \lim_{k \to \infty} \sqrt[2k-1]{2^{-k}} = \sqrt{1/2}$$

$$\lim_{n \to \infty} \sup_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{k \to \infty} \frac{a_{2k+1}}{a_{2k}} = \lim_{k \to \infty} \frac{1}{2} (\frac{3}{2})^k = +\infty.$$

Hence, the series converges by the root test, which cannot be concluded by using the ratio test.

3.10. Summation by Parts

Lemma 3.33. Given two sequences $\{a_n\}$ and $\{b_n\}$, let

$$A_n = \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n$$

if $n \in \mathbf{N}$, and $A_0 = 0$. Then, if $1 \le p \le q$, we have

$$\sum_{k=p}^{q} a_k b_k = A_q b_q - A_{p-1} b_p + \sum_{k=p}^{q-1} A_k (b_k - b_{k+1})$$

Proof.

$$\sum_{k=p}^{q} a_k b_k = \sum_{k=p}^{q} (A_k - A_{k-1}) b_k = \sum_{k=p}^{q} A_k b_k - \sum_{k=p}^{q} A_{k-1} b_k = \sum_{k=p}^{q} A_k b_k - \sum_{k=p-1}^{q-1} A_k b_{k+1}$$
$$= \left(\sum_{k=p}^{q-1} A_k b_k + A_q b_q\right) - \left(A_{p-1} b_p + \sum_{k=p}^{q-1} A_k b_{k+1}\right) = A_q b_q - A_{p-1} b_p + \sum_{k=p}^{q-1} A_k (b_k - b_{k+1}).$$

Theorem 3.34. Given two sequences $\{a_n\}$ and $\{b_n\}$, suppose that

(a) the partial sum sequence $\{A_n\}$ of $\{a_n\}$ is bounded;

(b)
$$b_1 \ge b_2 \ge b_3 \ge \cdots \ge 0$$
 and $b_n \to 0$.

Then $\sum a_n b_n$ converges.

Proof. Let $|A_n| \leq M$ for all $n \in \mathbf{N}$, where M > 0 is a fixed finite number. Given $\epsilon > 0$, there is an integer $N \in \mathbf{N}$ such that $b_N < \frac{\epsilon}{2M}$. Then, for all $p, q \in \mathbf{N}$ with $q \geq p \geq N$,

$$\left| \sum_{k=p}^{q} a_k b_k \right| = \left| \sum_{k=p}^{q-1} A_k (b_k - b_{k+1}) + A_q b_q - A_{p-1} b_p \right|$$

$$\leq \sum_{k=p}^{q-1} |A_k| |b_k - b_{k+1}| + |A_q| |b_q| + |A_{p-1}| |b_p|$$

$$\leq M \left[\sum_{k=p}^{q-1} (b_k - b_{k+1}) + b_q + b_p \right] = 2M b_p \leq 2M b_N < \epsilon.$$

Hence, by the Cauchy criterion, $\sum a_n b_n$ converges.

Corollary 3.35 (Alternating Series Test). Let $\{b_n\}$ satisfy

$$b_1 \ge b_2 \ge b_3 \ge \cdots \ge 0, \quad b_n \to 0.$$

Then the alternating series

$$\sum_{n=1}^{\infty} (-1)^{n+1} b_n = b_1 - b_2 + b_3 - b_4 + \cdots$$

converges.

Proof. Apply the theorem with $a_n = (-1)^{n+1}$ and b_n .

EXAMPLE 3.5. (i) The alternating harmonic series:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

converges by the alternating series test. But since the series of absolute values $\sum \frac{1}{n}$ diverges, this series converges conditionally.

(ii) The series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$$

is also a convergent alternating series, but converges **absolutely** because the absolute series $\sum \frac{1}{n^2}$ converges. So there are two tests we can use to deduce the convergence of this series; however, the **alternating series test** only asserts the convergence and does not tell whether the convergence is conditional or absolute.

(iii) Often, to determine whether a series converges or not, you should first try to use the **absolute convergence test**; if it does not work, then try to use other tests.

3.11. The Number e

Definition 3.14. Define

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots,$$

where 0! = 1 and $n! = 1 \cdot 2 \cdot 3 \cdots n$ for $n \ge 1$. Since

$$s_n = \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \dots + \frac{1}{1 \cdot 2 \dots n}$$
$$< 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} < 3,$$

it follows from Theorem 3.26 that the series $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges, and the definition makes sense.

Theorem 3.36.

