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1. Introduction

For a compact Riemannian manifold (Mn; g) with Ric (g) � (n� 1), we have
the following sharp geometric inequalities for which the equality characterizes the
standard sphere (Sn; g0) in each case:

(1) (Bishop-Gromov) the volume vol (M; g) � vol (Sn; g0);
(2) (Myers-Cheng) the diameter diam (M; g) � �;
(3) (Lichnerovicz-Obata) the �rst eigenvalue �1 (M; g) � n.
For the �rst inequality, Colding [Co1] proved that it is stable.

Theorem 1. (Colding) There exists a constant "n s.t. if a compact Riemannian
manifold (Mn; g) satis�es Ric (g) � (n� 1) and vol (M; g) > vol (Sn; g0) � ", then
M is Gromov-Hausdor¤ close to Sn in the sense that dGH (M;Sn) � � (")! 0 as
"! 0.

By Cheeger-Colding [ChC3], M is di¤eomorphic to Sn if they are Gromov-
Hausdor¤ close.
The other two inequalities turn out to be non-stable. In each case, one ob-

tains a stable version if a stronger invariant is used instead. Regarding the second
inequality, the diameter should be replaced by the radius which is de�ned to be

rad (M; g) = inf
y2M

sup
x2X

d (x; y) :

Theorem 2. (Colding [Co2]) There exists a constant "n s.t. if a compact Rie-
mannian manifold (Mn; g) satis�es Ric (g) � (n� 1) and rad (M; g) > � � ", then
M is Gromov-Hausdor¤ close to Sn.

Regarding the third inequality, Petersen [P2] proved the following

Theorem 3. There exists a constant "n s.t. if a compact Riemannian manifold
(Mn; g) satis�es Ric (g) � � (n� 1) and �n+1 (M; g) > n� ", then M is Gromov-
Hausdor¤ close to Sn.

More recently, Aubry [A] proved that the result remains valid if �n+1 is replaced
by �n.
We are interested in compact Riemannian manifold (Mn; g) with Ric (g) �

� (n� 1). Notice that any metric can be scaled to satisfy this curvature assumption.
Moreover, by the work of Lohkamp [L] that any compact manifold Mn with n � 3
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admits metrics with negative Ricci curvature. Nevertheless, there are two natural
geometric inequalities which characterize hyperbolic manifolds in the equality case.
First, we need to introduce two invariants. Let � : fM ! M be the universal

covering. Let �0
�fM� be the in�mum of the L2 spectrum of fM , i.e.

�0

�fM� = inf RfM jruj2RfM u2 ;

where the in�mum is taken over all smooth functions with compact support. The
volume entropy v is de�ned by

v = lim
r!1

ln volBfM (x; r)
r

;

where BfM (x; r) is the ball of radius r centered at x in fM . It is well-known that
�0 � v2=4.
Theorem 4. Let Mn be a compact Riemannian manifold with Ric � � (n� 1).
Then �0

�fM� � (n� 1)2 =4 and equality holds i¤ M is hyperbolic.

Theorem 5. Let Mn be a compact Riemannian manifold with Ric � � (n� 1).
Then the volume entropy satis�es v � n� 1 and equality holds i¤ M is hyperbolic.

Theorem 4 was proved by the second author [W] using the Kaimanovich entropy.
Theorem 5, which implies Theorem 4 in view of the well-known fact �0 � v2=4,
was recently proved by the authors [LW]. A natural question is whether these two
inequalities are stable. In fact, prior to our work [LW] Theorem 5 had been known
under the additional condition thatM is negatively curved as a theorem of Knieper
[Kn]. In an unpublished manuscript in 2000, Courtois took up the stability question
and proved the following

Theorem 6. There exists a positive constant " = " (n;D) s.t. if (Mn; g) is a
compact Riemannian manifold of dimension n satisfying the following conditions

� g has negative sectional curvature,
� Ric (g) � � (n� 1),
� diam (M; g) � D,
� the volume entropy v (g) � n� 1� ",

thenM is di¤eomorphic to a hyperbolic manifold (X; g0). Moreover, the Gromov-
Hausdor¤ distance dGH (M;X) � � (")! 0 as "! 0.

His proof is based on the theory of Cheeger-Colding [ChC2] on almost rigidity.
The purpose of this paper is to present a di¤erent approach based on our previous

work. We show that the method we developed in [LW] to prove the rigidity theorem
can be strengthen to given the following rigidity theorem for C1;� metrics.

Theorem 7. LetMn be a (smooth) compact manifold and g a C1;� metric. Suppose
that gi is a sequence of Riemannian metrics on M s.t.

(1) Ric (gi) � � (n� 1) for each i,
(2) gi ! g in C1;� norm as i!1,
(3) the volume entropy v (gi)! n� 1 as i!1.
Then g is hyperbolic.

