A NOTE ON A CONJECTURE OF SCHROEDER AND STRAKE

FENGBO HANG AND XIAODONG WANG

ABSTRACT. We prove some rigidity results for compact manifolds with bound-
ary. In particular for a compact Riemannian manifold with nonnegative Ricci
curvature and simply connected mean convex boundary, it is shown that if the
sectional curvature vanishes on the boundary, then the metric must be flat.

In [Schroeder and Strake 1989, Theorem 1], Schroeder and Strake proved the
following rigidity theorem.

Let (M, g) be a compact Riemannian manifold with convex bound-
ary and nonnegative Ricci curvature. Assume that the sectional
curvature is identically zero in some neighborhood U of OM and
that one of the following conditions holds:

e OM is simply connected

e dim JM is even and OM is strictly convex at some point p € OM.
Then M is flat.

As remarked in [Schroeder and Strake 1989], the condition that the metric is
flat in a whole neighborhood of OM is very strong. They conjectured that it suf-
fices to only assume that the sectional curvature vanishes on dM and proved this
in the special case of a convex metric ball. The problem was studied by Xia in
[Xia 1997, Xia 2002] who confirmed the conjecture under various additional condi-
tions: like the boundary has constant mean curvature or constant scalar curvature,
or the second fundamental form satisfies some pinching condition etc. We refer
to [Xia 1997, Xia 2002] for the precise statements. Here we present some results
related to the conjecture.

Theorem 1. Let M be a smooth compact connected Riemannian manifold with
boundary and nonnegative Ricci curvature. If every component of OM is simply
connected and has nonnegative mean curvature and the sectional curvature of M
vanishes on OM, then M 1is flat and OM has only one component.

Therefore when OM is simply connected the conjecture of Schroeder and Strake
is true. Moreover one only needs dM to be mean convex instead of convex. We
remark that the conclusion that 9M has only one component follows from theorems
in [Ichida 1981, Kasue 1983]. Below we will present a different argument for it based
on the Reilly’s formula ([Reilly 1977]).

To continue the discussion we need to fix some notations. We will often write
(', ) for the metric on M and denote the connection as D. For convenience we write
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3 = OM and denote the Levi-Civita connection and curvature tensor etc. of the
induced metric on ¥ as standard notations with a subscript ¥. Let v be the unit
outer normal vector. The shape operator is given by A (X) = Dxv and the second
fundamental form is given by h (X,Y) = (A(X),Y) = (Dxv,Y), here X, Y € TXY.
The mean curvature H = tr A. Recall Reilly’s formula ([Reilly 1977, formula (14)])
for a smooth function v on M
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A special case of theorems in [Ichida 1981, Kasue 1983] claims that if M™ is
a compact connected Riemannian manifold with mean convex boundary ¥ and
nonnegative Ricci curvature, then ¥ has at most two components; moreover if X
has two components, then M is isometric to I' x [0, a] for some connected compact
Riemannian manifold I' with nonnegative Ricci curvature and a > 0. For Theorem
1, it is clear M can not have the product metric, hence ¥ has one component. It
is interesting that one may give an argument for the above special case based on
Reilly’s formula. Indeed, assume X is not connected, fix a component X of 3, then
we may solve the Dirichlet problem

Au=0on M,
“‘20 =0,
U‘E\EO - ]..

Applying the Reilly’s formula to u, we get
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Hence D?u = 0. This implies [Vu| = ¢ > 0. Since Vu = —cv on ¥ and Vu = cv
on X\Yg, we see Dxv =0 for X € TY i.e. X is totally geodesic. If we look at the
flow generated by VT“, then it sends ¥g to X\X¢ at time % and hence Y has exactly
two components. Note that the flow lines are just geodesics. If we fix a coordinate
on X, namely 0%, --- 0" let r = %, then we have g = dr®dr+g;; (r,0) do* ®dy’ .
Using D?r = 0, we see 0,.g (r,0) = 0. Hence M is isometric to Xg x [O, ﬂ