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

Proof. Let

(3.6)
$$s_n = \sum_{k=0}^n \frac{1}{k!}, \quad t_n = \left(1 + \frac{1}{n}\right)^n$$

By the binomial theorem,

$$t_n = \sum_{k=0}^n \frac{n(n-1)\cdots(n-k+1)}{k!n^k} = \sum_{k=0}^n \frac{1}{k!}(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{k-1}{n}).$$

(Note that in this expression the first two terms when k = 0, 1 are both taken to be 1.) Hence $t_n \leq s_n$, so that

$$\limsup t_n \le e.$$

Next, if $n \ge m \ge 2$, then

$$t_n \ge 1 + 1 + \frac{1}{2!}(1 - \frac{1}{n}) + \dots + \frac{1}{m!}(1 - \frac{1}{n})(1 - \frac{2}{n})\dots(1 - \frac{m-1}{n}).$$

Keep m fixed and let $n \to \infty$, and we get

$$\liminf t_n \ge 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{m!},$$

so that $s_m \leq \liminf t_n$, for all $m \geq 2$, which gives

$$e \leq \liminf t_n.$$

Therefore, by Theorem 3.14, $\lim t_n = e$.

Lemma 3.37. Let s_n be defined by (3.6). Then

$$0 < e - s_n < \frac{1}{n!n}$$

Proof. Clearly,

$$e - s_n = \sum_{k=n+1}^{\infty} \frac{1}{k!} < \frac{1}{(n+1)!} \sum_{k=0}^{\infty} \frac{1}{(n+1)^k} = \frac{1}{n!n!}$$

Theorem 3.38. e is irrational.

Proof. Suppose *e* is rational. Then e = p/q, where $p, q \in \mathbb{N}$. By Lemma 3.37,

$$0 < q!(e-s_q) < \frac{1}{q}.$$

Clearly,

$$q!s_q = q!(1+1+\frac{1}{2!}+\dots+\frac{1}{q!})$$

is an integer, and by assumption, $q!e = (q-1)!p \in \mathbf{N}$; hence, $q!(e-s_q)$ is an integer, which contradicts with $0 < q!(e-s_q) < \frac{1}{q}$.

3.12. Power Series

Definition 3.15. Given a sequence $\{a_n\}_{n=0}^{\infty}$ of real numbers, the series

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

is called a **power series**. The numbers a_n are called the **coefficients** of the power series, and x is a real number.

In general, the convergence of a power series depends on the choice of variable x. On the set of all x such that the power converges, the sum $\sum a_n x^n$ defines a function. The following theorem characterizes this set.

Theorem 3.39. Given a power series $\sum a_n x^n$, let

$$\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}, \quad R = \frac{1}{\alpha},$$

(if $\alpha = 0$, then $R = +\infty$; if $\alpha = +\infty$, then R = 0). This number R is called the **radius of convergence** of the power series.

Then, the series $\sum a_n x^n$ converges absolutely if |x| < R, and diverges if |x| > R. The series may converge or diverge if |x| = R.

Proof. Let $b_n = a_n x^n$. Then $\sqrt[n]{|b_n|} = |x| \sqrt[n]{|a_n|}$ and hence

$$\limsup_{n \to \infty} \sqrt[n]{|b_n|} = |x| \limsup_{n \to \infty} \sqrt[n]{|a_n|} = |x|/R.$$

Consequently, the conclusion follows from the root test.

Corollary 3.40. If a power series $\sum a_n x^n$ converges at some $x = x_0 \neq 0$, then $\sum a_n x^n$ converges absolutely for all x with $|x| < |x_0|$.

Proof. If $\sum a_n x^n$ converges at $x = x_0 \neq 0$, then its radius of convergence $R \geq |x_0|$; hence $\sum a_n x^n$ converges absolutely for all x with $|x| < |x_0| \leq R$.

- EXAMPLE 3.6. (1) The power series $\sum n^n x^n$ has R = 0, and only converges when x = 0.
 - (2) The power series $\sum \frac{x^n}{n!}$ has $R = +\infty$ (easily seen using the ratio test), and converges for all $x \in \mathbf{R}$.
 - (3) The power series $\sum \frac{x^n}{n^2}$ has R = 1; it also converges for all $x \in \mathbf{R}$ with $|x| \leq 1$.
 - (4) The power series $\sum \frac{x^n}{n}$ has R = 1; it converges if x = -1, but diverges if x = 1.

3.13. Multiplication of Series

Definition 3.16. Given $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, let

$$c_n = \sum_{k=0}^n a_k b_{n-k} \quad (n = 0, 1, 2, \cdots).$$

Then the series $\sum c_n$ is called the **product** of the two given series.

