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1. Introduction

CR geometry originated from the study of real hypersurfaces in complex mani-
folds. In their foundational work Chern and Moser [CM] developed local invariants
for CR manifolds. Shortly afterward Tanaka [T] and Webster [W2] introduced a
canonical connection associated to a given pseudohermitian structure (i.e. a contact
form), so pseudohermitian geometry was born. Today CR geometry or pseudoher-
mitian geometry has become an independent subject with fascinating connections
with complex analysis, Riemannian and sub-Riemannian geometry and other areas
of mathematics.

We will only consider oriented strictly pseudoconvex CR manifolds with a cho-
sen pseudohermitian structure. With the induced Tanaka-Webster connection and
the adapted metric one may try to develop a whole theory parallel to Riemann-
ian geometry. There are many different directions. On the geometric side one can
study the induced Carnot-Caratheodory distance, its geodesics, the Hausdorff mea-
sures etc. We will not say anything on these fascinating topics except by giving
a few references. On the Carnot-Caratheodory distance in the more general sub-
Riemannian setting one can read Gromov’s long paper [Gr] which contains a wealth
of fascinating ideas. There have been a lot works on the isoperimetric problem in
the Heisenberg space, cf. the book [CDPT]. Partly motivated by this problem, Paul
Yang and his collaborators have developed a theory of p-mean curvature for sur-
faces in 3-D pseudohermitian manifolds. We refer to his survey [Y] and references
therein.

On the more analytic side, there are also many natural problems. The CR
Yamabe problem initiated by Jerison and Lee [JL1] has been quite well understood
and a recent reference is the book [DT]. We will not discuss it here. It is also natural
to study the fundamental operators, the sub-Laplacian and the Kohn Laplacian on
functions, and their spectrum on pseudohermitian manifolds. One would hope that
this study will be as fruitful as the study of the spectrum of the Laplacian in
Riemannian geometry. These operators are not elliptic and therefore their analysis
involves new analytic challenges. Another major new complication is that the
Tanaka-Webster connection has nontrivial torsion. In this paper we discuss some
recent results in this direction.

In Section 2 we give a quick summary of the basics in CR geometry. We take
the opportunity to discuss a basic classification result which seems missing from
the literature. In Section 3 we discuss some estimates on the eigenvalues of the
fundamental operators. In Section 4 we discuss some Obata-type results in CR ge-
ometry and address the rigidity question in the sharp eigenvalue estimate. The last
Section, in which we discuss a problem on the CR structure on circle bundles over
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compact Kahler manifolds, is in some sense independent of the previous sections.
There are some new results and complete proofs are given.

Acknowledgements. This note is based on a talk I gave in the Geometric
Analysis Workshop at the 3rd Conference of Tsinghua Sanya International Math-
ematics Forum, Jan. 4-9, 2013. I want to thank the organizers for the invitation
and putting together a wonderful workshop. I also wish to thank Song-Ying Li for
many fruitful discussions on CR geometry. The results discussed here are mostly
joint work with him.

2. Basics in CR geometry

We recall the basic concepts in CR geometry. Let M be a smooth manifold of
dimension 2m + 1. An almost CR structure on M is a pair (H (M) , J), where
H (M) is a subbundle of rank 2m of the tangent bundle T (M) and J is an almost
complex structure on H (M). We then define

T 1,0 (M) = {u−
√
−1Ju|u ∈ H (M)} ⊂ T (M)⊗ C,

T 0,1 (M) = T 1,0 (M).

An almost CR structure is integrable if[
T 1,0 (M) , T 1,0 (M)

]
⊂ T 1,0 (M) .

Notice that this is always true when m = 1. M with an integrable CR structure is
called a CR manifold.

We will always assume that our CR manifold M is orientable. Thus there is a
1-form θ on M which annihilates exactly H (M). Any such θ is called a pseudo-
hermitian structure on M . Let ω = dθ. Then Gθ (X,Y ) = ω (X,JY ) defines a
symmetric bilinear form on the vector bundle H (M). A CR manifold M is non-
degenerate if ω is nondegenerate on H (M). It is strictly pseudoconvex if Gθ is
positive definite.

Let (M, θ) be a nondegenerate pseudo-Hermitian CR manifold. Then there is a
unique vector field T on M such that

θ (T ) = 1, T cdθ = 0.

This gives rise to the decomposition

T (M) = H (M)⊕ RT .

