Class Notes; Week 7, 2/26/2016

Day 18

This Time

Section 3.3

Isomorphism and Homomorphism
Example. 1
[0], [2], [4] in \mathbb{Z}_{6}

+	0	4	2
0	0	4	2
4	4	2	0
2	2	0	4

$*$	0	4	2
0	0	0	0
4	0	4	2
2	0	2	4

So $\{[0],[2],[4]\}$ is a subring.
Now, in \mathbb{Z}_{3}

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

$*$	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Multiplication identity: 0, Addition identity: 1
3 elements form a ring: no other structure. They are identical.

Isomorphism

A ring R is isomorphic to a ring S (In symbols: $R \cong S$) if there is a function $f: R \rightarrow S$ such that:
(i) f is injective: $f(a)=f(b) \Rightarrow a=b$
(ii) f is surjective: $\forall a \in S \exists b \in R(f(a)=b)$
(iii) $f(a+b)=f(a)+f(b)$
(iv) $f(a b)=f(a) f(b)$

In this case F is called isomorphic.
In the example: $f: 0 \rightarrow 0,1 \rightarrow 4,2 \rightarrow 2$ for $0,1,2 \in \mathbb{Z}_{3}$ and $0,4,2 \in S, s=\{0,2,4\} \subset \mathbb{Z}_{6}$
$4+2=1+2$ and $4 * 2=1 * 2$
So (one-to-one, or injective):
Example. $f(x)=x$ is injective
$g(x)=x^{2}$ is not injective: because $g(2)=g(-2)=4$ but $2 \neq-2$

When you have two distinct elements mapped to the same element they are not injective. $\Rightarrow a \neq b \Rightarrow$ $f(a) \neq f(b)$
Also, onto $=$ surjective.
Example. 1
From student: in $\mathbb{Z}_{12}\{0,4,8\}$ to \mathbb{Z}_{3}
Example. 2
in $\mathbb{Z}_{10}\{0,2,4,6,8\}$ to \mathbb{Z}_{5}
Example. 3
$\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \in M_{2}(\mathbb{R})$
k field has all $2 X 2$ matrices of this form.
Claim $k \cong \mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\} \quad(i=\sqrt{-1})$
proof: $f:\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \rightarrow a+b i$
(formal notation: $f\left(\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)\right)=a+b i$)
(i) injectivity: let $f\left(\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)\right)=f\left(\left(\begin{array}{cc}r & s \\ -s & r\end{array}\right)\right) \in K$
$a+b i=r+s i \Rightarrow a=r$ and $b=s \Rightarrow\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)=\left(\begin{array}{cc}r & s \\ -s & r\end{array}\right)$
Thus f is injective
(ii) surjectivity: for any $a+b i \in \mathbb{C} \exists\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \in K$ such that $f\left(\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)\right)=a+b i$
(iii) $f(a+b)=f(a)+f(b)$. So: $f\left(\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)+\left(\begin{array}{cc}r & s \\ -s & r\end{array}\right)\right)=f\left(\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)\right)+f\left(\left(\begin{array}{cc}r & s \\ -s & r\end{array}\right)\right)$

$$
\begin{gathered}
f\left(\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)+\left(\begin{array}{cc}
r & s \\
-s & r
\end{array}\right)\right)=f\left(\left(\begin{array}{cc}
a+r & b+s \\
-b-s & a+r
\end{array}\right)\right)=(a+r)+(b+s) i \\
f\left(\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\right)+f\left(\left(\begin{array}{cc}
r & s \\
-s & r
\end{array}\right)\right)=a+b i+r+s i=(a+r)+(b+s) i \\
(\text { iv }) f\left(\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \cdot\left(\begin{array}{cc}
r & s \\
-s & r
\end{array}\right)\right)=f\left(\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\right) \cdot f\left(\left(\begin{array}{cc}
r & s \\
-s & r
\end{array}\right)\right) \\
f\left(\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \cdot\left(\begin{array}{cc}
r & s \\
-s & r
\end{array}\right)\right)=f\left(\left(\begin{array}{cc}
a r-b s & a s+b r \\
-a s-b r & -b s+a r
\end{array}\right)\right)=(a c-b d)+(a d+b d) i
\end{gathered}
$$

$$
f\left(\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\right) \cdot f\left(\left(\begin{array}{cc}
r & s \\
-s & r
\end{array}\right)\right)=(a+b i) \cdot(r+s i)=a c+c b i+a d i-b d=(a c-b d)+(c b+a d) i
$$

Therefore K is isomorphic to \mathbb{C}

Homomorphism

If only satisfying the (iii) and (iv) conditions of isomorphic definition.