To motivate this definition, let us consider two power series

$$\sum_{n=0}^{\infty} a_n x^n, \quad \sum_{n=0}^{\infty} b_n x^n$$

If we multiply the two series term-by-term and collect the like terms, we get

$$\left(\sum_{n=0}^{\infty} a_n x^n\right) \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} c_n x^n.$$

Setting x = 1, we arrive at the above definition.

EXAMPLE 3.7. We show that even if $\sum a_n$ and $\sum b_n$ both converge the product series $\sum c_n$ may diverge.

Let $a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}$. Then, by the alternating series test, $\sum a_n$ converges. Compute

$$c_n = \sum_{k=0}^n a_k a_{n-k} = \sum_{k=0}^n \frac{(-1)^k}{\sqrt{k+1}} \frac{(-1)^{n-k}}{\sqrt{n-k+1}} = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{(n-k+1)(k+1)}}.$$

Note that, for all k,

$$(n-k+1)(k+1) = (\frac{n}{2}+1)^2 - (\frac{n}{2}-k)^2 \le (\frac{n}{2}+1)^2;$$

hence,

$$|c_n| \ge \sum_{k=0}^n \frac{2}{n+2} = \frac{2(n+1)}{n+2} \ge 1.$$

Hence $\sum c_n$ diverges.

However, we have the following result.

Theorem 3.41. Suppose $\sum a_n$ converges absolutely and $\sum b_n$ converges. Let

$$\sum_{n=0}^{\infty} a_n = A, \quad \sum_{n=0}^{\infty} b_n = B, \quad c_n = \sum_{k=0}^n a_k b_{n-k} \quad (n = 0, 1, 2, \cdots).$$

Then $\sum c_n$ converges, and

$$\sum_{n=0}^{\infty} c_n = AB.$$

Proof. Let

$$A_n = \sum_{k=0}^n a_k, \quad B_n = \sum_{k=0}^n b_k, \quad C_n = \sum_{k=0}^n c_k$$

Let $\beta_n = B_n - B$, and let

$$\gamma_n = \sum_{k=0}^n a_k \beta_{n-k} = a_0 \beta_n + a_1 \beta_{n-1} + \dots + a_n \beta_0.$$

Then

$$C_n = a_0b_0 + (a_0b_1 + a_1b_0) + \dots + (a_0b_n + a_1b_{n-1} + \dots + a_nb_0) = a_0B_n + a_1B_{n-1} + \dots + a_nB_0$$

= $a_0(B + \beta_n) + a_1(B + \beta_{n-1}) + \dots + a_n(B + \beta_0) = A_nB + a_0\beta_n + a_1\beta_{n-1} + \dots + a_n\beta_0 = A_nB + \gamma_n.$

It suffices to show that $\gamma_n \to 0$. Let $\epsilon > 0$ be given. Let $\alpha = \sum |a_n|$. Since $\beta_n \to 0$, we can choose an $N \in \mathbf{N}$ such that $|\beta_n| < \epsilon$ for all $n \ge N$. Hence, if $n \ge N$, then

$$|\gamma_n| \le |\beta_0 a_n + \dots + \beta_N a_{n-N}| + |\beta_{N+1} a_{n-N-1} + \dots + \beta_n a_0$$
$$\le |\beta_0| |a_n| + \dots + |\beta_N| |a_{n-N}| + \epsilon \alpha.$$

Keeping N fixed, and letting $n \to \infty$, we get

$$\limsup_{n \to \infty} |\gamma_n| \le \epsilon \alpha,$$

since $a_k \to 0$ as $k \to \infty$. Since $\epsilon > 0$ is arbitrary, we have proved $\lim |\gamma_n| = 0$.

Theorem 3.42 (Abel's theorem). If $\sum a_n$, $\sum b_n$ and their product series $\sum c_n$ all converge, then

$$\left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right) = \sum_{n=0}^{\infty} c_n$$

Proof. The proof uses the continuity of power series, and will not be discussed here. \Box

3.14. Rearrangements

Definition 3.17. Given two series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$, we say that $\sum_{n=1}^{\infty} b_n$ is a **rearrange**ment of $\sum_{n=1}^{\infty} a_n$ if there exists a 1-1 function f from **N** onto **N** such that

$$b_n = a_{f(n)} \quad \forall \ n \in \mathbf{N}.$$

If $\sum b_n$ is a rearrangement of $\sum a_n$, we see that every term of $\sum b_n$ appears *exactly* once in $\sum a_n$ and, vice-versa, every term of $\sum a_n$ appears *exactly once* in $\sum b_n$. However, their partial sum sequences may differ greatly.

