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1. Introduction

To study a noncompact Riemannian manifold, it is often useful to �nd a com-
pacti�cation or attach a boundary. For example, in hyperbolic geometry a lot of
investigation is carried out on the sphere at in�nity. An eminent illustration is
Mostow�s proof of his rigidity theorem for hyperbolic manifolds [Mo]. More gen-
erally, if fM is simply connected and nonpositively curved, one can compactify it
by equivalent geodesic rays and the boundary is a topological sphere, called the
geometric boundary. This compacti�cation was �rst introduced in [EO] and has
been indispensable in the study of negatively curved manifolds. If fM is not nonpos-
itively curved, then the geometric compacti�cation does not work in general. But
there are other compacti�cations which are useful for various studies. In this short
survey, we will discuss some of these compactifcations and the relationships among
them. Our discussion will focus on general Riemannian manifolds and therefore we
ignore the large literature on compacti�cations of symmetric spaces (see the book
[GJL]).
We �rst discuss the geometric compacti�cation for Cartan-Hadamard manifolds

and Gromov hyperbolic spaces in Section 2. In Section 3 we discuss the Martin
compacti�cation. In Section 4 we discuss the Busemann compacti�cation. In the
last section, we discuss how these compacti�cations are used. In particular, we
consider certain invariants de�ned on the Martin boundary and prove a comparison
inequality using a method of Besson, Courtois and Gallot. It should be noted that
when the author showed this inequality to François Ledrappier he was informed
that it had been known to Besson, Courtois and Gallot (unpublished).
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2. The geometric compactification

The most familiar compacti�cation is the geometric compacti�cation �rst intro-
duced by Eberlein and O�Neill [EO] for Cartan-Hadamard manifolds. Let fMn be
a Cartan-Hadamard manifold. We can compactify fM using geodesic rays. More
precisely, two geodesic rays 
1 and 
2 are said to be equivalent, if d (
1 (t) ; 
2 (t))
is bounded for t 2 [0;1). The set of equivalence classes, denoted by fM (1), is
called the geometric boundary and can be naturally identi�ed with the unit sphere
Sn�1 if we �x a base point. We then obtain a compacti�cation fM� = fM t fM (1)
that is homeomorphic to the closed unit n-ball with the natural "cone" topology.
If the sectional curvature satis�es �b2 � KfM � �a2, where a; b > 0, it is proved

by Anderson and Schoen that fM� has a C�-structure, where � = a=b. For details,
cf. [E, SY].
The same compacti�cation works for the so called Gromov hyperbolic spaces.

We �rst recall one of several equivalent de�nitions of Gromov hyperbolic spaces.

De�nition 1. A complete geodesic metric space (X; d) is called Gromov hyperbolic
if for some � > 0 s.t. for all points o; x; y; z 2 X

(x � y)o � min f(x � z)o ; (y � z)og � �.
where we use Gromov products, e.g. (x � y)o = 1

2 (d (o; x) + d (o; y)� d (x; y)).

We make the following remarks

Remark 1. In the de�nition one can take o to be �xed.

Remark 2. A Cartan-Hadamard manifold fM is Gromov hyperbolic if the sectional
curvature has a negative upper bound.

This concept was introduced by Gromov [G]. For detailed study of Gromov
hyperbolic spaces, see the excellent books [BH, GH, O]. It su¢ ces to say that
the de�nition captures the global features of the geometry of a complete simply
connected manifold of negative curvature. It is very robust as illustrated by the
following remarkable fact.

Theorem 1. Let X and Y be geodesic spaces. Suppose f : X ! Y is a quasi-
isometry, i.e. there are L; " > 0 s.t. for any x1; x2 2 X

L�1d (x1; x2)� " � d (f (x1) ; f (x1)) � Ld (x1; x2) :
If Y is Gromov hyperbolic, then so is X.

We will further assume that X is proper. Then we can de�ne the geometric
boundary X (1) for a Gromov hyperbolic spaces in the same way s.t. X = X t
X (1) with a natural topology is a compact metrizable space. Moreover X (1)
has a canonical quasi-conformal structure.