Using this decomposition we then extend J to an endomorphism φ on T (M) by
defining φ (T ) = 0. We can also define a pseudo-Riemannian metric gθ on M such
that

gθ (X,Y ) = Gθ (X,Y ) , gθ (X,T ) = 0, gθ (T, T ) = 1,

∀X,Y ∈ H (M). Clearly, φ is skew-symmetric, i.e.

gθ (φX, Y ) = −gθ (X,φY ) .

It is a Riemannian metric is (M, θ) is strictly pseudoconvex. Obviously θ =
〈T, ·〉 , ω = dθ = 〈J ·, ·〉.

Let (M, θ) be a nondegenerate pseudohermitian CR manifold. By the funda-
mental work of Tanaka [T] and Webster [W1], there is a unique connection ∇ on
T (M) such that
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(1) H (M) is parallel, i.e. ∇XY ∈ Γ (H (M)) for any X ∈ T (M) and any
Y ∈ Γ (H (M)).

(2) ∇φ = 0,∇gθ = 0.
(3) The torsion τ satisfies

τ (Z,W ) = 0,

τ
(
Z,W

)
= ω

(
Z,W

)
T,

τ (T, J ·) = −Jτ (T, ·)

for any Z,W ∈ T 1,0 (M).

Clearly, θ and ω are parallel as well.

We define A : T (M) → T (M) by AX = τ (T,X). It is obvious that AT =
0, AH (M) ⊂ H (M) and AφX = −φAX. Moreover

τ (X,Y ) = ω (X,Y )T + θ(X)AY − θ(Y )AX,

〈AX,Y 〉 = 〈X,AY 〉 .

We will simply refer A as the torsion of (M, θ). It is a well known fact that A
vanishes iff gθ is Sasakain.

From now on we only consider strictly pseudoconvex CR manifolds. With the
Tanaka-Webster connection ∇ we can consider its curvature tensor

R (X,Y )Z = −∇X∇Y Z +∇Y∇XZ +∇[X,Y ]Z.

We often work with a local frame {Tα} for T 1,0 (M) and the dual frame {θα}. Thus

dθ =
√
−1hαβθ

α ∧ θβ .

The connection ∇ is determined by 1-forms ωβα s.t.

∇Tα = ωβα ⊗ Tβ

and the torsion matrix Aαβ = 〈ATα, Tβ〉. Equivalently, we have

dθβ = θα ∧ ωβα + θ ∧ τβ ,

where τβ = θβ (τ (T, ·)) = Aβνθ
ν . By direct calculation, the curvature form is given

by

Ωβα = dωβα − ωγα ∧ ωβγ
= −Rβµναθ

µ ∧ θν +Aαγ,νh
βνθγ ∧ θ −Aβγ,αθγ ∧ θ

+
√
−1
(
hαγA

β
νθ
γ ∧ θν −Aαµθµ ∧ θβ

)
.

We call Rβµνα or equivalently

Rµναβ =
〈
−∇µ∇νTα +∇ν∇µTα +∇[Tµ,Tν ]Tα, Tβ

〉
the pseudohermitian curvature tensor and its trace Rµν = −Rαµνα the pseudo-
hermitian Ricci tensor. The pseudohermitian scalar curvature R is defined to be

hαβRαβ .
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The Chern tensor is defined by

Cβµνα := −Rβµνα −
1

m+ 2

[
Rβαhµν +Rβµhαν + δβαRµν + δβµRαν

]
+

R
(m+ 1) (m+ 2)

[
δβαhµν + δβµhαν

]
.

The Cartan tensor is defined by

Qαβ =
√
−1 (Aαβ,0 − 2φα,β) + 2PανA

ν
β ,

with

φα =
1

n+ 2

(
Rα

2n+ 2
−
√
−1Aαβ,νh

βν

)
,

Pαβ =
1

n+ 2

(
Rαβ −

R
2n+ 2

hαβ

)
.

Here Aαβ,0 and Aαβ,ν are covariant derivatives of the torsion A. These tensors are

invariant under pseudoconformal deformations: if θ̃ = e2fθ is another pseudoher-
mitian structure, for example, its Chern tensor is given by

C̃β
σλα

= Cβ
σλα

.

Moreover, we have the following fundamental theorem in CR geometry.

Theorem 1. (Cartan, Chern-Moser) Let (M, θ) be a strongly pseudoconvex pseu-
dohermitian CR manifold of dimension 2m+ 1.

