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Abstract. Let (Mn; g) be a compact Riemannian manifold with Ric � � (n� 1).
It is well known that the bottom of spectrum �0 of its unverversal covering
satis�es �0 � (n� 1)2 =4. We prove that equality holds i¤ M is hyperbolic.
This follows from a sharp estimate for the Kaimanovich entropy.

1. Introduction

Complete Riemannian manifolds with nonnegative Ricci curvature have been
intensively studied by many people and there are various methods and many beau-
tiful results (see e.g., the book [P]). One of the most important theorems on such
manifolds is the following Cheeger-Gromoll splitting theorem:

Theorem 1. (Cheeger-Gromoll) If (N; g) contains a line and has Ric � 0, then
(N; g) is isometric to a product

�
R� �; dt2 + h

�
.

This theorem has the following important corollaries on the structure of mani-
folds with nonnegative Ricci curvature:

� A complete Riemannian (N; g) with Ric � 0 either has only one end or is
isometric to a product

�
R� �; dt2 + g�

�
, with � compact.

� If (Mn; g) is compact with Ric � 0 then its universal covering fM splits iso-
metrically as a product Rk��n�k, where � is a simply connected compact
manifold with Ric � 0. If furthermore fM has Euclidean volume growth,
then fM is isometric to Rn.

Riemannian manifolds with a negative lower bound for Ricci curvature are con-
siderably more complicated and less understood. It is naive to expect such splitting
results in general. Nevertheless there have been very interesting results due to Li
and J. Wang recently. It has been discovered that the bottom of the L2 spec-
trum plays an important role (see also the earlier work [W] in the conformally
compact case). Let us assume that (Nn; g) is a complete Riemannian manifold
with Ric � � (n� 1). The bottom of the L2 spectrum of the Laplace operator on
functions is denoted by �0 (N) and can be characterized as

�0 (N) = inf

R
N
jruj2R
N
u2

;
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where the in�mum is taken over all smooth functions with compact support. It
is well known �0 (N) � (n� 1)2 =4. Li-Wang proved the following theorems for
manifolds with positive �0.

Theorem 2. (Li-Wang) Let (Nn; g) be a complete Riemannian manifold with
Ric � � (n� 1) and �0 (N) � n� 2. Then either

(1) N has only one end with in�nite volume; or
(2) N = R� � with warped product metric g = dt2 + cosh2 tg�, where (�; g�)

is compact with Ric � � (n� 2).

When �0 (N) = (n� 1)2 =4, they can also handle ends of �nite volume.

Theorem 3. (Li-Wang) Let (Nn; g) be a complete Riemannian manifold with
Ric � � (n� 1) and �0 (N) = (n� 1)2 =4. Then either

(1) N has only one end; or
(2) N = R � � with warped product metric g = dt2 + e2tg�, where (�; h) is

compact manifold with nonnegative Ricci curvature;
(3) n = 3 and N = R � � with warped product metric g = dt2 + cosh2 tg�,

where (�; h) is compact surface with Gaussian curvature � �1.

The basic point is that �0 (N) is sensitive to the connectedness at in�nity. In
both cases if there are two ends they are able to prove that the manifold splits as a
warped product. Since the splitting is only obtained under this restrictive situation,
their theorems are not as powerful as the Cheeger-Gromoll splitting theorem is for
manifolds with nonnegative Ricci curvature. An intriguing question is if there is
a more general mechanism under which a complete (Nn; g) with Ric � � (n� 1)
and �0 (N) = (n� 1)2 =4 splits as a warped product.
We will consider a special situation inspired by an aforementioned corollary of

the Cheeger-Gromoll theorem. Suppose fM is the universal covering of a compact

Riemannian manifold (Mn; g) with Ric � � (n� 1). What happens if �0
�fM� =

(n� 1)2 =4, the largest possible value? From Theorem 3 it seems the only informa-
tion we can draw is that fM has only one end. On the other hand it is reasonable
to expect that fM is isometric to Hn, i.e. (Mn; g) is a hyperbolic manifold. In fact
this has been conjectured by Jiaping Wang.
The main result of this paper is an a¢ rmative answer to this conjecture, i.e. we

prove

Theorem 4 (Main Theorem). Let (Mn; g) be a compact Riemannian manifold with

Ric � � (n� 1) and � : fM ! M its universal covering. If �0
�fM� = (n� 1)2 =4,

then fM is isometric to the hyperbolic space Hn.