Formal Definition

Let R and S be rings. A function : $R \rightarrow S$ is said to be homomorphic if $f(a+b)=f(a)+f(b)$ and $f(a b)=f(a) f(b)$ for all $a, b \in R$

Example. $f: \mathbb{C} \rightarrow \mathbb{C}$ called complex conjugate map

$$
f(a+b i)=a-b i
$$

we can verify f is an ismorphism.

Day 19

Section 3.3

Example. 1
For any ring $R \subset S$ the zero map from $Z: R \rightarrow S$ given by $Z(r)=0_{s}$ for all $r \in R$

$$
\begin{gathered}
Z(a+b)=0_{s}=Z(a)+Z(b)=0_{s}+0_{s} \\
Z(a b)=Z(a) Z(b)=0_{s}
\end{gathered}
$$

Example. 2

$$
f: \mathbb{Z} \rightarrow \mathbb{Z}_{6}
$$

$f(a)=[a]$ for any $a \in \mathbb{Z}$ you can check: $f(a+b)=[a+b]=f(a)+f(b)=[a]+[b]=[a+b]$

$$
f(a b)=[a b]=[a][b]=f(a) f(b)
$$

f is surjective: $f(1)=f(7), 1 \neq 7$ in \mathbb{Z}
Example. 3
The map $g: \mathbb{R} \rightarrow M_{2}(\mathbb{R})$ given by $g(r)=\left(\begin{array}{cc}0 & 0 \\ -r & r\end{array}\right)$
If g is a homomorphism the map will become a ring and right hand side is a subring.

$$
\begin{aligned}
g(r) & =\left(\begin{array}{cc}
0 & 0 \\
-r & r
\end{array}\right) \text { is homomorphism. } \\
g(r+s) & =\left(\begin{array}{cc}
0 & 0 \\
-r-s & r+s
\end{array}\right)=g(r)+g(s) \\
g(r s) & =\left(\begin{array}{cc}
0 & 0 \\
-r s & r s
\end{array}\right)=g(r) g(s)
\end{aligned}
$$

Homework: g is injective but not surjective.
CAUTION: $f(x)=x+2$ Is this homomorphic?

No; $f(a+b)=a+b+2 \neq a+2+b+2=f(a)+f(b)$

Theorem

Let $f: \mathbb{R} \rightarrow S$ be a homomorphism of rings, then:

$$
\text { (i) } f\left(0_{R}\right)=0_{s}
$$

(ii) $f(-a)=-f(a)$
(iii) $f(a-b)=f(a)-f(b)$

If R is a ring with 1_{R} and F is surjective:
(iv) S is a ring with identity $1_{S}=f\left(1_{R}\right)$
(v) If u is a unit of R, then $f(u)$ is a unit in S and $f(u)^{-1}=f\left(u^{-1}\right)$

Proving this

(i) $f\left(0_{R}\right)+f\left(0_{R}\right)=f\left(0_{R}+0_{R}\right) \Rightarrow f\left(0_{R}\right)+f\left(0_{R}\right)=f\left(0_{R}\right) \Rightarrow f\left(0_{R}\right)=0_{S}$ addition identity.

$$
\begin{gathered}
\text { (ii) } f(a)+f(-a)=f(a+(-a))=f\left(0_{R}\right)=0_{S} \\
\text { So, } f(-a)=-f(a)
\end{gathered}
$$

(iii) $f(a-b)=f(a)+f(-b)=f(a)+f(-b)=f(a)-f(b)$
(iv) Consider: $f\left(r \cdot 1_{R}\right)=f(r) f\left(1_{R}\right)=f(r) \Rightarrow f\left(1_{R}\right)=S$
(v) If u is a unit of R, there exists u^{-1} where $f\left(u \cdot u^{-1}\right)=f\left(1_{R}\right)=1_{S}$,

$$
f(u) \cdot f\left(u^{-1}\right)=1_{S} \Rightarrow(f(u))^{-1}=f\left(u^{-1}\right)
$$

If $f: R \rightarrow S$ is a function then the image of f is the subset of $S /$
(image) $\operatorname{Imf}=\{s \in S \mid s=f(r)\}$ If f is surjective then $\operatorname{Imf}=S$.