• If dimension 2m + 1 ≥ 5, then M is locally CR spherical iff the Chern
tensor vanishes.
• If dimension 2m + 1 = 3, then M is locally CR spherical iff the Cartan

tensor vanishes.

The second part was proved by Cartan (cf. [J]) and the first part was proved by
Chern-Moser [CM].

Let ∇̃ be the Levi-Civita connection of gθ. We have the following formula relating

∇ and ∇̃

∇̃XY = ∇XY + θ (Y )AX +
1

2
(θ (Y )φX + θ (X)φY )

−
[
〈AX,Y 〉+

1

2
ω (X,Y )

]
T.

With this formula we can compare curvature tensors.

Proposition 1. Suppose X,Y and Z are horizontal vector fields. Then

R̃ (X,Y,X, Y ) = R (X,Y,X, Y )− 3

4
〈JX, Y 〉2 + 〈AX,Y 〉2 − 〈AX,X〉 〈AY, Y 〉 ,

R̃ (X,T, Y, T ) = −〈∇TAX,Y 〉 − 〈AX,AY 〉+ 〈AX, JY 〉+
1

4
〈X,Y 〉 ,

R̃ (X,Y, Z, T ) = 〈∇XAY,Z〉 − 〈∇YAX,Z〉 .
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Proposition 2. Suppose X = cαTα + cαTα is a horizontal vector field w.r.t. a
unitary frame. Then

R̃ic (X,X) = 2Rαβcαcβ +
√
−1 (m− 1)

(
Aαβcαcβ −Aαβcαcβ

)
− 1

2
|X|2 − 〈∇TAX,X〉+ 〈AX, JX〉 ,

R̃ic (X,T ) = 2
〈
X,ReAαβ,αTβ

〉
,

R̃ic (T, T ) =
m

2
− |A|2 .

The simplest examples of pseudohermitian manifolds are those with constant
curvature.

(1) The Heisenberg group H2m+1 = Cm × R with

θc = dt+
√
−1
∑

zjdzj − zjdzj .

It is torsion-free and has zero curvature, i.e. Rµναβ = 0.

(2) The unit sphere S2m+1 ⊂ Cm+1 with

θc =
√
−1

m+1∑
i=1

zjdzj − zjdzj .

It is torsion-free and has constant pseudohermitian curvature

Rµναβ = −
(
hµνhαβ + hµβhαν

)
.

(3) Q2m+1 =
{
z ∈ Cm+1 : |zm+1|2 −

∑m
i=1 |zi|

2
= 1
}

with

θc =

√
−1

2

 m∑
j=1

(zjdzj − zjdzj)− (zm+1dzm+1 − zm+1dzn+1)

 .
It is torsion-free and has constant pseudohermitian curvature

Rµναβ =
(
hµνhαβ + hµβhαν

)
.

The 3rd example is not simply connected. Define Φ : Q2m+1 → Bm by

Φ (z) =

(
z1
zn+1

, · · · , zn
zn+1 − 1

)
.

This is circle fiberation. Let wi = zi/zn+1 and ρ =
√∑

i |wi|
2
. Writing zn+1 =

e−iθ/
√

1− ρ2 we have zi = e−iθwi/
√

1− ρ2. In the new coordinates (w, θ)

θc = dθ −
√
−1

2

(
∂ − ∂

)
log
(

1− |w|2
)
.

Therefore it is Sasakian and the transverse geometry is the complex hyperbolic
space.
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Therefore we consider the universal covering Q̃2m+1 = R× Bn with the contact
1-form

θc = dt−
√
−1

2

(
∂ − ∂

)
log
(

1− |z|2
)

= dt−
√
−1

2

(
zα

1− |z|2
dzα −

zα

1− |z|2
dzα

)
.

In Riemannian geometry the first global result is the classification of simply
connected complete Riemannian manifolds with constant curvature. The following
result is the CR analogue.

Theorem 2. Let (M, θ) be a simply connected pseudohermitian manifold of dimen-
sion 2m + 1 with constant pseudohermitian curvature tensor a ∈ R. Suppose the
adapted Riemannian metric gθ is complete. Then

(1) if a = 0, (M, θ) is CR equivalent to
(
H2m+1, θc

)
;

(2) if a > 0, (M, θ) is CR equivalent to
(
S2m+1, a−1θc

)
;

(3) if a < 0, (M, θ) is CR equivalent to
(
Q̃2m+1, |a|−1 θc

)
.