Theorem 2. Let X and Y be proper Gromov hyperbolic spaces. If f : X ! Y is a
quasi-isometry, then f extends to a homeomorphism f : X (1)! Y (1).

In fact, the boundary map is furthermore a quasi-conformal map. The boundary
map can be described as follows: given the equivalence class � 2 @X of a geodesic
ray 
 : [0;1)! X, f � 
 is a quasi-geodesic in Y and hence has a well de�ned end
point f � 
 (1) 2 Y (1) which is de�ned to be f (�).
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3. The Martin compactification

We can also compactify fM using all positive harmonic functions. The vector

space H
�fM� of harmonic functions with seminorms

kukK = sup
K
ju (x)j ;K � fM compact

is a Frechet space. Let Ko = fu 2 H+

�fM� : u (o) = 1g. It is a convex and

compact set in H
�fM�. We assume that fM is nonparabolic and G(x; y) is the

minimal positive Green�s function. De�ne the Martin kernel

k (x; y) =
G(x; y)

G(o; y)
:

A sequence yi ! 1 is called a Martin sequence if limi!1 k (x; yi) converges to a
harmonic function. By Harnack inequality and the elliptic theory every sequence
yi ! 1 has a Martin subsequence. Two Martin sequences are called equivalent if
they have the same harmonic function as limit. The collection of all such equivalence
classes is called the Martin boundary and will be denoted by @�fM . It is easy to
see that @�fM � Ko is a compact set. The Martin compacti�cation is de�ned to becM = fM t @fM
with a natural topology that makes it a compact metrizable space. An excellent
reference on Martin compacti�cation is Ancona [A].

De�nition 2. A harmonic function h > 0 on fM is called minimal if any nonneg-
ative harmonic function � h is proportional to h.

Remark 3. If h (o) = 1, then h is minimal i¤ h is an extremal point of Ko.

It is proved that all minimal harmonic function h with h (o) = 1 belong to @�fM .
Therefore we can introduce the following

De�nition 3. The minimal Martin boundary of M is

@�fM = fh 2 Ko : h is minimalg:

Moreover @�fM � @fM is at least a Borel subset (cf. [A]). According to a
theorem of Choquet ([A]), for any positive harmonic function h there is a unique
Borel measure �h on @�fM such that

h (x) =

Z
@�fM � (x) d�

h (�) :

Let � be the measure corresponding to the harmonic function 1. Thus

(3.1) 1 =

Z
@�fM � (x) d� (�) :

The family of probability measures
n
�x : x 2 fMo with �x = � (x) � are called the

harmonic measures. For f 2 L1
�
@�fM� we get a bounded harmonic function

Hf (x) =

Z
@�fM f (�) � (x) d� (�) :
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This de�nes an isomorphism between L1
�
@�fM� and the space of bounded har-

monic functions on fM .
The study of the Martin compacti�cation is closely related to the study of Brown-

ian motion on fM . For simplicity we further add a mild condition that the Ricci
curvature is bounded from below to ensure stochastic completeness. Therefore we

have the sample space 

�fM� = C �R+;fM� with a family of probability measuren

Px : x 2 fMo s.t. for any 0 < t1 < � � � < tk and open sets U1; � � � ; Uk
Px f! 2 
 (M) : ! (t1) 2 U1; � � �! (tk) 2 Ukg

=

Z
U1�����Uk

pt1 (x; y1) pt2�t1 (y1; y2) � � � ptk�tk�1 (yk�1; yk) dy1 � � � � dyk:

Here pt (x; y) is the heat kernel on fM . For each t � 0 we have a random variable

Xt : 

�fM� ! fM which is simply the position at t, i.e. Xt (!) = ! (t). It is an

intriguing and important problem to understand the asymptotic behavior for ! (t)
as t!1. The answer is closely related to the Martin boundary.

Theorem 3. (1) For any x 2 fM and for Px-a.e. ! 2 
 (M), Xt (!) admits a
limit X1 (!) 2 @�fM as t!1, i.e.

lim
t!1

k (x; ! (t))

exists and is a minimal harmonic function.
(2) Under Px, the distribution of X1 is �x, i.e. (X1)� Px = �x.

