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Abstract. We prove some rigidity results for compact manifolds with bound-
ary. In particular for a compact Riemannian manifold with nonnegative Ricci
curvature and simply connected mean convex boundary, it is shown that if the
sectional curvature vanishes on the boundary, then the metric must be �at.

In [Schroeder and Strake 1989, Theorem 1], Schroeder and Strake proved the
following rigidity theorem.

Let (M; g) be a compact Riemannian manifold with convex bound-
ary and nonnegative Ricci curvature. Assume that the sectional
curvature is identically zero in some neighborhood U of @M and
that one of the following conditions holds:

� @M is simply connected
� dim @M is even and @M is strictly convex at some point p 2 @M .
Then M is �at.

As remarked in [Schroeder and Strake 1989], the condition that the metric is
�at in a whole neighborhood of @M is very strong. They conjectured that it suf-
�ces to only assume that the sectional curvature vanishes on @M and proved this
in the special case of a convex metric ball. The problem was studied by Xia in
[Xia 1997, Xia 2002] who con�rmed the conjecture under various additional condi-
tions: like the boundary has constant mean curvature or constant scalar curvature,
or the second fundamental form satis�es some pinching condition etc. We refer
to [Xia 1997, Xia 2002] for the precise statements. Here we present some results
related to the conjecture.

Theorem 1. Let M be a smooth compact connected Riemannian manifold with
boundary and nonnegative Ricci curvature. If every component of @M is simply
connected and has nonnegative mean curvature and the sectional curvature of M
vanishes on @M , then M is �at and @M has only one component.

Therefore when @M is simply connected the conjecture of Schroeder and Strake
is true. Moreover one only needs @M to be mean convex instead of convex. We
remark that the conclusion that @M has only one component follows from theorems
in [Ichida 1981, Kasue 1983]. Below we will present a di¤erent argument for it based
on the Reilly�s formula ([Reilly 1977]).
To continue the discussion we need to �x some notations. We will often write

h ; i for the metric onM and denote the connection as D. For convenience we write
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� = @M and denote the Levi-Civita connection and curvature tensor etc. of the
induced metric on � as standard notations with a subscript �. Let � be the unit
outer normal vector. The shape operator is given by A (X) = DX� and the second
fundamental form is given by h (X;Y ) = hA (X) ; Y i = hDX�; Y i, here X;Y 2 T�.
The mean curvature H = trA. Recall Reilly�s formula ([Reilly 1977, formula (14)])
for a smooth function u on M
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A special case of theorems in [Ichida 1981, Kasue 1983] claims that if Mn is
a compact connected Riemannian manifold with mean convex boundary � and
nonnegative Ricci curvature, then � has at most two components; moreover if �
has two components, then M is isometric to �� [0; a] for some connected compact
Riemannian manifold � with nonnegative Ricci curvature and a > 0. For Theorem
1, it is clear M can not have the product metric, hence � has one component. It
is interesting that one may give an argument for the above special case based on
Reilly�s formula. Indeed, assume � is not connected, �x a component �0 of �, then
we may solve the Dirichlet problem8<:

�u = 0 on M;
uj�0 = 0;
uj�n�0 = 1:

Applying the Reilly�s formula to u, we get
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Hence D2u = 0. This implies jruj � c > 0. Since ru = �c� on �0 and ru = c�
on �n�0, we see DX� = 0 for X 2 T� i.e. � is totally geodesic. If we look at the
�ow generated by ru

c , then it sends �0 to �n�0 at time
1
c and hence � has exactly

two components. Note that the �ow lines are just geodesics. If we �x a coordinate
on �0, namely �

1; � � � ; �n�1, let r = u
c , then we have g = dr
dr+gij (r; �) d�

i
d�j .
Using D2r = 0, we see @rg (r; �) = 0. Hence M is isometric to �0 �

�
0; 1c

�
.

Under the assumption of Theorem 1 that the sectional curvature of M vanishes
on �, it follows from Gauss and Codazzi equations that

R� (X;Y; Z;W ) = h (X;Z)h (Y;W )� h (X;W )h (Y;Z) ;
(D�)X h (Y;Z) = (D�)Y h (X;Z) ;

where X;Y; Z andW belong to T�. By the fundamental theorem for hypersurfaces
[Spivak 1999, part (2) of Theorem 21 on p63] and the fact � is simply connected,
we may �nd a smooth isometric immersion � : � ! Rn such that the second
fundamental form of the immersion h� = h. If � is convex then � is an embedding
by a Hadamard type theorem of Sacksteder [Sacksteder 1960]. With this immersion
� at hands, Theorem 1 follows from the following proposition.

Proposition 1. Assume Mn is a smooth compact connected Riemannian manifold
with connected boundary � = @M and Rc � 0. If � : � ! Rl is an isometric
immersion with jH�j � H on �, here H� is the mean curvature vector of the
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immersion �, then M is �at. If moreover � is an imbedding, then M is isometric
to a domain in Rn.

This is a generalization of a theorem of Ros [Ros 1988, Theorem 2], who derived
a congruence theorem for hypersurface in Euclidean space. Following the argument
of Ros, we will show by Reilly�s formula that the harmonic extension of the map �
is in fact an isometric immersion.

Proof. We may �nd a smooth function F :M ! Rl such that�
�F = 0 in M ;
F j� = �:

Applying the Reilly�s formula to each component of F and sum up we get
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Note X
�

hA (r���) ;r���i = hAei; eji ei�� � ej�� = hAei; eji��ei � ��ej

= hAei; eji �ij = trA = H;
here e1; � � � ; en�1 is a local orthonormal frame on �, hence
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Hence D2F� = 0 for all �. It follows that F �gRl is parallel on M . We may �nd
some p 2 � such that jH�j > 0 at p, hence H (p) > 0. From the argument above
this implies jF��j = 1 at p and F�� is perpendicular to ���p, hence F

�gRl = gM
at p. It follows that F �gRl = gM on M , that is, F is an isometric immersion
and M is �at. Now assume � is an imbedding. Let D be the connection on Rl,
then DXF�Y � F�DXY = XY F � (DXY )F = 0, it follows that F : M ! Rl
is a totally geodesic submanifold, hence the image lies in a n dimensional a¢ ne
subspace. Without losing of generality we may assume l = n and � is a compact
hypersurface in Rn, then there exists a bounded open domain 
 such that @
 = �.
Since F is an immersion, we see F (M) n
 is both open and closed in Rnn
, hence
it must be empty. Based on this we may show F : M ! 
 is a covering map and
hence it must be a di¤eomorphism. �

If we assume that @M is convex, then it is clear from the above discussion that
M is isometric to a convex domain in Rn. In fact in this case one may replace
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the nonnegativity of the Ricci curvature by the much weaker nonnegativity of the
scalar curvature, at least when M is spin.

Theorem 2. Let M be a smooth compact connected Riemannian manifold with
boundary and nonnegative scalar curvature. If M is spin, each component of @M
is convex and simply connected and the sectional curvature of M vanishes on @M ,
then M is isometric to a convex domain in Rn.

Proof. For every component � of @M , we have an isometric embedding � : �! Rn
which has h as the second fundamental form. Let 
 be the convex domain enclosed
by � (�). We glue M and Rnn
 along � via the di¤eomorphism � for all the
��s and obtain a complete Riemannian manifold N which has nonnegative scalar
curvature and is �at outside a compact set. Notice that the metric is C1 along the
gluing hypersurface. Since M is spin, we conclude by the generalized positive mass
theorem proved in [Shi and Tam 2002, Theorem 3.1] that N is isometric to Rn. It
follows that M is isometric to a convex domain in Rn. �
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