It is worth pointing out that complete Riemannian manifolds Nn with Ric �
� (n� 1) and �0 = (n� 1)2 =4 are abundant. There are many conformally compact
examples by a theorem of Lee [Lee]. Therefore the more subtle assumption that fM
covers a compact manifold is essential.
If we further assume that g is negatively curved, then the result follows from the

following well known theorem. Recall the volume entropy h is de�ned to be

h = lim
r!+1

log V (p; r)

r
;
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where V (p; r) is the volume of the geodesic ball with center p and radius r in fM .
Theorem 5. Let (Mn; g) be a compact Riemannian manifold with negative curva-

ture and � : fM ! M its universal covering. If �0
�fM� = h2=4, then M is locally

symmetric.

This is a deep theorem whose proof is di¢ cult and involved : �rst it is proved by
Ledrappier [L1] that fM is asymptotically harmonic in the sense that all the level
sets of the Buseman functions have constant mean curvature; then by a theorem of
Foulon and Labourie [FL] the geodesic �ow of (M; g) is C1-conjugate to that of a
locally symmetric space of rank one; �nally by the work of Besson-Courtois-Gallot
[BCG] one concludes that (M; g) is locally symmetric.
In contrast, we make no additional assumption on the sectional curvature and

prove the Main Theorem in a direct way. A key ingredient in our proof is the
entropy introduced by Kaimanovich [K], which we learned from [L1]. The paper is
organized as follows. In Section 2, we discuss positive harmonic functions and the
Martin boundary. In Section 3, we present the Kaimanovich entropy. We establish
a sharp inequality which characterizes hyperbolic manifolds. The main theorem is
then proved in Section 4.

Acknowledgement 1. I wish to thank Jiaping Wang for bringing to my attention
this problem and for some stimulating discussions on his joint work with Li. I am
very grateful to Professor F. Ledrappier for explaining Kaimanovich�s work to me
and to Professor J. Cao for his interest and encouragement.

2. Harmonic functions and the Martin boundary

In this section we collect some fundamental facts on positive harmonic functions.
There are two aspects: potential theory and geometric analysis. On potential theory
(more speci�cally, the theory of Martin boundary) our primary reference is Ancona
[A] ([AG] and [H] are also very useful) . Let fMn be a complete Riemannian manifold
with a base point o. We assume that fM is non-parabolic, that is, it has a positive

Green�s function. It is well known that fM is non-parabolic if �0
�fM� > 0 (see, e.g.

[SY]). The vector space H
�fM� of harmonic functions with seminorms

kukK = sup
K
ju (x)j ;K � fM compact

is a Frechet space. Let Ko = fu 2 H (M) : u (o) = 1; u > 0g. This is a convex and
compact set.

De�nition 1. A harmonic function h > 0 on fM is called minimal if any nonneg-
ative harmonic function � h is proportional to h.

Remark 1. If h (o) = 1, then h is minimal i¤ h is an extremal point of Ko.
De�nition 2. The minimal Martin boundary of M is

@�fM = fh 2 Ko : h is minimalg:
According to a theorem of Choquet ([A]), for any positive harmonic function h

there is a unique Borel measure �h on @�fM such that

h (x) =

Z
@�fM � (x) d�h (�) :



4 XIAODONG WANG

Let � be the measure corresponding to the harmonic function 1. Thus

(2.1) 1 =

Z
@�fM � (x) d� (�) :

For f 2 L1
�
@�fM� we get a bounded harmonic function

Hf (x) =

Z
@�fM f (�) � (x) d� (�) :

When there is a lower Ricci bound, Yau�s gradient estimate for positive harmonic
functions (see e.g. [SY]) is a very powerful tool. The following sharp version is due
to Li-Wang [LW2].