For detailed discussion, see Ancona [A].
For a Cartan-Hadamard manifold fM with sectional curvature bounded between

two negative constants, Anderson and Schoen [AS] proved that the Martin bound-
ary is homeomorphic to the geometric boundary.

Theorem 4. Suppose that fM is a Cartan-Hadamard manifold with whose sectional
curvature satis�es �b2 � K � �a2 < 0. Then there exists a natural homeomor-
phism � : @fM ! fM (1) between the Martin boundary and the geometric boundary.
Moreover, ��1 is Hölder continuous.

From the proof, it is also clear that @fM = @�fM in this case.
This theorem was generalized by Ancona who proved

Theorem 5. (Ancona [A, Theorem 6.2]) Suppose that fM is Gromov hyperbolic

and �0
�fM� > 0. Then the Martin boundary is homeomorphic to the geometric

boundary. Moreover @fM = @�fM .
In the statement, �0

�fM� is the bottom of the L2 spectrum of fM , i.e.
�0

�fM� = inf RfM jruj2RfM u2 ;

where the in�mum is taken over all smooth functions with compact support. It
is easy to see that for a Cartan-Hadamard manifold fMn with K � �a2, we have
�0

�fM� � (n� 1)2 a2=4.
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4. The Busemann boundary

Instead of harmonic functions, one can use distance functions to compactify fM .
This leads to the Busemann compacti�cation, �rst introduced by Gromov in [BGS].
Fix a point o 2 fM and de�ne, for x 2 fM the function �x(z) on fM by:

�x(z) = d(x; z)� d(x; o):
The assignment x 7! �x is continuous, one-to-one and takes values in a relatively
compact set of functions for the topology of uniform convergence on compact sub-
sets of fM . The Busemann compacti�cation cM of fM is the closure of fM for that
topology. The space cM is a compact separable space. The Busemann boundary
@cM := cMnfM is made of 1-Lipschitz continuous functions � on fM such that �(o) = 0
and there exists a sequence fakg � fM s.t. d (o:ak)!1 and

� (x) = lim
k!1

d(ak; x)� d(ak; o);

where the convergence is uniform over compact sets. Elements of @cM are called
horofunctions. We note that this compacti�cation works for any proper metric
space X (cf. [KL]) But in general, X may fail to be open in its Busemann com-
pacti�cation. This pathology does not happen for Riemannian manifolds, i.e. we
have

Proposition 1. fM is open in its Busemann compacti�cation cM . Hence the Buse-
mann boundary @cM is compact.

For proof see [LW1]. For a Cartan-Hadamard manifold, the Busemann compact-
i�cation coincides with the geometric compacti�cation. More precisely,

Proposition 2. Let fM be a Cartan-Hadamard manifold and fakg a sequence infM s.t. d (o:ak) ! 1. Let �k be the unique geodesic ray from o to ak. Then �ak
converges to a horofunction � i¤ �k converges to a ray �. Furthermore, we have

� (x) = lim
t!1

d (� (t) ; x)� t:

For proof see Ballmann [B] (p30).
Recently, the Busemann compacti�cation has found to be very useful in various

questions, cf. [KL, L1, LW1]. We �rst describe the application in [LW1]. Suppose
M is a compact Riemannian manifold and fM its universal covering (noncompact).
Let G be the fundamental group of M acting on fM isometrically. Observe that we
may extend by continuity the action of G from fM to cM , in such a way that for �
in cM and g in G,

g:�(z) = �(g�1z)� �(g�1o):
The volume entropy of M is de�ned to be the limit

v (g) = lim
r!1

ln volBfM (x; r)
r

;

where BfM (x; r) is the ball of radius r centered at x in the universal covering spacefM . This important invariant was introduced by Manning [Ma] who proved
(1) the limit exists and is independent of the center x 2 fM ,
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(2) v � H, the topological entropy of the geodesic �ow on the unit tangent
bundle of M ,

(3) v = H if M is nonpositively curved.
In [LW1], we extended the classical theory of Patterson-Sullivan measure by

constructing a family of measures on the Busemann boundary @cM .
Theorem 6. There exists a family

n
�x : x 2 fMoof �nite measures on the Buse-

mann boundary @cM s.t.