This should be known to the experts, but the author cannot find it in the liter-
ature. To prove this we first observe that geodesics of Tanaka-Webster connection
are of constant speed. Since gθ is complete, all such geodesics can be extended to
all time. Then the theorem follows from Theorem 7.8 in Kobayashi and Nomizu
[KN].

The 2nd case can be proved directly as follows. By scaling we can assume
without loss of generality that c = 1/2. Then by Proposition 1 it is straightforward
to check that gθ has constant sectional curvature 1/4. Without loss of generality,
we can take (M, gθ) to be

(
S2m+1, 4g0

)
. Then θ is a pseudohermitian structure on

S2m+1 whose adapted metric is 4g0 and the associated Tanaka-Webster connection
is torsion-free. It is a well known fact that the Reeb vector field T is then a
Killing vector field for g0 . Therefore there exists a skew-symmetric matrix A
such that for all X ∈ S2m+1, T (X) = AX, here we use the obvious identification
between z = (z1, . . . , zm+1) ∈ Cm+1 and X = (x1, y1, . . . , xm+1, ym+1) ∈ R2m+2.
Changing coordinates by an orthogonal transformation we can assume that A is of
the following form

A =


0 −a1
a1 0

. . .

0 −am+1

am+1 0


where ai ≥ 0. Therefore

T =
∑
i

ai

(
yi

∂

∂xi
− xi

∂

∂yi

)
Since T is of unit length we must have

4
∑
i

a2i (x
2
i + y2i ) = 1
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on S2m+1. Therefore all the ai’s are equal to 1/2. It follows that

θ = g0(T, ·) = 2
√
−1∂|z|2.

Therefore we have produced a diffeomorphism F : M → S2m+1 s.t. F ∗ (2θc) =
θ and moreover F is an isometry between gθ and 4g0 (the adapted metric of
2θc on S2m+1). It remains to show that F is CR. It is obvious that F∗ maps
H (M) to H

(
S2m+1

)
. Since F ∗ (2dθc) = dθ, for any X,Y ∈ H (M) we have

2dθc(F∗X,F∗Y ) = dθ(X,Y ) or 4g0(JF∗X,F∗Y ) = gθ(JX, Y ). As F is an isometry
we must have JF∗X = F∗JX, i.e. F is CR.

3. Spectrum of the sub-Laplacian and Kohn Laplacian

On a pseudohermitian manifold there is a natural second order differential oper-
ator which is subelliptic, namely the sub-Laplacian ∆b. In terms of a unitary frame
we have

∆bu = uα,α + uα,α.

On a closed pseudohermitian manifold the sub-Laplacian ∆b satisfies the Horman-
der estimate: if ∆bu ∈W s (M) (Sobolev space of order s ≥ 0) for u ∈ L2 (M), then
u ∈W s+1 (M) and

‖u‖2s+1 ≤ Cs
(
‖∆bu‖2s + ‖u‖2

)
.

It follows that ∆b defines a selfadjoint operator with a discrete spectrum

λ0 = 0 < λ1 ≤ λ2 ≤ · · ·

with limk→∞ λk = +∞.
In [G] Greenleaf proved an analogue of the Lichnerowicz estimate for the sub-

Laplacian.

Theorem 3. Let M be a compact pseudohermitian manifold of dimension 2m+1 ≥
5. Suppose for any X ∈ H1,0 (M)

Ric (X,X)− m+ 1

2
Tor (X,X) ≥ κ |X|2 ,

where κ is a positive constant. Then the first eigenvalue of −∆b satisfies

λ1 ≥
m

m+ 1
κ.

The proof breaks down in dimension 3. Chang and Chiu [CC] established the
eigenvalue estimate under the additional condition that the Panietz operator is
nonnegative. The Panietz operator P0 :C∞ (M) → C∞ (M) on a closed pseudo-
hermitian manifold is defined by

P0f = (Pαf),α = fγ,γαα +m
√
−1
(
Aαβfβ

)
,α
.

We say that P0 is nonnegative if for any u∫
M

uP0u ≥ 0.

This is always the case in dimension 2m+1 ≥ 5 by [GL], but there are 3-dimensional
CR manifolds whose Panietz operator is NOT nonnegative.
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Theorem 4 ([CC]). Let M3 be a closed pseudohermitian manifold such that for
any X = cT1

R11 |c|
2 −
√
−1
(
A11c

2 −A11c
2
)
≥ κ |c|2 ,

where κ is a positive constant. If the Panietz operator is nonnegative, then the first
eigenvalue of −∆b satisfies

λ1 ≥
1

2
κ.

