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1. Introduction

The following theorem is proved by Bidaut-Veron and Veron [BVV] .

Theorem 1. Let (Mn, g) be a compact Riemannian manifold and u ∈ C∞ (M) a
positive solution of the following equation

−∆u+ λu = uq,

where λ > 0 is a constant and 1 < q ≤ (n+ 2) / (n− 2). If Ric ≥ (n−1)(q−1)λ
n g,

then u must be constant unless q = (n+ 2) / (n− 2) and (Mn, g) is isometric to(
Sn, 4λ

n(n−2)g0

)
. In the latter case u is given on Sn by the following formula

u =
1

(a+ x · ξ)(n−2)/2
.

for some ξ ∈ Rn+1 and some constant a > |ξ|.

This uniqueness result has important corollaries on sharp Sobolev inequalities
and the Yamabe invariant. Ilias [I] showed that the method of Bidaut-Veron and
Veron works for the same equation on a compact Riemannian manifold with convex
boundary, provided that u satisfies the boundary condition ∂u

∂ν = 0. This corre-
sponds to the 1st type of Yamabe problem on manifolds with boundary, namely
finding a conformal metric with constant scalar curvature and zero mean curvature
on the boundary. It is natural to wonder if similar results hold for the other type
of Yamabe problem which is about a conformal metric with zero scalar curvature
and constant mean curvature on the boundary. We hope to address this problem
elsewhere and confine our study in this paper to an analogous problem in dimension
two.

Let (Σ, g) be a compact surface with nonnegative curvature and strictly convex
boundary, i.e. Gaussian curvature K ≥ 0 and on the boundary the geodesic cur-
vature κ > 0. By scaling we will always assume κ ≥ 1. Consider the following
equation

(1.1)
∆u = 0 on Σ,

∂u
∂ν + λ = eu on ∂Σ,

where λ is a constant and ∂u
∂ν is the derivative w.r.t. the outer unit normal ν on

the boundary. When λ ≤ 0 there is no solution, so we will always assume λ > 0.

Theorem 2. If λ < 1 then u is constant; if λ = 1 and u is not constant, then Σ is
isometric to the unit disc B2 and u is given by

u (z) = log
1− |a|2

1 + |a|2 |z|2 − 2 Re (za)
,
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for some a ∈ B2.

Instead of an integral method, our proof is based on a pointwise analysis using
the strong maximum principle. It is inspired by Payne [P] and Escobar [E] in which
a sharp estimate for the 1st Stekloff eigenvalue was established by a similar method.
In high dimensions this method does not seem to work, but see [HW1] where this
type of method is applied successfully in a special situation.

The equation (1.1) for λ = 1 on B2 has a special structure and has been studied
by many authors by various different methods, c.f. [OPS, Zh, HW2]. One may
also wonder what happens if λ > 1. In [OPS] it is proved that the equation (1.1)
has only a constant solution if λ /∈ Z. Using their method we are able to resolve
the case when λ ∈ Z. We state the result for a slightly different equation which is
equivalent to (1.1) by a simple translation u→ u+ c.

Theorem 3. Suppose u is a smooth function on B2 satisfying the following equation

∆u = 0 on B2,
∂u
∂ν = λ (eu − 1) on S1,

where λ > 0 is a constant (the case λ ≤ 0 is trivial by the maximal principle). Then

(1) If λ /∈ N then u ≡ 1.
(2) If λ = N ∈ N then either u ≡ 1 or

u (z) = log
|ξ|2 − 1

|ξ − zN |2
,

for some ξ ∈ C with |ξ| > 1.

Finally from the uniqueness result we deduce the following geometric inequality.

Theorem 4. For u ∈ C∞ (Σ)

1

2L

∫
Σ

|∇u|2 +
1

L

∫
∂Σ

u− log

(
1

L

∫
∂Σ

eu
)
≥ 0,

where L is the perimeter of ∂Σ. Moreover if there exists a nonconstant extremal
function then Σ is isometric to B2 and all extremal functions are of the following
form

u (x) = log
1− |a|2

1 + |a|2 |x|2 − 2x · a
+ c,

for some a ∈ B2 and c ∈ R.

