(1) Let \(f_n(x) = \frac{nx}{1 + nx^2} \) for \(x \in [0, \infty) \) and \(n = 1, 2, 3, \cdots \).

(a) (5 points) Find the pointwise convergence limit function \(f(x) \) of \((f_n(x)) \) on \([0, \infty)\).
(b) (5 points) Is the convergence \((f_n) \to f\) uniform on \([0, 1]\)? Justify your answer.
(c) (5 points) Show that the convergence \((f_n) \to f\) is uniform on the set \([1, \infty)\).
(2) Let \(g_n(x) = \frac{nx^2 + 1}{x + 2n} \) for \(x \in [0, \infty) \) and \(n = 1, 2, 3, \ldots \).

(a) (3 points) Find the pointwise convergence limit function \(g(x) \) of \((g_n(x)) \) on \([0, \infty)\).

(b) (3 points) Compute the derivative sequence \((g'_n(x)) \).

(c) (4 points) Find the pointwise convergence limit function \(h(x) \) of \((g'_n(x)) \) on \([0, \infty)\).

(d) (5 points) Show that \((g'_n) \) converges uniformly to \(h \) on \([0, M]\) for every \(M > 0 \).
(3) Let \(f(x) = \sum_{k=1}^{\infty} \frac{\sin(kx)}{k^3} \) for \(x \in \mathbb{R} \).

(a) (7 points) Show that \(f(x) \) is well-defined and differentiable on \(\mathbb{R} \) and that the derivative \(f'(x) \) is continuous on \(\mathbb{R} \).

(b) (3 points) Can you determine if \(f \) is twice-differentiable on \(\mathbb{R} \)? Explain briefly.