Lemma 1. Let (Nn; g) be a complete Riemannian manifold with Ric � � (n� 1).
For a positive harmonic function f on N we have

jr log f j � n� 1

on N .

Let � = log f . Then �� = � jr�j2 . Using the Bochner formula we have
1

2
� jr�j2 =

��D2�
��2 + hr�;r��i+Ric (r�;r�)(2.2)

�
��D2�

��2 � Dr�;r jr�j2E� (n� 1) jr�j2 :
Using the equation of � and some algebra one can derive the following inequality
at any point where r� 6= 0

(2.3)
��D2�

��2 � n

4 (n� 1)

���r jr�j2���2
jr�j2

+
jr�j4 +

D
r�;r jr�j2

E
n� 1 :

Moreover equality holds i¤

(2.4) D2� = �jr�j
2

n� 1

"
g � 1

jr�j2
d�
 d�

#
:

Combining (2.3) with (2.2) yields

1

2
� jr�j2 � n

4 (n� 1)

���r jr�j2���2
jr�j2

� n� 2
n� 1

D
r�;r jr�j2

E
(2.5)

� (n� 1) jr�j2 + jr�j
4

n� 1 :

The remaining part of the proof is to construct an appropriate cut-o¤ function and
apply the maximum principle to show jr�j � n� 1.
If it happens that jr�j � n� 1, then (2.5) is an equality. Therefore by (2.4) we

have

D2� = � (n� 1)
"
g � 1

(n� 1)2
d�
 d�

#
:

One can then prove that N splits as a warped product. More precisely we have the
following lemma from [LW2].
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Lemma 2. Let (Nn; g) be a complete Riemannian manifold with Ric � � (n� 1).
If there exists a positive harmonic function f on N such that jr log f j � n�1on N ,
then (Nn; g) is isometric to

�
R� �n�1; dt2 + e2tg�

�
, where

�
�n�1; g�

�
is complete

and has nonnegative Ricci curvature. Moreover log f = � (n� 1) t.

3. The Kaimanovich entropy

In [K] Kaimanovich studied Brownian motion on a regular covering fM of a
compact Riemannian manifold M . He introduced a remarkable entropy which will
play an important role in the proof of our main theorem. We will present his
theory using the minimal Martin boundary instead of the stationary boundary for
Brownian motion. The equivalence of the two approaches can be seen from [A]
(section 3 in particular). For more detailed discussions related to the Kaimanovich
entropy we refer to several papers by Ledrappier [L1, L2, L3].
From then on we assume that fM is the universal covering of a compact mani-

fold M . We identify �1 (M) with the group � of deck transformations on fM and
therefore M = fM=�. There is a natural �-action on @�fM : for � 2 @�fM and 
 2 �

(
 � �) (x) =
�
�

�1x

�
� (
�1o)

:

As a result for each 
 2 � we have the pushforward measure 
�� such that 
�� (E) =
�
�

�1 � E

�
for any Borel set E � @�fM . By the de�nition of � and a change of

variables

1 =

Z
@�fM �

�

�1x

�
d� (�)

=

Z
@�fM (
 � �) (x) �

�

�1o

�
d� (�) :

=

Z
@�fM � (x)

1

� (
o)
d
�� (�) :

By the uniqueness of � we have

d
�� (�) = � (
o) d� (�) :

We de�ne

� (x; y) = �
Z
@�fM � (y) log

� (x)

� (y)
d� (�) :

It is easy to show that � (
x; 
y) = � (x; y) for any 
 2 � and
� (x; x) = 0;

�y� (x; y) =

Z
@�fM � (y) jr log � (y)j2 d� (�) :

By Yau�s gradient estimate we have

j� (x; y)j � Cd (x; y) ;

jry� (x; y)j � Cd (x; y) ;

j�y� (x; y)j � C:

Let p (t; x; y) be the heat kernel on fM . For any 
 2 �
p (t; 
x; 
y) = p (t; x; y) :
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We de�ne

u (� ; x) =
1

�

Z
fM � (x; y) p (� ; x; y) dv (y) :

It is easy to see that u descends to M . Indeed,

u (� ; 
x) =
1

�

Z
fM � (
x; y) p (� ; 
x; y) dv (y)

=
1

�

Z
fM �

�
x; 
�1y

�
p (� ; 
x; y) dv (y)

=
1

�

Z
fM � (x; z) p (� ; 
x; 
z) dv (z)

=
1

�

Z
fM � (x; z) p (� ; x; z) dv (z)

= u (� ; 
x) :

We can rewrite

u (� ; x) =
1

�

Z
fM � (x; y) p (� ; x; y) dv (y)

=
1

�

Z
fM � (x; y)

�Z �

0

@

@t
p (t; x; y) dt

�
dv (y)

=
1

�

Z �

0

�Z
fM � (x; y)�yp (t; x; y) dv (y)

�
dt

=
1

�

Z �

0

�Z
fM �y� (x; y) p (t; x; y) dv (y)

�
dt

=

Z
@�fM

�
1

�

Z �

0

�Z
fM � (y) jr log � (y)j2 p (t; x; y) dv (y)

�
dt

�
d� (�)

=

Z
fM�@�fM�[0;1]

� (y) jr log � (y)j2 p (�s; x; y) dv (y) d� (�) ds

i.e.

(3.1) u (� ; x) =

Z
fM�@�fM�[0;1]

� (y) jr log � (y)j2 p (�s; x; y) dv (y) d� (�) ds:

Moreover
@u

@�
(� ; x) =

Z
fM�@�fM�[0;1]

� (y) jr log � (y)j2 s@p
@t
(�s; x; y) dv (y) d� (�) ds

=

Z
fM�@�fM�[0;1]

� (y) jr log � (y)j2 s�xp (�s; x; y) dv (y) d� (�) ds

= �

 Z
fM�@�fM�[0;1]

� (y) jr log � (y)j2 sp (�s; x; y) dv (y) d� (�) ds
!
:

As a result
R
M
u (� ; x) dx is independent of � . Let dm be the normalized volume

form.

De�nition 3. The number

�
�fM� = Z

M

u (� ; x) dm (x)

is called the Kaimanovich entropy.
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By (3.1) it is clear that

u (� ; x)!
Z
@�fM � (x) jr log � (x)j2 d� (�)

as � ! 0. Hence we also obtain the following formula for � from [K].

Proposition 1.

�
�fM� = Z

M

�Z
@�fM � (x) jr log � (x)j2 d� (�)

�
dm (x) :

Our main result of this section is the following sharp estimate for the entropy
under a lower Ricci bound.

Theorem 6. Let (Mn; g) be a compact Riemannian manifold with Ric � � (n� 1)
and � : fM !M its universal covering. Then �

�fM� � (n� 1)2 and equality holds
i¤ fM is isometric to the hyperbolic space Hn.

We �rst prove the following theorem on manifolds with Ric � 0 which may be
of independent interest.

Theorem 7. Let
�
�n�1; g

�
be a simply connected complete Riemannian manifold

with Ric � 0; n � 3. Suppose there is a smooth positive, nonconstant function
u : �! R such that

(3.2)

(
D2u = u (1 + �) g;
jruj2
u2 = 1� �2

for some smooth function �, then
�
�n�1; g

�
is isometric to Rn�1 and on Rn�1

u = c
�
1 + jx� x0j2

�
for some constant c > 0 and x0 2 Rn�1.