The paper is organized as follows. In Section 2 we prove Theorem 1. In Section
3 we discuss (1.1) for all λ on B2. In the last section the geometric inequality
(Theorem 4) is proved.

Acknowledgement The author thanks Lei Zhang and Meijun Zhu for useful
discussions. The work is partially supported by Simons Foundation Collaboration
Grant for Mathematicians #312820.
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2. Uniqueness result for a nonlinear PDE

We first discuss the direct analogue of the result of Bidaut-Veron and Veron in
dimension 2.

Theorem 5. Let
(
Σ2, g

)
be a compact surface with Gaussian curvature K ≥ 1

with a possibly empty convex boundary (convex in the sense that on the boundary
the geodesic curvature κ ≥ 0). Let u be a smooth function satisfying

−∆u+ λ = e2u on Σ,
∂u
∂ν = 0 on ∂Σ,

where λ ≤ 1 is a constant. Then either u is constant or λ = 1 and
(
Σ2, g

)
is

isometric to either the standard sphere S2 or the hemisphere S2
+ and u is given by

u (x) = − log [cosh t+ sinh tx · ξ] ,
for some t ≥ 0 and ξ ∈ S2.

We sketch the proof. Let v = e−u/β , where β 6= 0 is to be determined. Then v
is positive and satisfies

∆v = v−1 |∇v|2 +
1

β

(
v1−2β − λv

)
.

By the Bochner formula

1

2
∆ |∇v|2 =

∣∣D2v
∣∣2 + 〈∇v,∇∆v〉+K |∇v|2

≥ 1

2
(∆v)

2
+ 〈∇v,∇∆v〉+ |∇v|2 .

Multiplying both sides by vγ , with γ a nonzero constant and integrating over Σ
yields

1

2

∫
Σ

vγ∆ |∇v|2 ≥ 1

2

∫
Σ

vγ (∆v)
2

+

∫
Σ

vγ 〈∇v,∇∆v〉+

∫
Σ

vγ |∇v|2 .

Integrating by parts yields∫
Σ

(
1 +

λγ

β

)
vγ |∇v|2 −

(
γ

β
+ 1

)
vγ−2β |∇v|2 − (γ + 1)

2

2
vγ−2 |∇v|4 ≤ 0.

Choosing γ = −1 and β = 1 leads to (1− λ)
∫

Σ
vγ |∇v|2 ≤ 0. Therefore if λ < 1 we

conclude that v is constant. If λ = 1 and v is not constant, we must haveD2v = −fg
for some function f by inspecting the above argument. From this overdetermined
system one can deduce that

(
Σ2, g

)
is isometric to either the standard sphere S2 or

the hemisphere S2
+ and then further determine u.

Remark 1. The above method does not yield any interesting result when λ >
1. Recently Gui and Moradifam [GM] has proved that on S2 the only solution to
−∆u+ λ = e2u is constant when 1 < λ ≤ 2.

From now on (Σ, g) is a compact surface such that the Gaussian curvature K ≥ 0
and on the boundary the geodesic curvature κ ≥ 1. Suppose u ∈ C∞ (Σ) satisfies
the equation (1.1). Let v = e−u. By simple calculation v satisfies the following
equation

∆v = v−1 |∇v|2 on Σ,
− ∂v∂ν + λv = 1 on ∂Σ.
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Therefore Theorem 2 follows from the following

Theorem 6. Suppose v > 0 satisfies the above equation. If λ < 1 then v is
constant; if λ = 1 and v is not constant, then Σ is isometric to the unit disc B2

and v is given by

v (z) =
1 + |a|2 |z|2 − 2 Re (za)

1− |a|2
,

for some a ∈ B2.

Consider φ = v−1 |∇v|2.

Lemma 1. φ is subharmonic, i.e. ∆φ ≥ 0.