On a closed pseudohermitian manifold, there is another natural second order
operator, the Kohn Laplacian �b. For a complex function f

�bf = ∂
∗
b∂bf = −fα,α.

It defines a nonnegative self-adjoint operator on the Hilbert space L2 (M) of com-
plex square integrable functions with the inner product

〈f1, f2〉 =

∫
M

f1f2.

We have

−∆b = �b + �b = 2�b +
√
−1mT = 2�b −

√
−1mT.

But unlike ∆b, it is not hypo-elliptic. As a result, its resolvent is not compact.
In fact, its kernel is the infinite dimensional space of CR holomorphic functions.
However, it turns out that the spectral theory of �b is quite simple.

In dimension 2m+ 1 ≥ 5, one can use the fundamental work of Kohn [Ko] (see
also [CS]) to prove the following

Theorem 5. Let (M, θ) be closed pseudohermitian manifold with dimension 2m+
1 ≥ 5. The spec (�b) consists of countably many eigenvalues λ0 = 0 < λ1 < λ2 <
· · · with λi →∞ as i→∞. Moreover, for i ≥ 1, each λi is an eigenvalue of finite
multiplicity and all the eigenfunctions are smooth.

In dimension 3 things are more complicated as the Hodge theory for (0, 1)-forms
is not valid. Nevertheless, based on the work of Beals and Greiner [BG], Burn and
Epstein [BE] proved the following theorem.

Theorem 6. Let M be a closed pseudohermitian manifold of dimension 3. The
spec (�b) in (0,∞) consists of point eigenvalues of finite multiplicity. Moreover all
these eigenfunctions are smooth.

In general there may exist a sequence of ‘small’ eigenvalues rapidly decreasing
to zero. In fact zero is an isolated eigenvalue iff the range of �b is closed. Recently,
Chanillo, Chiu and Yang [CCY] proved that there is no ‘small’ eigenvalue if the
scalar curvature is positive and the Panietz operator is nonnegative.

Theorem 7. Let M be a closed pseudohermitian manifold of dimension 3. Suppose
the Panietz operator is nonnegative and the scalar curvature R ≥ κ > 0. Then any
nonzero eigenvalue of −�b satisfies

λ ≥ κ/2.

The above theorem can be generalized to higher dimension by the same argu-
ment.
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Theorem 8. Let (M, θ)be a closed pseudohermitian manifold of dimension 2m +
1 ≥ 5. Suppose for any X ∈ H1,0 (M)

Ric (X,X) ≥ κ |X|2 ,

where κ is a positive constant. Then any nonzero eigenvalue of −�b satisfies

λ1 ≥
m

m+ 1
κ.

For details we refer to [LSW].
It is interesting to compare the eigenvalue estimate for the sub-Laplacian and

that for the Kohn Laplacian. For the sub-Laplacian the assumption involves both
the pseudohermitian Ricci tensor and the torsion while for the Kohn Laplacian we
only need to assume a positive lower bound for the pseudohermitian Ricci tensor.

4. Rigidity results

The Greenleaf estimate is sharp as one can verify that equality holds on the CR
sphere S2m+1. A natural question is whether the equality case characterizes the
CR sphere. Motivated by this question, the following theorem is proved in [LW].

Theorem 9. Let M be a closed pseudohermitian manifold of dimension 2m+1 ≥ 5.
Suppose there is a real nonzero function u ∈ C∞ (M) satisfying

uα,β = 0,

uα,β =

(
− κ

2 (m+ 1)
u+

√
−1

2
u0

)
δαβ ,

for some constant κ > 0. Then M is CR equivalent to the sphere S2m+1 with its
standard pseudohermitian structure up to a scaling.

This can be viewed as the CR analogue of the following classic theorem in Rie-
mannian geometry.

Proposition 3. [O] Suppose (Nn, g) is a complete Riemannian manifold and u
a smooth, nonzero function on N satisfying D2u = −c2ug with c > 0, then N is
isometric to a sphere Sn (c) of radius 1/c in the Euclidean space Rn+1.

From Theorem 9, one can easily deduce that the equality holds in the Greenleaf
estimate iff M is CR equivalent to the CR sphere. In dimension 3, the following
result is proved in [LW].