(1) for any pair x; y 2 fM the two measures �x and �y are equivalent with

d�x
d�y

(�) = e�v(�(x)��(y));

(2) for any g 2 G and x 2 fM
g��x = �gx:

This family of measures plays a crucial role in the proofs of the following rigidity
results involving the volume entropy.

Theorem 7. Let Mn be a compact Riemannian manifold with Ric � � (n� 1).
Then the volume entropy satis�es v � n� 1 and equality holds i¤ M is hyperbolic.

Remark 4. This result was proved by Knieper [Kn] under the additional assump-
tion that M is negatively curved.

As a corollary, in view of the well-known inequality �0
�fM� � v2=4, we deduce

the following result which was previously proved in [W] by a di¤erent method.

Theorem 8. Let Mn be a compact Riemannian manifold with Ric � � (n� 1).
Then �0

�fM� � (n� 1)2 =4 and equality holds i¤ M is hyperbolic.

Theorem 9. Let M be a compact Kähler manifold with dimCM = m. If the
bisectional curvature KC � �2, then the volume entropy satis�es v � 2m. Moreover
equality holds i¤ M is complex hyperbolic (normalized to have constant holomorphic
sectional curvature �4).
Theorem 10. Let M be a compact quaternionic Kähler manifold of dim = 4m
with m � 2 and scalar curvature �16m (m+ 2). Then the volume entropy satis�es
v � 2 (2m+ 1). Moreover equality holds i¤ M is quaternionic hyperbolic.

We refer to the original paper [LW1] for details. More recently, we can prove
some pinching theorems using our method. The �rst step is the following rigidity
result for C1;� metrics.

Theorem 11. Let Mn be a (smooth) compact smooth manifold and g a C1;� Rie-
mannian metric. Suppose that gi is a sequence of smooth Riemannian metrics on
M s.t.

(1) Ric (gi) � � (n� 1) for each i,
(2) gi ! g in C1;� norm as i!1,
(3) the volume entropy v (gi)! n� 1 as i!1.
Then g is hyperbolic.

From this result, we then deduce the following pinching theorem.
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Theorem 12. There exists a positive constant " = " (n;D) s.t. if (Mn; g) is a
compact Riemannian manifold of dimension n satisfying the following conditions

� g has negative sectional curvature,
� Ric (g) � � (n� 1),
� diam (M; g) � D,
� the volume entropy v (g) � n� 1� ",

thenM is di¤eomorphic to a hyperbolic manifold (X; g0). Moreover, the Gromov-
Hausdor¤ distance dGH (M;X) � � (")! 0 as "! 0.

We note that this theorem was established by Courtois [C] (unpublished) in 2000
using the Cheeger-Colding theory. Our proof is di¤erent and simpler. The details
will appear in [LW2].
In [L1] Ledrappier studied another fundamental invariant: the linear drift (in-

troduced by Guivarc�h [Gu]) which is the following limit for almost every path !
of the Brownian motion on fM

l = lim
t!1

1

t
d (! (0) ; ! (t)) :

If M is negatively curved, Kaimanovich [K1] established a remarkable integral for-
mula for l. Let @fM be the geometric boundary of fM . As usual we �x a base point
o 2 fM . Recall that there is a homeomorphism � from @fM to the Martin boundary
@�fM by the theorem of Anderson-Schoen. For each � 2 @fM , h� = �(�) is the

unique harmonic function on fM s.t. h� (o) = 1 and h� 2 C
�fM�n f�g

�
with bound-

ary value zero. With these notations, the Kaimanovich formula can be written
as

l = �
Z
M

�Z
@fM hrB�;r lnh�i (x)h� (x) d� (�)

�
dm (x) ;

where � is the harmonic measure on @fM de�ned by (3.1) and m is the normalized
Lebesgue measure on M . The main result in [L1] is a similar integral formula for l
in the general case. The key step is to construct certain measures on the Busemann
boundary @cM .