Proof. By the Bochner formula

1

2
∆ |∇v|2 =

∣∣D2v
∣∣2 + 〈∇v,∇∆v〉+K |∇v|2

≥ 1

2
(∆v)

2
+ 〈∇v,∇∆v〉

=
1

2
v−2 |∇v|4 +

〈
∇v,∇

(
v−1 |∇v|2

)〉
.

Thus
1

2
∆φ =

1

2
v−1∆ |∇v|2 − v−2

〈
∇v,∇ |∇v|2

〉
− 1

2
v−2∆v |∇v|2 + v−3 |∇v|4

≥ v−3 |∇v|4 + v−1
〈
∇v,∇

(
v−1 |∇v|2

)〉
− v−2

〈
∇v,∇ |∇v|2

〉
= 0.

�

In the following we denote v|∂Σ by f and χ = ∂v
∂ν = λf−1. We use the arclength

s to parametrize the boundary. Then

φ (s) := φ|∂Σ = f (s)
−1
(
f ′ (s)

2
+ χ (s)

2
)

= f−1
[
(f ′)

2
+ (λf − 1)

2
]
.

Lemma 2. We have

(2.1)
∂φ

∂ν
≤ 2f−1

[(
(f ′)

2
+ χ2

)(1

2
f−1χ− 1

)
+ λ (f ′)

2 − f ′′χ
]
.

Proof. We compute

∂φ

∂ν
= 2f−1D2v (∇v, ν)− f−2χ

(
(f ′)

2
+ χ2

)
= 2f−1

[
χD2v (ν, ν) + f ′D2v

(
∂

∂s
, ν

)]
− f−2χ

(
(f ′)

2
+ χ2

)
.

On one hand

D2v

(
∂

∂s
, ν

)
=
〈
∇ ∂

∂s
∇v, ν

〉
= χ′ −

〈
∇v,∇ ∂

∂s
ν
〉

= λf ′ − f ′
〈
∂

∂s
,∇ ∂

∂s
ν

〉
= λf ′ − κf ′.
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On the other hand from the equation of v we have on ∂Σ

D2v (ν, ν) + κχ+ f ′′ = f−1
(

(f ′)
2

+ χ2
)
.

Plugging the above two identities into the formula for ∂φ
∂ν yields

∂φ

∂ν
= 2f−1

[(
f−1χ− κ

) (
(f ′)

2
+ χ2

)
+ λ (f ′)

2 − f ′′χ
]
− f−2χ

(
(f ′)

2
+ χ2

)
= 2f−1

[(
1

2
f−1χ− κ

)(
(f ′)

2
+ χ2

)
+ λ (f ′)

2 − f ′′χ
]

≤ 2f−1

[(
1

2
f−1χ− 1

)(
(f ′)

2
+ χ2

)
+ λ (f ′)

2 − f ′′χ
]
,

where in the last step we use the assumption κ ≥ 1. �

Remark 2. From the proof it is clear that if equality holds in (2.1) at a point where

φ is not zero, then κ = 1 there.

Differentiating φ on the boundary we have on ∂Σ

φ′ (s) = f−1 (2f ′f ′′ + 2λχf ′)− f−2f ′
(

(f ′)
2

+ χ2
)

= f−1f ′
[
2f ′′ + 2λχ− f−1

(
(f ′)

2
+ χ2

)]
.

We now prove Theorem 6. By the maximum principle φ achieves its maximum
somewhere on the boundary, say at p0 ∈ ∂Σ whose local parameter is s0. Then we
have

φ′ (s0) = 0, φ′′ (s0) ≤ 0,
∂φ

∂ν
(s0) ≥ 0.

Moreover by the Hopf lemma, the 3rd inequality is strict unless φ is constant.
Case 1. f ′ (s0) 6= 0.
Then we must have

2f ′′ + 2λχ− f−1
(

(f ′)
2

+ χ2
)

= 0

or

f ′′ =
1

2
f−1

(
(f ′)

2
+ χ2

)
− λχ

at s0. Plugging into the inequality for ∂φ
∂ν at s0 we have

∂φ

∂ν
(s0) ≤ 2f−1 (λ− 1)

(
(f ′)

2
+ χ2

)
≤ 0, as λ ≤ 1.