Now, if a series $\sum a_n$ and one of its rearrangements $\sum b_n$ both converge, do we have that $\sum b_n = \sum a_n$? The answer is no, in general.

EXAMPLE 3.8. Consider the convergent alternating harmonic series

$$S = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$

Let s_n be the partial sum. Then $s_{2k} > \frac{1}{2}$ and hence $S \ge \frac{1}{2}$. Also

$$\frac{1}{2}S = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \dots + (-1)^{n+1}\frac{1}{2n} + \dots$$
$$= 0 + \frac{1}{2} + 0 - \frac{1}{4} + 0 + \frac{1}{6} + 0 - \frac{1}{8} + \dots + 0 + \frac{1}{2(2k-1)} + 0 - \frac{1}{4k} + 0 + \dots,$$

where all the odd terms are 0. So

$$S + \frac{1}{2}S = \frac{3}{2}S = 1 + 0 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + 0 + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + 0 + \frac{1}{11} - \frac{1}{6} + \cdots$$
$$= 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + \cdots,$$

which becomes a rearrangement of $S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$; but certainly their sums are not equal since $S \neq 0$.

In fact, Riemann proved the following theorem.

1

Theorem 3.43 (Riemann's theorem). Let $\sum a_n$ converge conditionally. Suppose $-\infty \le \alpha \le \beta \le +\infty$. Then there exists a rearrangement $\sum b_n$ of $\sum a_n$ whose partial sum sequence $\{B_n\}$ satisfies

(3.7)
$$\liminf_{n \to \infty} B_n = \alpha, \quad \limsup_{n \to \infty} B_n = \beta.$$

In particular, for any $-\infty \leq \alpha \leq +\infty$, there exists a rearrangement $\sum b_n$ of $\sum a_n$ such that $\sum b_n = \alpha$.

Proof. Let

$$p_n = \frac{|a_n| + a_n}{2}, \quad q_n = \frac{|a_n| - a_n}{2} \quad (n \in \mathbf{N}).$$

Then $p_n - q_n = a_n$, $p_n + q_n = |a_n|$, $p_n \ge 0$, $q_n \ge 0$. Since $\sum a_n$ converges but $\sum |a_n|$ diverges, it follows that both $\sum p_n$ and $\sum q_n$ must diverge.

Now let P_1, P_2, P_3, \cdots denote the nonnegative terms in the sequence $\{a_n\}$ in the order they occur, and let Q_1, Q_2, Q_3, \cdots denote the absolute values of the negative terms in $\{a_n\}$, also in their original order.

The series $\sum P_n, \sum Q_n$ differ from $\sum p_n, \sum q_n$ only by zero terms, and hence both diverge.

We shall construct sequences $\{m_n\}, \{k_n\}$ of increasing positive integers, such that the series

(3.8) $P_1 + P_2 + \dots + P_{m_1} - Q_1 - Q_2 - \dots - Q_{k_1} + P_{m_1+1} + \dots + P_{m_2} - Q_{k_1+1} - \dots - Q_{k_2} + \dots$, which clearly is a rearrangement of $\sum a_n$, satisfies (3.7).

Let $\{\alpha_n\}, \{\beta_n\}$ be real sequences, such that $\alpha_n \to \alpha, \beta_n \to \beta, \alpha_n < \beta_n$ and $\beta_1 > 0$.

Let m_1, k_1 be the smallest positive integers such that

$$P_1 + P_2 + \dots + P_{m_1} > \beta_1, \quad P_1 + P_2 + \dots + P_{m_1} - Q_1 - \dots - Q_{k_1} < \alpha_1;$$

let $m_2 > m_1, k_2 > k_1$ be the smallest positive integers such that

$$P_1 + P_2 + \dots + P_{m_1} - Q_1 - \dots - Q_{k_1} + P_{m_1+1} + \dots + P_{m_2} > \beta_2,$$

 $P_1 + P_2 + \cdots + P_{m_1} - Q_1 - \cdots - Q_{k_1} + P_{m_1+1} + \cdots + P_{m_2} - Q_{k_1+1} - \cdots - Q_{k_2} < \alpha_2;$ this process continues without stopping in a finite number of steps since $P_n \to 0, Q_n \to 0$ and both $\sum P_n, \sum Q_n$ diverge.