From this rigidity result, we can deduce the Theorem of Courtois in a simple
way.
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2. Proof of Theorem 7

We �rst indicate that some of the results in our previous paper [LW] are valid
for a C1;� Riemannian metric. Let Mn be a compact smooth manifold with a C1;�

Riemannian metric g. Fix a point o 2 fM and de�ne, for x 2 fM the function �x(z)
on fM by:

�x(z) = d(x; z)� d(x; o):
The assignment x 7! �x is continuous, one-to-one and takes values in a relatively
compact set of functions for the topology of uniform convergence on compact sub-
sets of fM . The Busemann compacti�cation cM of fM is the closure of fM for that
topology. The space cM is a compact separable space. The Busemann boundary
@cM := cM nfM is made of Lipschitz continuous functions � on fM such that �(o) = 0.
Elements of @cM are called horofunctions. To each point � 2 cM is associated the
projection W� of fM � f�g. As a subgroup of G, the stabilizer G� of the point
� acts discretely on fM and the space W� is homeomorphic to the quotient of fM
by G�. We put on each W� the smooth structure and the metric inherited fromfM . The manifold W� and its metric vary continuously on XM . The collection of
all W�; � 2 cM form a continuous lamination WM with leaves which are manifolds
locally modeled on fM . In particular, it makes sense to di¤erentiate along the leaves
of the lamination and we denote rW and divW the associated gradient and diver-
gence operators: rW acts on continuous functions which are C1 along the leaves of
W, divW on continuous vector �elds in TW which are of class C1 along the leaves
of W.

On the Busemann boundary @cM we can construct a family of �nite measuresn
�x : x 2 fMo s.t.
(1) For any pair x; y, the two measures �x and �y are equivalent with the

Radon-Nikodium derivative
d�x
d�y

(�) = e�v(�(x)��(y));

(2) for any  2 �
��x = �x:

Then the measure � = e�v�(x)d�o (�) dx is G-invariant on fM � cM and
hence descends to a �nite measure � on XM . By scaling we assume � to
be a probability measure. It is then proved that for all W vector �eld Y
which is C1 along the leaves and globally continuous,

(2.1)
Z
divWY d� = v

Z 

Y;rW�

�
d�:

Since g is C1;�, the heat kernel pt (x; y) on fM is C2;�. As in [LW], we apply the
formula to the following vector �eld on XM

Yt (x; �) = r (Pt�) (x) :
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We now coverM by �nitely many open sets fUi : 1 � i � kg s.t. each Ui is so small
that ��1 (Ui) is the disjoint union of open sets each di¤eomorphic to Ui via �. Let
f�ig be a partition of unity subordinating to fUig. For each Ui let eUi be one of the
components of ��1 (Ui) and let e�i be the lifting of �i to eUi. By the same argument
we arrive at the following formula: for any  2 �

(2.2)
Z
@cM

kX
i=1

�Z
 eUi e

�v�(x)�( � e�i) dx� d�o (�) = 0:
We now further assume that there is a sequence of smooth metrics gi on M s.t.

� Ric (gi) � � (n� 1) for each i,
� gi ! g in C1;� norm as i!1.

Lemma 1. We have �
�
e�(n�1)�

�
� 0 in the sense of distribution, i.e. for any

� 2 C1c
�fM� with � � 0Z

fM e
�(n�1)�(x)�� (x) dv (x) � 0:

Proof. We will denote by �i; di the Laplacian and distance function on fM w.r.t.
the metric gi. By the Laplacian comparison theorem, for any a 2 fM we have

�idi (x; a) � (n� 1)
cosh (di (x; a))

sinh (di (x; a))

in the distribution sense, i.e. for any � 2 C1c
�fM� with � � 0Z

fM di (x; a)�i� (x) dvi (x) � (n� 1)
Z
fM
cosh (di (x; a))

sinh (di (x; a))
� (x) dvi (x) :

Taking limit yields

(2.3)
Z
fM d (x; a)�� (x) dv (x) � (n� 1)

Z
fM
cosh (d (x; a))

sinh (d (x; a))
� (x) dv (x) :

Let � 2 @cM . Then there exists a sequence fakg � fM s.t. d (o; ak)!1 and

� (x) = lim
k!1

d (x; ak)� d (o; ak) :

here the convergence is uniform over compact sets. As a limiting form of (2.3) we
obtain Z

fM � (x)�� (x) dv (x) � (n� 1)
Z
fM � (x) dv (x) :

Since jr�j = 1 almost everywhere, we obtain as in the smooth caseZ
fM e

�(n�1)�(x)�� (x) dv (x) � 0:

�

From now on, we assume limi!1 v (gi) = n� 1.