Therefore φ is constant. Moreover if λ < 1, then φ is identically zero and hence v
is constant.

Case 2. f ′ (s0) = 0.
Then

φ′′ (s0) = f−1f ′′
[
2f ′′ + 2λχ− f−1χ2

]
= f−2f ′′

[
2ff ′′ + (λf)

2 − 1
]
.
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As φ′′ (s0) ≤ 0 and ∂φ
∂ν (s0) ≥ 0 we have at s0[

(λf)
2 − 1

]
f ′′ + 2f (f ′′)

2 ≤ 0,

χ2

(
1

2
f−1χ− 1

)
− f ′′χ ≥ 0

In particular the 1st inequality implies that
[
(λf)

2 − 1
]
f ′′ ≤ 0. Therefore there

are 2 possibilities.
Case 2a. f ′′ ≥ 0 and χ = λf − 1 ≤ 0.

In this case the two inequalities simplify as[
(λf)

2 − 1
]

+ 2ff ′′ ≤ 0,

χ

(
1

2
f−1χ− 1

)
− f ′′ ≤ 0.

Thus canceling f ′′ yields

2χ (λ− 1) f =
[
(λf)

2 − 1
]

+ χ (χ− 2f) ≤ 0.

As λ ≤ 1 we must conclude all the above inequalities are equalities. In particular
∂φ
∂ν (s0) = 0 and hence φ is constant. Moreover if λ < 1, then χ (s0) = 0 and hence
φ (s0) = 0. It follows that φ is identically zero and hence v is constant.

Case 2b. f ′′ ≤ 0 and χ = λf − 1 ≥ 0.
In this case the two inequalities simplify as[

(λf)
2 − 1

]
+ 2ff ′′ ≥ 0,

χ

(
1

2
f−1χ− 1

)
− f ′′ ≥ 0.

Thus canceling f ′′ yields

2χ (λ− 1) f =
[
(λf)

2 − 1
]

+ χ (χ− 2f) ≥ 0.

Clearly we can draw the same conclusion.
It remains to consider the case when λ = 1 and φ = 2a is a positive constant.

Then from the proof of Lemma we conclude that K = 0 and

D2v = ag on Σ,
∂v
∂ν = f − 1 on ∂Σ.

From the proof of Lemma and Remark we also have κ = 1. By the Riemann
mapping theorem we can take Σ to be B2 with g = e2wg0, here g0 is the Euclidean
metric. As K = 0 and κ = 1 we have

∆w = 0 on B2,
∂w
∂r = ew − 1 on S1.

Applying our argument to w we conclude that the Hessian of e−w is 2cI for some
constant c ≥ 0. It follows that e−w = c |x− ξ|2 + c′. From the above equation we
can easily show that w must be of the form

w = log
1− |a|2

1 + |a|2 |z|2 − 2 Re (za)



UNIQUENESS RESULTS ON SURFACES WITH BOUNDARY 7

for some a ∈ B2 and hence g = F ∗g0 where F is the linear fractional transformation

F (z) =
z − a
1− az

.

Therefore (Σ, g) is isometric to
(
B2, g0

)
. The same argument can now be applied

to v to finish the proof.

3. The supercritical case λ > 1 on B2

A natural question is whether one can say something about the equation (1.1)

in the supercritical case λ > 1. In general we do not have anything. But on B2 we
have a complete answer.

Theorem 7. Suppose u is a smooth function on B2 satisfying the following equation

∆u = 0 on B2,
∂u
∂ν = λ (eu − 1) on S1,

where λ > 0 is a constant (the case λ ≤ 0 is trivial by the maximal principle). Then

(1) If λ /∈ N then u is constant.
(2) If λ = N ∈ N then either u ≡ 1 or

u (z) = log
|ξ|2 − 1

|ξ − zN |2
,

for some ξ ∈ C with |ξ| > 1.

