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1. Introduction

In this paper we prove the following rigidity theorem.

Theorem 1. Let (Mn; g) (n � 2) be a compact Riemannian manifold with non-
empty boundary � = @M . Suppose

� Ric� (n� 1) g;
� (�; gj�) is isometric to the standard sphere Sn�1 � Rn,
� � is convex in M in the sense that its second fundamental form is nonneg-
ative.

Then (Mn; g) is isometric to the hemisphere Sn+ � Rn+1.

It may be necessary to make precise certain de�nitions involved here as there
are di¤erent conventions for the second fundamental form and the mean curvature
in the literature. Let � be the outer unit normal �eld of � in M . For any p 2 �,
for any X;Y 2 Tp� the second fundamental form is de�ned as

�(X;Y ) = hrX�; Y i :
The mean curvature is the trace of the second fundamental form.
Put in another way, the theorem says that for a compact manifold with boundary,

if we know that the boundary is Sn�1(intrinsic geometry on the boundary) and
convex (some extrinsic geometry) then we recognize the manifold as the hemisphere
Sn+, provided Ric � (n� 1) g. To put this result in a context, we �rst recall the
following

Theorem 2. Let (Mn; g) be a compact Riemannian manifold with boundary and
scalar curvature R � 0. If the boundary is isometric to Sn�1 and has mean curva-
ture n � 1, then (Mn; g) is isometric to the unit ball Bn � Rn. (If n > 7 we need
to assume that M is spin.)

This remarkable result is a simple corollary of the positive mass theorem: indeed
one may glueM with RnnBn along the boundary Sn�1 to obtain an asymptotically
�at manifold N with nonnegative scalar curvature. Since it is actually �at near
in�nity the positive mass theorem implies that N is isometric to Rn and hence M
is isometric to Bn (see [M, ST] for details). There are similar rigidity results for
geodesic balls in the hyperbolic space assuming R � �n (n� 1) by applying the
positive mass theorem for asymptotically hyperbolic manifolds.
It is a natural question to consider the hemisphere. The following conjecture

was proposed by Min-Oo in 1995.
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Conjecture 1. (Min-Oo) Let (Mn; g) be a compact Riemannian manifold with
boundary and scalar curvature R � n (n� 1). If the boundary is isometric to Sn�1
and totally geodesic, then (Mn; g) is isometric to the hemisphere Sn+.

The proof of Theorem 2 does not seem to work any more: there is no positive
mass theorem providing a miraculous passage from the compact manifold in ques-
tion to a noncompact manifold. As it stands this conjecture seems di¢ cult. There
have only been some partial results in [HW] and some recent progress in dimension
three in [E]. Theorem 1 can be viewed as the Ricci version of Min-Oo�s conjecture.
It is a strong evidence that Min-Oo�s conjecture should be true.
In dimension 2 it turns out that Theorem 1 is essentially equivalent to a result

of Toponogov on the length of simple closed geodesics on a strictly convex surface.
This connection is discussed in Section 2 in which we also present a di¤erent proof
working only in dimension 2. This proof may have some independent interest.
It is also interesting to compare this two dimensional argument, which is partly
geometric and partly analytic, with the uni�ed proof of purely analytic nature
presented in Section 3.
Acknowledgement: The research of F. Hang is supported by National Science

Foundation Grant DMS-0647010 and a Sloan Research Fellowship. The research of
X. Wang is supported by National Science Foundation Grant DMS-0505645. We
would like to thank Christina Sormani for valuable discussions.

2. The two dimensional case

When n = 2 we consider a compact surface (M2; g) with boundary. The bound-
ary then consists of closed curves and there is no intrinsic geometry except the
lengths of these curves. The extrinsic geometry of the boundary is given by the ge-
odesic curvature. Therefore Theorem 1 follows from the following slightly stronger
result.

Theorem 3. Let (M2; g) be compact surface with boundary and the Gaussian cur-
vature K � 1: Suppose the geodesic curvature k of the boundary 
 satis�es k � c
� 0. Then L(
) � 2�=

p
1 + c2. Moreover equality holds i¤ (M; g) is isometric to

a disc of radius cot�1(c) in S2.