Lemma 2. We have v (g) = n� 1.
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Proof. Since gi ! g in C1;�, for any " > 0 we have for any v 2 TfM
(1� ") jvjgi � jvjg � (1 + ") jvjgi

for i su¢ ciently large. It follows that

Bi

�
x;

r

1 + "

�
� B (x; r) � Bi

�
x;

r

1� "

�
;

where Bi denotes a geodesic ball w.r.t. gi. Hence

log volBi

�
x; r

1+"

�
r

� log volB (x; r)

r
�
log volBi

�
x; r

1�"

�
r

:

Taking limit as r !1 yields

v (gi)

1 + "
� v (g) � v (gi)

1� " :

As limi!1 v (gi) = n� 1, we have v (g) = n� 1. �

From (2.2), in view of Lemma 1 and Lemma 2, we can now conclude as in [LW]
that for �o-a.e. � 2 @cM

�e�v�(x) = 0

in the sense of distribution. By elliptic regularity, � 2 C2;�.
We claim that D2� = g � d� 
 d�. To see this, �rst by the Bochner formula we

have for any f 2 C1
�fM� and � 2 C1c �fM� with � � 0

1

2

Z
jrf j2gi �i�dvi

=

Z h��D2f
��2
gi
+ hrf;r�ifigi +Ricgi (rf;rf)

i
�dvi

�
Z h��D2f

��2
gi
+ hrf;r�ifigi � (n� 1) jrf j

2
gi

i
�dvi

=

Z h���D2f
��2
gi
� (�if)2 � (n� 1) jrf j2gi

�
�� hrf;r�igi �if

i
dvi:

By approximation, we can take f to be � in this formula which in the limit, as
i!1, yields

0 =
1

2

Z
jr�j2��dv

�
Z h���D2�

��2 � (��)2 � jr�j2��� hr�;r�i��i dv
=

Z h���D2�
��2 � (n� 1)2 � (n� 1)��� (n� 1) hr�;r�ii dv

=

Z h���D2�
��2 � (n� 1)2 � (n� 1)��+ (n� 1)���i dv

=

Z ���D2�
��2 � (n� 1)��dv;

i.e.
��D2�

��2 � n� 1. On the other hand, D2� (r�;r�) = 1
2

D
r�;r jr�j2

E
= 0 and

�� = n� 1. It is then obvious that D2� = g � d� 
 d�.
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It then follows that fM must be isometric to R�� with the metric g = dt2+ e2th
([LW, Theorem 6]). Suppose fuig is a local chart on �. If g is smooth, then a
simple calculation shows

e�4tRijkl = e
�4tRhijkl � (hikhjl � hilhjk) :

As g is only C1;�, this should be interpreted in the weak sense. As fM covers
the compact M , the curvature on the left hand side is bounded uniformly in t.
Therefore h must be �at in the weak sense. As a result, g is Einstein in the weak
sense. It is well known (cf. [P1]) that in a local harmonic coordiate system fxig
this leads to a elliptic system in the weak sense

1

2
gkl

@2gij
@xk@xl

= (n� 1) gij +Qij (g; @g) ;

where

Qij (g; @g) = �kij�
l
kl � �lik�kjl +

1

2

@gkl

@xk

�
@gil
@xj

+
@gjl
@xi

�
�1
2

@gkl

@xj

@gil
@xk

� 1
2

@gkl

@xi

@gjl
@xk

:

By elliptic regularity, the harmonic coordinates are C2;� w.r.t. the original smooth
structure on fM . But they are smoothly compatible with one another and therefore
de�ne a new smooth structure on fM w.r.t. which g is smooth. Moreover � is also
smooth and so is the decomposition fM = R�� with g = dt2 + e2th. Then we can
conclude that h is �at and (�; h) is simply the �at Rn�1. Therefore

�fM; g� is the
hyperbolic space Hn.

3. Proof Theorem 6 and Further Remarks

We �rst recall the following facts on negatively curved compact manifolds.

Theorem 8. (Gromov [G1]) Suppose Mn is a closed Riemannian manifold with

�1 � KM < 0. Then

� There exists Cn > 0 s.t. vol (M) � Cn;
� For n � 8, there exist cn > 0 s.t. vol (M) � cn (1 + d (M));
� For 4 � n � 7, there exist cn > 0 s.t. vol (M) � cn

�
1 + d1=3 (M)

�
.

We now prove Theorem 6. It su¢ ces to prove that M is close to a hyperbolic
manifold in the Gromov-Hausdor¤ sense. Suppose this is not true, then we have a
sequence (Mn

i ; gi) satisfying

(1) gi has negative sectional curvature,
(2) Ric (gi) � � (n� 1),
(3) diam (Mi; gi) � D,
(4) the volume entropy v (gi)! n� 1:
such that (Mn

i ; gi) is not close to any hyperbolic manifold in Gromov-Hausdor¤
sense.
The sectional curvature of gi is bounded between � (n� 1) and 0. By Theorem 8,

vol (Mi; gi) � Cn > 0. Therefore by the Cheeger �niteness theorem, we can assume
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that Mi are all di¤eomorphic to a same manifold M passing to subsequence. By
Gromov�s convergence theorem [GLP, GW, P], we can �nd di¤eomorphisms fi such
that the metrics egi = f�i gi converges to a metric g in C1;� passing to a subsequence.
By Theorem 7, (M; g) is a hyperbolic manifold. This is a contradiction.

Remark 1. A natural question is if one can relax the negative curvature assumption
in Theorem 6 by an arbitrary upper bound on the sectional curvature. The di¢ culty
is to rule out collapsing. In general, collapsing can happen of course. But it seems
plausible that collapsing can be ruled out under the assumption Ric (g) � � (n� 1)
and v (g) is close to n� 1.
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