The 1st part was proved in [OPS, Lemma 2.3]. We first review their method
and then deduce the 2nd part. Let f = u|S1 which can be expressed in terms of its
Fourier series

f =
∑

ane
inθ =

∑
f̂ (n) einθ.

Then

u =
∑

anr
|n|einθ,

∂u

∂ν
=
∑
|n| aneinθ = H

(
df

dθ

)
,

where H is the Hilbert transform. Thus the boundary condition can be written as

H

(
df

dθ

)
= λ

(
ef − 1

)
.

Differentiating the above equation yields

H

(
d2f

dθ2

)
= λef

df

dθ

=

(
H

(
df

dθ

)
+ λ

)
df

dθ
.

Setting v = df/dθ, we have
∫
S1 vdθ = 0 and

(3.1) H

(
dv

dθ

)
= vHv + λv.

Since
v =

∑
v̂ (n) einθ, Hv = −i

∑
sgn (n) v̂ (n) einθ
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we have

vHv = −i
∑( ∑

k+l=n

sgn (k) v̂ (k) v̂ (l)

)
einθ

By the equation (3.1) we must have

(|n| − λ) v̂ (n) = −i
∑
k+l=n

sgn (k) v̂ (k) v̂ (l) .

We know v̂ (0) = 0. We observe that in the above summation each pair (k, l) with
k, l having different sign will be canceled by the pair (l, k). Therefore for n > 0

(3.2) (n− λ) v̂ (n) = −i
n−1∑
k=1

v̂ (k) v̂ (n− k) .

From the above equation Osgood, Phillips and Sarnak [OPS] proved by induction
that the Fourier coefficients v̂ (n) = 0 for all n ∈ Z, provided that λ /∈ Z.

Suppose now λ = N is a positive integer. We prove by induction for all n > 0

(3.3) v̂ (n) =

{
0, if N - n

i (−iv̂(N))m

Nm−1 if n = mN.

By conjugation we also get v̂ (−n). Suppose that it has been proved for all positive
integers < n. If n is not a multiple of N , then in the summation on the RHS of
(3.2) either k or l is not a multiple of N and hence v̂ (k) v̂ (l) = 0 by the induction
hypothesis. Therefore v̂ (n) = 0. If n = (m+ 1)N we have from (3.2) and the
induction hypothesis

mNv̂ ((m+ 1)N) = −i
m∑
k=1

v̂ (kN) v̂ ((m+ 1− k)N)

= i

m∑
k=1

(−iv̂ (N))
m+1

Nm−1

= im
(−iv̂ (N))

m+1

Nm−1
.

Therefore

v̂ ((m+ 1)N) = i
(−iv̂ (N))

m+1

Nm
.

This proves (3.3).
If v̂ (N) = 0 clearly v = 0 and f is constant and as a result u must be identically

1. From now on we assume that v̂ (N) 6= 0. Setting ξ = N/ (−iv̂ (N)), we have

v = 2 Re

∞∑
m=1

i
(−iv̂ (N))

m

Nm−1
eimNθ

= 2N Re i
eiNθ/ξ

1− eiNθ/ξ

=
2N(b cosNθ − a sinNθ

|ξ − eiNθ|2
,
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with a = Re ξ, b = Im ξ. For v to be defined on the entire S1 we must have |ξ| 6= 1.
Without loss of generality we take |ξ| > 1. Integrating yields that for some C > 0

f = log
C

|ξ − eiNθ|2
.

Taking the harmonic extension we obtain

u (z) = log
C

|ξ − zN |2
.

From the boundary condition ∂u
∂ν = N (eu − 1) one can easily determine C to be

|ξ|2 − 1. This finishes the proof.

4. An integral inequality

As before (Σ, g) denotes a compact surface with boundary with Gaussian curva-
ture K ≥ 0 and geodesic curvature κ ≥ 1 on the boundary. By the Gauss-Bonnet
formula ∫

Σ

K +

∫
∂Σ

κ = 2π,

we easily see that the perimeter of the boundary L ≤ 2π. We remark that one can
also prove the area A ≤ π without much difficulty, though this fact is not needed
here.