5. A comparison theorem

In this section we discuss why compacti�cations are useful. The basic principle is
that often times a geometric object is much simpler near in�nity. When we look at
it on the boundary, we capture its essential features while all the background noise
dies o¤. The �rst illustration of this principle is perhaps Mostow�s rigidity theorem
[Mo]: If f : M ! N is a (smooth) homotopy equivalence between two compact
hyperbolic manifolds then f is homotopic to an isometry. In the proof Mostow
considers the lifting ef : fM ! eN between the universal coverings (which are both
Hn in this case) which is a quasi-isometry. Then efextends to a homeomorphism
f : @fM ! @ eN between the boundaries. Using the theory of quasi-conformal maps
and the fact that the fundamental group acts on @fM ergodically, Mostow shows
that f is in fact a Mobius transformation.
More recently, in a seminal paper [BCG1], Besson, Courtois and Gallot proved

the following theorem which implies the Mostow rigidity theorem in the rank one
cases.
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Theorem 13. Let (Nn; g0) be a compact locally symmetric space of negative cur-
vature. Let Mn be another compact manifold and f :M ! N is a continuous map
of nonzero degree. Then for any metric g on M

(1) v (g)n vol (M; g) � jdeg f j v (g0)n vol (N; g0);
(2) the equality holds i¤ f is homotopic to an covering map.

The proof involves embedding fM into a Hilbert space and a calibration argument.
In a later paper [BCG2], the same authors gave a very elegant and simpler proof of
their theorem under the additional assumption that g is also negatively curved. In
this second approach, the Patterson-Sullivan measure on the geometric boundary
@fM plays a fundamental role. Their method is geometric and �exible and we will
apply it in a slight di¤erent situation.
Let (Mn; g) be a compact Riemannian manifold and � : fM ! M its universal

covering. We pick a base point o 2 fM . Let @fM be the Martin boundary.

De�nition 4. For any p > 0 let

�p (g) =

Z
M

�Z
@fM jr log � (x)j

2
� (x) d� (�)

�p
dm (x) :

Similarly we can consider

e�p (g) = Z
M

Z
@fM jr log � (x)j

2p
� (x) d� (�) dm (x) :

We have �p (g) � e�p (g) by the Hölder inequality. When p = 1, �p (g) = e�p (g)
is the Kaimanovich entropy, an invariant of fundamental importance. This was
introduced by Kaimanovich [K1]. We summarize its main properties:

(1) [K1] �1 = limt!1� 1
t

RfM pt (x; y) log pt (x; y) dy for any x 2 fM ;
(2) [K1] �1 > 0 i¤ fM has nonconstant bounded harmonic functions.
(3) [L1, L2] 4�0 � �1 � v2, where v is the volume entropy and �0 is the bottom

of the L2 spectrum of fM .
Let (Nn; g0) be a compact locally symmetric space of negative curvature. Theo-

rem 13 says that among all metrics g on N with vol (N; g) = vol (N; g0) the metric
g0 has the smallest volume entropy. A natural question is whether the same is true
for the Kaimonovich entropy.

Problem 1. Let (Nn; g0) be a compact locally symmetric space of negative curva-
ture. Is it true that for any metric g

�1 (g)
n=2

vol (N; g) � �1 (g0)
n=2

vol (N; g0)?

We do not know the answer to this question. What we can prove is the following
result which gives an a¢ rmative answer to the same question for �n=2.

Theorem 14. Let (Nn; g0) be a compact locally symmetric space of negative cur-
vature. Let Mn be another compact manifold and f :M ! N a (smooth) homotopy
equivalence. Then for any metric g on M

(1) �n=2 (g) vol (M; g) � �n=2 (g0) vol (N; g0);
(2) the equality holds i¤ f is homotopic to an isometry.
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As a consequence we have the following result which is also an easy corollary of
Theorem 13.