Cor. 3.4

If $R \rightarrow S$ is a homomorphism of ring then the image of f is a subring in S. By theorem 3.10: (iii) [Closure under subtraction] and $f(a b)=f(a) f(b)$ [closure under multiplication] $\operatorname{Img} f$ is a subring by theorem 3.6

Example. 1

$\mathbb{Z}_{12} \cong \mathbb{Z}_{3} X \mathbb{Z}_{4}$ by multiplying principle we know right hand side has 12 elements. for $R X S:\left(1_{R}, 1_{S}\right)$ will be the identity in $(R X S)$

Define: $f(1)=(1,1)$
$f(2)=f(1+1)=f(1)+f(1)=(2,2)$
$f(3)=(0,3)$
$f(4)=(1,0)$
$f(5)=(2,1)$
$f(6)=(0,2)$
$f(7)=(1,3)$
$f(8)=(2,0)$

$$
\begin{gathered}
f(9)=(0,1) \\
f(10)=(1,2) \\
f(11)=(2,3) \\
f(12)=(0,0) \\
f\left(\left[a_{12}\right]\right)=\left([a]_{3},[a]_{4}\right) \Rightarrow f(11)=(2,3)
\end{gathered}
$$

Prove homomorphism under addition and multiplication for homework.
Example. 2
The ring \mathbb{Z}_{4} and $\mathbb{Z}_{2} X \mathbb{Z}_{2}$
Assume f is homomorphism: $f(1)=(1,1)$

$$
\begin{aligned}
& f(2)=(0,0) \\
& f(0)=(0,0) \\
& 2 \neq 0 \text { in } \mathbb{Z}_{4}
\end{aligned}
$$

Therefore f is not injective.
Example. 3
$\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are not isomorphic to \mathbb{Z}
Is $\mathbb{Q} \cong \mathbb{Z}$??
\mathbb{Q} has infinitely many units while \mathbb{Z} has $2:-1$ and 1

Day 20

Went over exam 1

Went over homework 0.1in
Section 3.3, problem 21
$a \oplus b=a+b-1, a \otimes b=a+b-a b$ for \mathbb{Z}^{1}
Show isomorphic to \mathbb{Z}
Assume already prove injective and surjective.
$f(a+b)=f(a) \oplus f(b) ? ?$
$\Rightarrow 1-a-b ?=? 1-a \oplus 1-b=1-a+1-b-1=1-a-b$

This time

$$
\begin{gathered}
\text { Example. } 1 \\
K .\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \cong \mathbb{C} \\
\mathbb{Z}_{12} \cong \mathbb{Z}_{3} X \mathbb{Z}_{4} \\
\mathbb{Z}_{4} \not \approx \mathbb{Z}_{2} X \mathbb{Z}_{3}
\end{gathered}
$$

Is it possible: $\mathbb{Z}_{6} \cong \mathbb{Z}_{12}$?
Apparently no: cordinality is not the same.
So, if cardinality are different, immediately not isomorphic.
How about $\mathbb{Z}_{8} \cong \mathbb{Z}_{2} X \mathbb{Z}_{4}$?
No. number of units should be the same.
$\mathbb{Z}_{8}: 1,3,5,7$ and $\mathbb{Z}_{2} X \mathbb{Z}_{4}:(1,1),(1,3)$
$4 \neq 2$ impossible to be isomorphic.
How about $\mathbb{Z} \cong \mathbb{Q}$
$1,-1$ compared to infinitely many

Example. 2
If R commutative ring and $f: R \rightarrow S$ isomorphic then S is commutative.

$$
\begin{gathered}
\text { proof } \\
\forall a, b \in R a b=b a \\
f(a b)=f(b a) \in S \\
f(a) f(b)=f(b) f(a) \\
\forall x, y \in S, x y=y x=f(r) \text { some } r \in R ? \\
\text { Show by proving surjectivity. } \\
\text { If not surjective, commutative proof fails. }
\end{gathered}
$$

Think about for next time

$\mathbb{Z}_{m n} \cong \mathbb{Z}_{n} X \mathbb{Z}_{m}$ if $(n, m)=1$
End of week 7!