Theorem 8. For any smooth function u on Σ

(4.1)
1

2L

∫
Σ

|∇u|2 +
1

L

∫
∂Σ

u− log

(
1

L

∫
∂Σ

eu
)
≥ 0.

Moreover if there exists a nonconstant extremal function then Σ is isometric to B2

and all extremal functions are of the following form

u (x) = log
1− |a|2

1 + |a|2 |x|2 − 2x · a
+ c,

for some a ∈ B2 and c ∈ R.

On B2 the above inequality becomes

1

4π

∫
B2

|∇u|2 +
1

2π

∫
S1
udθ − log

(
1

2π

∫
S1
eudθ

)
≥ 0,

a result proved in Osgood, Phillips and Sarnak [OPS].
We consider the following functional

Ft (u) =
1

2t

∫
Σ

|∇u|2 +
1

L

∫
∂Σ

u− log

(
1

L

∫
∂Σ

eu
)
.

Notice that Ft (u+ c) = Ft (u) and Ft (0) = 0.

We first prove that Ft is coercive if t < 2π. By the Riemann mapping theorem
we can take Σ to be B2 with g = e2φg0, here g0 is the Euclidean metric. Then

Ft (u) =
1

2t

∫
B2

|∇u|2 dxdy +
1

L

∫
S1
ueφdθ − log

(
1

L

∫
S1
eu+φdθ

)
.
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Without loss of generality we assume
∫ 2π

0
udθ = 0. By Theorem

log

(
1

L

∫ 2π

0

eu+φdθ

)
≤ 1

4π

∫
B2

|∇ (u+ φ)|2 dxdy +
1

2π

∫
S1

(u+ φ) dθ + log
2π

L

=
1

4π

∫
B2

|∇u|2 + 2 〈∇u,∇φ〉+ |∇φ|2 +
1

2π

∫
S1
φdθ + log

2π

L

≤ 1 + ε

4π

∫
B2

|∇u|2 +
1 + 1/ε

4π

∫
B2

|∇φ|2 +
1

2π

∫
S1
φdθ + log

2π

L
.

Let U be the harmonic extension of u|S1 on B2. Using Fourier series it is easy to
see

1

2π

∫ 2π

0

u2dθ ≤ 1

2π

∫
B2

|∇U |2 dxdy

≤ 1

2π

∫
B2

|∇u|2 dxdy.

Thus

1

L

∣∣∣∣∫ 2π

0

ueφdθ

∣∣∣∣ ≤ 2π

L

(
1

2π

∫ 2π

0

udθ

)1/2(
1

2π

∫ 2π

0

e2φdθ

)1/2

≤ 2π

L

(
1

2π

∫
B2

|∇u|2 dxdy
)1/2(

1

2π

∫ 2π

0

e2φdθ

)1/2

≤ ε

4π

∫
B2

|∇u|2 + C/ε,

where C depends on
∫ 2π

0
e2φdθ. Combining these inequalities we obtain

Ft (u) ≥
(

1

2t
− 1 + 2ε

4π

)∫
B2

|∇u|2 dxdy + Cε.

As t < 2π, we can choose ε > 0 small enough such that 1
2t −

1+2ε
4π > 0. Therefore

Ft is coercive if t < 2π.
It then follows that the infimum of Ft is achieved by some u0 which must satisfy

the following Euler-Lagrange equation

∆u = 0 on Σ,
∂u
∂ν + λ = aeu on ∂Σ,

with λ = t
L and a = t/

∫
∂Σ
eu. If t < L ≤ 2π, by Theorem 2 u0 must be constant

and hence the infimum of Ft is zero. Therefore if t < L

Ft (u) =
1

2t

∫
Σ

|∇u|2 +
1

L

∫
∂Σ

u− log

(
1

L

∫
∂Σ

eu
)
≥ 0.

Letting t↗ L yields (4.1). The 2nd part about extremal functions obviously follows
from Theorem 2.
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