If x_n , y_n denote the partial sums of (3.8) whose last terms are P_{m_n} , $-Q_{k_n}$, respectively, then $x_n - P_{m_n} \leq \beta_n < x_n$ and $y_n < \alpha_n \leq y_n + Q_{k_n}$; hence

$$|x_n - \beta_n| \le P_{m_n} \to 0, \quad |y_n - \alpha_n| \le Q_{k_n} \to 0.$$

Hence $x_n \to \beta$, $y_n \to \alpha$.

For every $k \in \mathbf{N}$, let S_k be the partial of (3.8) of first k terms. The last term of S_k is either P_j for some $m_{i-1} + 1 \leq j \leq m_i$, where $i = i(k) \in \mathbf{N}$ is such that $i(k) \to \infty$ as $k \to \infty$, or Q_p for some $k_{q-1} + 1 \leq p \leq k_q$, where $q = q(k) \in \mathbf{N}$ is such that $q(k) \to \infty$ as $k \to \infty$.

In the first case, if $j = m_i$ then $S_k = x_i$; if $m_{i-1} + 1 \le j < m_i$ then $\alpha_i \le S_k \le \beta_i$. In the second case, if $p = k_q$ then $S_k = y_q$; if $k_{q-1} \le p < k_q$ then $\alpha_q \le S_k \le \beta_q$. Therefore, any convergent subsequence of $\{S_k\}$ can only have a limit in $[\alpha, \beta]$. This proves (3.7).

However, the situation is totally different if $\sum a_n$ converges absolutely.

Theorem 3.44. If $\sum_{n=1}^{\infty} |a_n|$ converges, then, for any rearrangement function (i.e., 1-1 correspondence) $f: \mathbf{N} \to \mathbf{N}$, it follows that

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{f(n)}.$$

Proof. Let $b_k = a_{f(k)}$ for $k \in \mathbf{N}$. For $n, m \in \mathbf{N}$, define

$$s_n = a_1 + a_2 + \dots + a_n; \quad t_m = b_1 + b_2 + \dots + b_m.$$

Let $s_n \to A$ as $n \to \infty$. We show that $t_m \to A$ as $m \to \infty$. Given any $\epsilon > 0$, we find an $N \in \mathbf{N}$ such that

$$|s_N - A| < \epsilon/2, \quad \sum_{k=m+1}^n |a_k| < \epsilon/2 \quad \forall \ n > m \ge N.$$

Since $f: \mathbf{N} \to \mathbf{N}$ is 1-1 and onto, let $\{i_1, i_2, \cdots, i_N\} \subseteq \mathbf{N}$ be such that $f(i_k) = k$ for each $k = 1, 2, \cdots, N$. Let

$$M = \max\{i_1, i_2, \cdots, i_N\}.$$

Then $M \ge N$. Let $m \in \mathbb{N}$ be such that $m \ge M$. Then, since $\{i_1, i_2, \cdots, i_N\} \subseteq \{1, 2, 3, \cdots, m\}$, it follows that

$$t_m = b_1 + b_2 + \dots + b_m = a_{f(1)} + a_{f(2)} + \dots + a_{f(m)}$$

= $a_{f(i_1)} + a_{f(i_2)} + \dots + a_{f(i_N)} + \sum_{j \in J} a_{f(j)}$
= $a_1 + a_2 + \dots + a_N + \sum_{j \in J} a_{f(j)}$
= $s_N + \sum_{j \in J} a_{f(j)}$,

where $J = \{1, 2, 3, \dots, m\} \setminus \{i_1, i_2, \dots, i_N\}$. Since $J \cap \{i_1, i_2, \dots, i_N\} = \emptyset$, we have $f(j) \ge N + 1$ for all $j \in J$. Let $K = \max\{f(j) : j \in J\} \ge N + 1$. Then $N + 1 \le f(j) \le K$ for all $j \in J$ and hence

$$\left|\sum_{j\in J} a_{f(j)}\right| \le \sum_{j\in J} |a_{f(j)}| \le \sum_{k=N+1}^{K} |a_k| < \epsilon/2.$$

Finally, it follows that, for all $m \ge M$,

$$|t_m - A| \le |s_N - A| + \left| \sum_{j \in J} a_{f(j)} \right|$$
$$< \epsilon/2 + \sum_{j \in J} |a_{f(j)}| < \epsilon/2 + \epsilon/2 = \epsilon$$

This proves $t_m \to A$ as $m \to \infty$.

Suggested Homework Problems

Pages 79 – 82 Problems: 2–8, 11, 12, 14 (assume $\{s_n\}$ is real), 16(a), 17(a-c), 23–25