Proof. By Gauss-Bonnet formula

2�� (M) =

Z
M

Kd� +

Z



kds > 0;

where � (M) is the Euler number of M . Therefore M is simply connected and in
particular 
 has only one component. By the Riemann mapping theorem, (M; g)
is conformally equivalent to the unit disc B= fz 2 C : jzj � 1g. Without loss of
generality, we take (M; g) to be (B; g = e2ujdzj2) with u 2 C1

�
B;R

�
. By our

assumptions we have �
��u � e2u on B;
@u
@r + 1 � ce

u on S1

Let u 2 C1
�
B;R

�
such that �

��u = 0 on B;
ujS1 = ujS1 :
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Then u � u as u is superharmonic. It follows from sub-sup solution method (see,
e.g., [SY, page 187-189]) that we may �nd a v 2 C1

�
B;R

�
with�

��v = e2v on B;
u � v � u:

Since v � u and vjS1 = ujS1 we have @v
@� �

@u
@� and hence

@v
@�

��
S1
+ 1 � ceu, i.e. the

boundary circle has has geodesic curvature � c. As the metric
�
B; e2vjdzj2

�
has

curvature 1 and the boundary circle is convex, it can be isometrically embedded
as a domain in S2, say 
. Denote � = @
 parametrized by arclength. Notice
L (�) = L (
) as v = u on the boundary S1. Because the boundary has geodesic
curvature � c � 0, it is known that the smallest geodesic disc D containing 

has radius at most cot�1(c). Hence L (
) = L(�) � 2�=

p
1 + c2 = L (@D). The

equality case follows directly from the argument. �

As a corollary we have the following theorem due to Toponogov.

Corollary 1. (Toponogov [T]) Let (M2; g) be a closed surface with Gaussian curva-
ture K � 1. Then any simple closed geodesic inM has length at most 2�. Moreover
if there is one with length 2�, then M is isometric to the standard sphere S2.

Proof. Suppose 
 is a simple close geodesic. We cut M along 
 to obtain two
compact surfaces with the geodesic 
 as their common boundary. The result follows
from applying the previous theorem to either of these two compact surfaces with
boundary. �

Toponogov�s original proof, as presented in Klingenberg [K, page 297] uses his
triangle comparison theorem. In applying the triangle comparison theorem, which
requires at least two minimizing geodesics, the di¢ culty is to know how long a
geodesic segment is minimizing without assuming an upper bound for curvature.
As the proof presented above, this di¢ culty is overcome by using special features
of two dimensional topology.

3. The proof of the main theorem

We now present a proof of Theorem 1 which works in any dimension n � 2. We
�rst recall the following result due to Reilly.

Theorem 4. (Reilly [R]) Let (Mn; g) be a compact Riemannian manifold with non-
empty boundary � = @M . Assume that Ric � (n� 1) g and the mean curvature of
� in M is nonnegative. Then the �rst (Dirichlet) eigenvalue �1 of �� satis�es the
inequality �1 � n. Moreover �1 = n i¤ M is isometric to the standard hemisphere
Sn+ � Rn+1.

Therefore to prove Theorem 1, it su¢ ces to show �1 (M) = n. If this were not
the case, then �1 (M) > n. Therefore for every f 2 C1 (�) there is a unique
u 2 C1 (M) solving

(3.1)
�
��u = nu on M;
u = f on �:
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De�ne
� = jruj2 + u2:

Lemma 1. � is subharmonic, i.e. �� � 0.