Corollary 1. If g0 is real hyperbolic and g satis�es Ric � � (n� 1), then vol (M; g) �
vol (N; g0). Moreover, equality holds i¤ g is also hyperbolic.

This follows from the sharp gradient estimate.

Proposition 3. (Li-J. Wang [LiW, Lemma 2.1]) Let Nn be a complete manifold
with Ric � � (n� 1). If u is a positive harmonic function on N , then jr log uj �
n� 1.

We now prove Theorem 14. The homotopy equivalence f : (M; g) ! (N; g0)
induces an isomorphism � : � := �1 (M) ! �1 (N). We view the fundamental
groups as groups of deck transformations acting on the universal covering manifolds.
Lifting f we obtain a smooth map ef : fM ! eN which is �-equivariant , i.e. for any

 2 � ef (
 � x) = � (
) � ef (x) :
This is a quasi-isometry and hence fM is Gromov hyperbolic as eN is. Hence ef
extends to a homeomorphism f : @fM ! @ eN between the boundaries. By a theorem

of Brooks [Br], �0
�fM� > 0 since �0 � eN� > 0 and the two fundamental groups are

isomorphic. Therefore, by Theorem 5 @fM is also the Martin boundary of fM and letn
�x : x 2 fMo be the harmonic measures. We now de�ne a new map eF : fM ! eN
applying the construction in [BCG2]: eF (x) is the barcenter of the measure f��x
on @ eN , i.e. eF (x) is the unique minimum point of the following function on eN

y !
Z
@ eN B� (y) d

�
f��

x
�
(�) ;

where B� is the Busemann function on eN associated to � 2 @ eN . For detailed
discussion of the barcenter see [BCG2]. Note that this map is well de�ned as the
support �x always has more that two points. By the implicit function theorem, it
is easy to show that eF is smooth. Moreover it is �-equivariant and hence yields a
smooth map F :M ! N . What remains is to estimate the Jacobian of this map.
By the de�nition of F we have

Z
@ eN dB�

� eF (x)� (�) d �f��x� (�)
=

Z
@fM dBf(�)

� eF (x)� (�) � (x) d� (�)
= 0:

Di¤erentiating in x we getZ
@fM D

2Bf(�)

� eF (x)�� eF� (x) (�) ; �� � (x) d� (�)
= �

Z
@fM dBf(�)

� eF (x)� (�) d� (�) d� (�) :
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We de�ne the following quadratic form K and H on TF (x) eN
g0

�
K eF (x) (u) ; u

�
=

Z
@fM D

2B�

� eF (x)� (u; u) � (x) d� (�) ;
g0

�
H eF (x) (u) ; u

�
=

Z
@fM dBf(�)

� eF (x)� (u)2 � (x) d� (�) :
Then for any v 2 TxfM;u 2 T eF (x) eN���g0 �K eF (x) (F� (x) (v)) ; u

����
� g0

�
H eF (x) (u) ; u

�1=2 Z
@fM

jhr� (x) ; vij2

� (x)
d� (�)

!1=2

= g0

�
H eF (x) (u) ; u

�1=2�Z
@fM jhr log � (x) ; vij

2
� (x) d� (�)

�1=2
:

Therefore

jdetKj Jac eF (x) � 1

nn=2
jdetHj1=2

�Z
@fM jr log � (x)j

2
� (x) d� (�)

�n=2
:

By [BCG1, Appendix B] we obtain

Jac eF (x) � 1

(n+ d� 2)n
�Z

@fM jr log � (x)j
2
� (x) d� (�)

�n=2
;

where d = 1; 2; 4 or 8 when
� eN; g0� is the real, complex, quaternionic hyperbolic

space or the Cayley hyperbolic plane, respectively. Integrating over M yields

vol (N; g0) �
vol (M; g)

(n+ d� 2)n
Z
M

�Z
@fM jr log � (x)j

2
� (x) d� (�)

�n=2
dm (x) :

This proves the inequality as �n=2 (g0) = (n+ d� 2)
n. If equality holds, it is easy

to see that F has to be an isometry up to a scaling.
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