Theorem 10. Let M3 be a closed pseudohermitian manifold. Suppose there exists
a non-constant function u satisfying

u1,1 = 0,

u1,1 = −κ
4
u+

√
−1

2
u0,

u0,1 = 2A11u1 +

√
−1

2
u1.

Then M is CR equivalent to S3 up to a scaling.
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The main step in the proofs of the above theorems is to show that the torsion
A must vanish. This involves a lot of integration by parts. After we have proved
A = 0, we can check by direct calculation that when u satisfies the following
equation

D2u = −1

4
ugθ,

where D2u is the Riemannian Hessian of u, here without loss of generality we take
κ = (m+ 1) /2 by scaling. Then we can apply the classic Obata theorem to finish
the proof. We refer to [LW] for details.

In [LSW], we prove the following variant of Theorem 9.

Theorem 11. Let M be a closed pseudohermitian manifold of dimension 2m+1 ≥
5. Suppose that there exists a nonzero complex-valued function f on M satisfying

fα,β = 0,

fα,β = −cfδαβ ,

for some constant c > 0. Then M is CR equivalent to the sphere S2m+1 with its
standard pseudohermitian structure up to a scaling.

From this theorem it easily follows that equality holds for the estimate in Theo-
rem 8 iff M is CR equivalent to the sphere S2m+1 up to a scaling. The proof of this
theorem is quite different from that of Theorem 9. We refer to our paper [LSW]
for details. The 3-dimensional version is still work in progress.

5. CR geometry on the boundary of a holomorphic disc bundle

Let π : L→M be a holomorphic line bundle over a compact complex manifold
M of complex dimension m and h a Hermitian metric on L. We assume that the
Chern form of (L, h) is negative, i.e. ω := −c1 (L, h) is a Kahler form on M . If

σ : U → L\ {0} is a local holomorphic trivializing section, then ω =
√
−1∂∂ log |σ|2h

on U . Consider the disc bundle

D =
{
v ∈ L : ρ (v) := 1− |v|2h < 0

}
and its boundary the circle bundle Σ = ∂D. It is a well known fact that Σ is
a strictly pseudoconvex CR manifold. It is an interesting problem to study the
relationship between the CR geometry on ∂D and the Kahler geometry on (M,ω).
Recently, several authors have studied the following question (see, e.g. Question 2
in [ALZ])

Problem 1. Assume that Σ is locally spherical (i.e. locally CR equivalent to the
sphere S2m+1). Is it true that M is biholomorphic to CPm?

Englǐs and Zhang [EZ] provided a positive answer to this question when L is a
negative line bundle over an Hermitian symmetric space of compact type. Arezzo,
Loi and Zuddas [ALZ] have positive results when M is a homogeneous Hodge
manifold.

We can give a complete classification of (M,ω) when Σ is locally CR equivalent
to the sphere.
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Theorem 12. Let π : L→M be a holomorphic line bundle over a compact complex
manifold M of complex dimension m and h a Hermitian metric on L s.t. ω =
−c1 (L, h) is a Kahler form on M . Consider the strictly pseudoconvex CR manifold

Σ =
{
v ∈ L : |v|2h = 1

}
If m = 1, then Σ is locally spherical iff (M,ω) is a Riemannian surface with constant
scalar curvature. If m > 1, then Σ is locally spherical iff (M,ω) is biholomorphically
isometric to one of the following

(1) the complex projective space CPm,
(2) a complex Euclidean space form Tm/F, F ⊂ U (m) a finite group,
(3) a complex hyperbolic space form Bm/Γ,Γ ⊂ PU (m, 1) a cocompact lattice,

(4) the fibre space
(
Bl × CPm−l

)
/Γ,Γ ⊂ PU (l, 1)× PU (m− l + 1) a cocom-

pact lattice (l = 1, · · · ,m− 1).

Let ι : Σ → L\{0} be the inclusion map. On Σ we consider the following
pseudohermitian structure

θ = ι∗
√
−1∂ log |v|2 ,

In the following we compute the Tanaka-Webster connection and its curvature on
(Σ, θ). The calculations we give are essentially due to Webster [W2] where it is
formulated in a local setting. Suppose (U, z) is a local chart on Σ on which we have

a local holomorphic trivializing section σ : U → L\ {0}. Set ρ = |σ|2h. Then on U
we have

ω =
√
−1∂∂ log ρ =

√
−1gαβdzα ∧ dzβ ,

with

gαβ =
∂2 log ρ

∂za∂zβ
.