Proof. We divide the proof into several steps. Set � = u (1 + �).
Step 1: Since u is nonconstant and satis�es an elliptic equation, the set fu 6= 0g

is open and dense. This is also true of the set f� 6= 0g. Indeed, if � = 0 on some
open set U , then jruj2 = u2; D2u = ug on U . Using the Bochner formula

1

2
� jruj2 =

��D2u
��2 + hru;r�ui+Ric (ru;ru)

we then easily get (n� 2) jruj2+Ric (ru;ru) = 0 by a simple computation. Since
Ric � 0, we conclude that u is constant on U . A contradiction.
Step 2: For any vector �led X we have

(3.3)
1

2
X jruj2 = hrXru;rui = � hX;rui :

Taking X to be ru and using the second equation of (3.2) yields

� jruj2 =
1

2

D
ru;r jruj2

E
=

1

2



ru;r

�
u2
�
1� �2

���
=

�
1� �2

�
u jruj2 � �u2 hru;r�i :
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Hence
� hru;r�i = 0:

On the other hand again from (3.3) for any X with hX;rui = 0 we haveD
X;r jruj2

E
= 0 and hence hX;r�i = 0 as r� is a linear combination of ru

and r jruj2. Therefore r� = 0 on the set fru 6= 0; � 6= 0g. Since this set is open
and dense in � , we conclude that � is a positive constant.
Step 3: Since rXru = �X and � is constant, it is easy to see

(3.4) R (X;Y; Z;ru) = 0:

If n = 3, then � is �at and hence isometric to R2. In the remaining steps we
assume n > 3.
Step 4: We show that each regular level set of u is compact. Let S = u�1 (c)

with c a regular value. The unit normal of S is � = ru= jruj and its second
fundamental form is given by

�(X;Y ) = hrX�; Y i

=
D2u (X;Y )

jruj
=

�

jruj hX;Y i

for X;Y tangent to S. Similarly

X jruj = D2u (X;ru)
jruj =

�Xu

jruj = 0

for X tangent to S. As a result jruj and a = �
jruj are positive constants along S.

We compute the intrinsic Ricci curvature of S

RicS (X;X) = Ric (X;X)�R (X; �;X; �) + (n� 3) a2 jXj2

� (n� 3) a2 jXj2 :

It follows that S is compact by Bonnet-Myers theorem. Since � is simply connected,
each connected component of S separates � into two components.
Step 5: The �rst equation of (3.2) implies D2u > 0, i.e. u is convex. Then it

is easy to see that S is connected and fu � cg is the inner component of � � S
and hence compact. In other words u is proper. Let p be a point where u achieves
its minimum �=2. For X 2 SpM let 
 (t) be the geodesic with

�

 (0) = X. Then

f (t) = u � 
 (t) satis�es

f 00 (t) = �; f (0) = �=2; f 0 (0) = 0:

Hence f (t) = �
�
1 + t2

�
. In other words

u
�
expp rX

�
=
�

2

�
1 + r2

�
:

In geodesic polar coordinates r is the distance function to p. The �rst equation of
(3.2) then simply means

D2r2 = 2g

at least within the cut locus. It is then easy to show that
�
�n�1; g

�
is �at and

hence isometric to Rn�1. �
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Proof of Theorem 6. By Lemma 1 we have for any � 2 @� fM
jr log � (x)j � n� 1:

Hence, using Proposition 1

�
�fM� =

Z
M

�Z
@�fM � (x) jr log � (x)j2 d� (�)

�
dm (x)

� (n� 1)2
Z
M

�Z
@�fM � (x) d� (�)

�
dm (x)

= (n� 1)2 :

If �
�fM� = (n� 1)2, then there exists A � @� fM with �

�
@�fMnA� = 0 such that

for any � 2 A
(3.5) jr log � (x)j � n� 1:

Let � 2 A be such a point. By Lemma we have fM = R � �n�1 with g =
dt2+ e2tg�; � = exp [� (n� 1) t], where (�; g�) is a complete Riemannian manifold
with Ric � 0. Notice that o 2 f0g � �. Moreover � is simply connected as fM is.
If n = 2, we are done. From then on we assume n � 3. It is clear that Anf�g is not
empty by (2.1). Let � 2 Anf�g. We know that � = log � satis�es

jr�j = (n� 1) ;�� = � (n� 1)2 ;