Under the assumption of Theorem 1 that the sectional curvature of M vanishes
on X, it follows from Gauss and Codazzi equations that

Ry (XY, Z,W) h(X,Z)h (Y, W) = h(X,W)h(Y,Z),
(DE)X}L(Y?Z) = (DZ)Yh(X’ Z)v

where X, Y, Z and W belong to T'Y. By the fundamental theorem for hypersurfaces
[Spivak 1999, part (2) of Theorem 21 on p63] and the fact ¥ is simply connected,
we may find a smooth isometric immersion ¢ : ¥ — R”™ such that the second
fundamental form of the immersion hg = h. If ¥ is convex then ¢ is an embedding
by a Hadamard type theorem of Sacksteder [Sacksteder 1960]. With this immersion
¢ at hands, Theorem 1 follows from the following proposition.

Proposition 1. Assume M™ is a smooth compact connected Riemannian manifold
with connected boundary ¥ = OM and Rc > 0. If ¢ : ¥ — R! is an isometric
immersion with |Hy| < H on X, here Hy is the mean curvature vector of the
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immersion ¢, then M is flat. If moreover ¢ is an imbedding, then M is isometric

to a domain in R™.

This is a generalization of a theorem of Ros [Ros 1988, Theorem 2], who derived
a congruence theorem for hypersurface in Euclidean space. Following the argument
of Ros, we will show by Reilly’s formula that the harmonic extension of the map ¢
is in fact an isometric immersion.

Proof. We may find a smooth function F : M — R! such that

{AF:OinM;
F|z:¢5

Applying the Reilly’s formula to each component of F' and sum up we get
Ax e
-] / ZRC VF* VF®) du+/ ZAqu —ds
() e[S sors
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Note
D (A(Vs0"),Vso®) = (Aeie;)eid™ - e;0” = (Aei e;) doei- b.e;

[e%
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here eq,--- ,e,_1 is a local orthonormal frame on X, hence
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Hence D?F® = 0 for all . It follows that F*gg: is parallel on M. We may find
some p € ¥ such that |[Hs| > 0 at p, hence H (p) > 0. From the argument above
this implies |Fyv| = 1 at p and F,v is perpendicular to ¢,3,, hence F*gpi = gps
at p. It follows that F*gpi = gy on M, that is, F' is an isometric immersion
and M is flat. Now assume ¢ is an imbedding. Let D be the connection on R,
then DxF,Y — F,DxY = XYF — (DxY)F = 0, it follows that ' : M — R!
is a totally geodesic submanifold, hence the image lies in a n dimensional affine
subspace. Without losing of generality we may assume [ = n and X is a compact
hypersurface in R™, then there exists a bounded open domain € such that 99 = X.
Since F is an immersion, we see F' (M) \Q is both open and closed in R™\2, hence
it must be empty. Based on this we may show F : M — ) is a covering map and
hence it must be a diffeomorphism. O

If we assume that OM is convex, then it is clear from the above discussion that
M is isometric to a convex domain in R™. In fact in this case one may replace
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the nonnegativity of the Ricci curvature by the much weaker nonnegativity of the
scalar curvature, at least when M is spin.

Theorem 2. Let M be a smooth compact connected Riemannian manifold with
boundary and nonnegative scalar curvature. If M is spin, each component of OM
18 convex and simply connected and the sectional curvature of M vanishes on OM ,
then M is isometric to a convexr domain in R™.

Proof. For every component I' of 0M, we have an isometric embedding ¢ : I' — R"
which has h as the second fundamental form. Let 2 be the convex domain enclosed
by ¢ (I'). We glue M and R"\Q along T' via the diffeomorphism ¢ for all the
I’s and obtain a complete Riemannian manifold N which has nonnegative scalar
curvature and is flat outside a compact set. Notice that the metric is C* along the
gluing hypersurface. Since M is spin, we conclude by the generalized positive mass
theorem proved in [Shi and Tam 2002, Theorem 3.1] that N is isometric to R™. It

follows that M is isometric to a convex domain in R". ([l
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