Proof. Using the Bochner formula, the equation (3.1) and the assumption Ric�
(n� 1) g,

1

2
�� =

��D2u
��2 + hru;r�ui+Ric(ru;ru) + jruj2 + u�u

�
��D2u

��2 � nu2
� (�u)

2

n
� nu2

= 0:

�

Denote � = @u
@� , the derivative on the boundary in the outer unit normal �. By

the assumption of Theorem 1 there is an isometry F : (�; gj�) ! Sn�1 � Rn. In
the following let f =

Pn
i=1 �ixi � F , where x1; � � � ; xn are the standard coordinate

functions on Sn�1 and � = (�1; � � � ; �n) 2 Sn�1. We have

���f = (n� 1) f; jr�f j2 + f2 = 1:
Hence

(3.2) �j� = jr�f j2 + �2 + f2 = 1 + �2:
On the boundary �

�nf = �uj� = ��f +H�+D2u (�; �) = � (n� 1) f +H�+D2u (�; �) ;

whence

(3.3) D2u (�; �) + f = �H�:

Lemma 2. On �
1

2

@�

@�
= hr�f;r��i �H�2 ��(r�f;r�f) :

Proof. Indeed

1

2

@�

@�
= D2u (ru; �) + f�

= D2u (r�u; �) + �
�
D2u (�; �) + f

�
= D2u (r�f; �)�H�2;

here we have used (3.3) in the last step. On the other hand

D2u (r�f; �) = hrr�fru; �i
= r�f hru; �i � hru;rr�f�i
= hr�f;r��i ��(r�f;r�f) :

The lemma follows. �
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Lemma 3. The function � = jruj2 + u2 is constant and
D2u = �ug:

Moreover � = @u
@� is also constant and �(r�f;r�f) � 0.

Proof. Since � is subharmonic, by the maximum principle � achieves its maximum
on �, say at p 2 �. Obviously we have

r�� (p) = 0;
@�

@�
(p) � 0:

If @�@� (p) = 0, then � must be constant by the strong maximum principle and Hopf
lemma (see [GT, page 34-35]). Then the proof of Lemma 1 implies D2u = �ug.
By (3.2) � is constant. It then follows from Lemma 2 that �(r�f;r�f) � 0.
Suppose @�

@� (p) > 0. Then � (p) 6= 0, for otherwise it follows from (3.2) that
� � 0 and hence @�

@� (p) � 0 by Lemma 2, a contradiction. From (3.2) we conclude
r�� (p) = 0. By Lemma 2

1

2

@�

@�
(p) = hr�f;r��i (p)�H�2 ��(r�f;r�f) � 0;

here we have used the assumption that � is convex, i.e. � � 0. This contradicts
with @�

@� (p) > 0 again. �

Recall f depends on a unit vector � 2 Sn�1. To indicate the dependence on �
we will add subscript � to all the quantities. Since �(r�f�;r�f�) � 0 on � for
any � 2 Sn�1 and

�
r�f� : � 2 Sn�1

	
span the tangent bundle T� we conclude

that � is totally geodesic, i.e. � = 0.
We now claim that we can choose � such that �� � 0. Indeed, � ! �� is a

continuous function on Sn�1. Clearly u�� = �u� and hence ��� = ���. Therefore
by the intermediate value theorem there exists some � 2 Sn�1 such that �� � 0.
With this particular choice f = f� ; u = u� we have�

D2u = �ug;
@u
@� � 0:

There is q 2 � such that f (q) = max f = 1. Then r�f (q) = 0 and hence
ru (q) = 0 as @u

@� (q) = 0. For X 2 TqM such that hX; � (q)i � 0 let 
X be the

geodesic with
�

X (0) = X. Note that 
X lies in � if X is tangential to � since �

is totally geodesic. The function U (t) = u � 
X (t) then satis�es the following8><>:
��
U (t) = �U;
U (0) = 1;
�
U (0) = 0:

Hence U (t) = cos t. Because � is totally geodesic, every point may be connected
to q by a minimizing geodesic. Using the geodesic polar coordinates (r; �) 2 R+ �
Sn�1+ at q we can write

g = dr2 + hr

where r is the distance function to q and hr is r-family of metrics on Sn�1+ with

lim
r!0

r�2hr = h0;
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here h0 is the standard metric on Sn�1+ . Then u = cos r. The equation D2u = �ug
implies

@hr
@r

= 2
cos r

sin r
hr

which can be solved to give hr = sin2 rh0. It follows that (M; g) is isometric to
Sn+. This implies �1 (M) = n and contradicts with the assumption �1 (M) > n.
Theorem 1 follows.
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