D2� = � (n� 1)
"
g � 1

(n� 1)2
d�
 d�

#
:

Let  = exp
�
� �
n�1

�
. Then a simple computation shows

jr j2

 2
= 1;

D2 =  g:

Notice that �, view as the t = 0 slice in fM = R��n�1 is umbilic in the sense that
the second fundamental form w.r.t. the unit normal @

@t equals the metric h. As a
result u =  j�, the restriction of  on � satis�es the following equations

jruj2

u2
= 1� �2;

D2u = u (1 + �) g0;

where � = @ log 
@t along �. We claim that u is not constant on �. If this is NOT true,

then  (0; x) � 1 as o 2 f0g � �. Then either r (0; x) = @
@t or r (0; x) = �

@
@t

along �. In the �rst case  (t; x) satis�es

@2 

@t2
(t; x) =  (t; x) ;  (0; x) � 1; @ 

@t
(0; x) = 1

and hence  (t; x) = et. This then implies that � = exp [� (n� 1) t] = �, a contra-
diction. In the second case we get  (t; x) = e�t and � = exp [(n� 1) t] = 1

� . But

this is not harmonic as it is easy to check: �� = 2 jr�j
2

�3
= 2(n�1)2

� .
Since u is not constant on �, by Theorem 7 (�; g�) is isometric to Rn�1. There-

fore fM is isometric to Hn. �
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Remark 2. For the hyperbolic space Hn the Martin boundary is the same as the
ideal boundary. In the ball model Hn is simply the unit ball Bn in Rn with the metric
g = 4

(1�jxj2)
dx2. We take the base point to be the origin. The ideal boundary is the

unit sphere Sn�1. For any � 2 Sn�1 there corresponds to a normalized minimal
positive function

h� (x) =

 
1� jxj2

jx� �j2

!n�1
:

It is easy to verify that they all satisfy jr log h� (x)j � (n� 1).

4. Proof of the main theorem

First we need another remarkable formula from [K].

Theorem 8.

�
�fM� = � lim

t!1

1

t

Z
fM p (t; x; y) log p (t; x; y) dv (y) :

We also need the following lemma from [L1].

Lemma 3. Let (M; g) be a compact Riemannian manifold and � : fM ! M its

universal covering. Then �
�fM� � 4�0 �fM�.

Proof. Since the proof is short and instructive, we present it for the convenience of
the reader. For " > 0

�1
t

Z
fM p (t; x; y) log p (t; x; y) dv (y) +

1

t

Z
fM p ("; x; y) log p ("; x; y) dv (y)

= �1
t

Z
fM
Z t

"

(log p (s; x; y) + 1)
@p

@s
(s; x; y) dsdv (y)

= �1
t

Z
fM
Z t

"

(log p (s; x; y) + 1)�yp (s; x; y) dsdv (y)

= �1
t

Z
fM
Z t

"

�y (log p (s; x; y) + 1) p (s; x; y) dsdv (y)

=
1

t

Z t

"

Z
fM
jryp (s; x; y)j2

p (s; x; y)
dsdv (y) ds

=
4

t

Z t

"

Z
fM
���rypp (s; x; y)��� dv (y) ds

� 4

t
�0

�fM�Z t

"

Z
fM p (s; x; y) dv (y) ds

=
4

t
�0

�fM� (t� ") :
In the last step we use the fact that fM is stochastically complete, i.e.Z

fM p (s; x; y) dv (y) = 1:

Letting t!1 yields �
�fM� � 4�0 �fM�. �
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We now prove our main theorem

Theorem 9. Let (Mn; g) be a compact Riemannian manifold with Ric � � (n� 1)
and � : fM !M its universal covering. Then

(1) �0
�fM� � (n� 1)2 =4,

(2) If equality holds, then fM is isometric to the hyperbolic space Hn.

Proof. The �rst part is well known and follows from a theorem of Cheng [C] or the

inequality �0
�fM� � h2=4, where h is the volume entropy. The second part clearly

follows from Lemma 3 and Theorem 6. �
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