Locally X is given by

N =
{

(z, w) ∈ U × C : ρ (z) |w|2 = 1
}
.

with θ =
√
−1∂ log

(
ρ |w|2

)
and dθ = ω. We have the local frame

Ta =
∂

∂za
− w∂ log ρ

∂za

∂

∂w
,

T =
√
−1

(
w
∂

∂w
− w ∂

∂w

)
.

Simple calculation yields [
Tα, Tβ

]
= −
√
−1gαβT,

[Tα, T ] = 0.

From the second identity it follows that ∇ is torsion free. Then we obtain

∇TTβ = 0,

∇TαTβ = 0.

∇TαTβ = ΓγαβTγ .



12 XIAODONG WANG

with Γγαβ = gγν
∂gβν
∂za

. Notice that this is the also the Christoffel symbol of the

Levi-Civita connection of (M,ω). The curvature tensor of the Tanaka-Webster
connection is then given by

Rµναβ =
〈
−∇µ∇νTα +∇ν∇µTα +∇[Tµ,Tν ]Tα, Tβ

〉
=
∂Γγµα
∂zν

gγβ

= RM
µναβ

,

where

RM
µναβ

= RM

(
∂

∂zµ
,
∂

∂zν
,
∂

∂za
,
∂

∂zβ

)
is the curvature tensor of (M,ω). Taking trace, we also obtain

Rµν = RMµν ,R = RM ,

where RMµν = −gαβRM
µναβ

, RM = gµνRMµν are the Ricci and scalar curvature of

(M,ω). The Bochner tensor of (M,ω) is defined by

Bµναβ := −RM
µναβ

− 1

m+ 2

[
RM
αβ
gµν +RM

µβ
gαν + gαβR

M
µν + gµβR

M
αν

]
+

RM

(m+ 1) (m+ 2)

[
gαβgµν + gµβgαν

]
.

Therefore the Chern tensor of (Σ, θ) equals the Bochner tensor B of the Kahler
manifold (M,ω). Since the torsion A of the Tanaka-Webster connection is zero, we
also have the following formula for the Cartan tensor

Qαβ = − 2
√
−1

(n+ 2) (n+ 1)
RM,αβ ,

where RM,αβ denoted the covariant derivative of the scalar curvature RM .
For Bochner flat metric, we also have

Rαβ,µ =
1

m+ 1
(Rαδµβ +Rµδαβ)

Proposition 4. We have the following

• If dimension 2m + 1 ≥ 5, then Σ is locally CR spherical iff the (M,ω) is
Bochner-Kahler metric (i.e. the Bochner tensor vanishes).
• If dimension 2m + 1 = 3, then Σ is locally CR spherical iff the ∇(1,0)RM

is a holomorphic vector field on (M,ω).

Bochner-Kahler manifolds were first studied by Bochner [B]. There had been
a lot of work on such manifolds. But the more recent paper of Bryant [Br] is the
definitive work in which Bochner-Kahler metrics are classified even locally. For
compact ones, we have the following classification.

Theorem 13. (Kamishima [K];Bryant [Br] ) Let M be a compact Kahler manifold
of complex dimension n > 1. Suppose the Bochner tensor vanishes. Then M is
biholomorphically isometric to

(1) the complex projective space CPm,
(2) a complex Euclidean space form Tm/F, F ⊂ U (m) a finite group,
(3) a complex hyperbolic space form Bm/Γ,Γ ⊂ PU (m, 1) a cocompact lattice,



13

(4) the fibre space
(
Bl × CPm−l

)
/Γ,Γ ⊂ PU (l, 1)× PU (m− l + 1) a cocom-

pact lattice (l = 1, · · · ,m− 1).

Remark 1. We should point out that the proof in [K] uses the connection between
Bochner-Kahler manifolds and spherical CR structures. But his proof is not com-
plete.

We now prove Theorem 12. When m ≥ 2 it follows from the above theorem.
When m = 1, (M,ω) is a surface with ∇(1,0)RM is a holomorphic vector field. If
the genus of M is bigger than 1, then M has no nonzero holomorphic vector field
and hence RM is constant. When the genus is 1, the same is true as ∇(1,0)RM

is a holomorphic vector field with zeros. When the genus is zero, we are on the
Riemann sphere and ω is a so called extremal metric. It is well known that ω must
have constant scalar curvature.
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