Class Notes; Week 7, 2/26/2016

Day 18

This Time

Section 3.3

Isomorphism and Homomorphism

	Ex	am	ple	. 1	
$[0], [2], [4] \text{ in } \mathbb{Z}_6$					
	+	0	4	2	
	0	0	4	2	
	4	4	2	0	
	2	2	0	4]
	*	0	4	2	
	0	0	0	0	
	4	0	4	2	
	2	0	2	4	
So $\{[0], [2], [4]\}$ is a subring					
Now, in \mathbb{Z}_3					
	+	0	1	2	
	0	0	1	2	
	1	1	2	0	
	2	2	0	1	
	*	0	1	2	
	0	0	0	0	

 2
 0
 2
 1

 Multiplication identity: 0, Addition identity: 1

1 0

1 2

3 elements form a ring: no other structure. They are identical.

Isomorphism

A ring R is isomorphic to a ring S (In symbols: $R \cong S$) if there is a function $f: R \to S$ such that:

In this case F is called isomorphic.

In the example: $f: 0 \to 0$, $1 \to 4$, $2 \to 2$ for $0, 1, 2 \in \mathbb{Z}_3$ and $0, 4, 2 \in S$, $s = \{0, 2, 4\} \subset \mathbb{Z}_6$ 4 + 2 = 1 + 2 and 4 * 2 = 1 * 2So (one-to-one, or injective):

Example. f(x) = x is injective $g(x) = x^2$ is not injective: because g(2) = g(-2) = 4 but $2 \neq -2$

When you have two distinct elements mapped to the same element they are not injective. $\Rightarrow a \neq b \Rightarrow f(a) \neq f(b)$

Also, onto = surjective.

Example. 1
From student: in
$$\mathbb{Z}_{12}$$
 {0, 4, 8} to \mathbb{Z}_3
Example. 2
in \mathbb{Z}_{10} {0, 2, 4, 6, 8} to \mathbb{Z}_5
Example. 3
 $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in M_2(\mathbb{R})$
 k field has all 2X2 matrices of this form.
Claim $k \cong \mathbb{C} = \{a + bi|a, b \in \mathbb{R}\}$ $(i = \sqrt{-1})$
proof: $f: \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \rightarrow a + bi$
(formal notation: $f(\begin{pmatrix} a & b \\ -b & a \end{pmatrix}) = a + bi$)
(i) injectivity: let $f(\begin{pmatrix} a & b \\ -b & a \end{pmatrix}) = f(\begin{pmatrix} r & s \\ -s & r \end{pmatrix}) \in K$
 $a + bi = r + si \Rightarrow a = r$ and $b = s \Rightarrow \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = \begin{pmatrix} r & s \\ -s & r \end{pmatrix}$
Thus f is injective
(ii) surjectivity: for any $a + bi \in \mathbb{C} \exists \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in K$ such that $f(\begin{pmatrix} a & b \\ -b & a \end{pmatrix}) = a + bi$
(iii) $f(a + b) = f(a) + f(b)$. So: $f(\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} r & s \\ -s & r \end{pmatrix}) = f(\begin{pmatrix} a & b \\ -b & a \end{pmatrix}) + f(\begin{pmatrix} r & s \\ -s & r \end{pmatrix})$
 $f(\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} r & s \\ -s & r \end{pmatrix}) = f(\begin{pmatrix} a + r & b + s \\ -s & a + r \end{pmatrix}) = (a + r) + (b + s)i$
 $f(\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + f(\begin{pmatrix} r & s \\ -s & r \end{pmatrix}) = a + bi + r + si = (a + r) + (b + s)i$
(iv) $f(\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \cdot \begin{pmatrix} r & s \\ -s & r \end{pmatrix}) = f(\begin{pmatrix} a r - bs & a + sr \\ -s & r \end{pmatrix}) = (ac - bd) + (ad + bd)i$

$$f\begin{pmatrix} a & b \\ -b & a \end{pmatrix}) \cdot f\begin{pmatrix} r & s \\ -s & r \end{pmatrix}) = (a+bi) \cdot (r+si) = ac + cbi + adi - bd = (ac - bd) + (cb + ad)i$$

Therefore K is isomorphic to \mathbb{C}

Homomorphism

If only satisfying the (iii) and (iv) conditions of isomorphic definition.

Formal Definition

Let R and S be rings. A function : $R \to S$ is said to be homomorphic if f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b) for all $a, b \in R$

Example. $f : \mathbb{C} \to \mathbb{C}$ called complex conjugate map

$$f(a+bi) = a - bi$$

we can verify f is an ismorphism.

Day 19

Section 3.3

Example. 1

For any ring $R \subset S$ the zero map from $Z : R \to S$ given by $Z(r) = 0_s$ for all $r \in R$ $Z(a+b) = 0_s = Z(a) + Z(b) = 0_s + 0_s$ $Z(ab) = Z(a)Z(b) = 0_s$

Example. 2

 $f: \mathbb{Z} \to \mathbb{Z}_6$ $f(a) = [a] \text{ for any } a \in \mathbb{Z} \text{ you can check: } f(a+b) = [a+b] = f(a) + f(b) = [a] + [b] = [a+b]$ f(ab) = [ab] = [a][b] = f(a)f(b) $f \text{ is surjective: } f(1) = f(7), 1 \neq 7 \text{ in } \mathbb{Z}$

Example. 3

The map
$$g : \mathbb{R} \to M_2(\mathbb{R})$$
 given by $g(r) = \begin{pmatrix} 0 & 0 \\ -r & r \end{pmatrix}$

If g is a homomorphism the map will become a ring and right hand side is a subring.

$$g(r) = \begin{pmatrix} 0 & 0 \\ -r & r \end{pmatrix} \text{ is homomorphism.}$$
$$g(r+s) = \begin{pmatrix} 0 & 0 \\ -r-s & r+s \end{pmatrix} = g(r) + g(s)$$
$$g(rs) = \begin{pmatrix} 0 & 0 \\ -rs & rs \end{pmatrix} = g(r)g(s)$$

Homework: g is injective but not surjective. CAUTION: f(x) = x + 2 Is this homomorphic? No; $f(a+b) = a+b+2 \neq a+2+b+2 = f(a) + f(b)$

Theorem

Let $f : \mathbb{R} \to S$ be a homomorphism of rings, then:

(i)
$$f(0_R) = 0_s$$

(ii) $f(-a) = -f(a)$
(iii) $f(a-b) = f(a) - f(b)$
If R is a ring with 1_R and F is surjective:
(iv) S is a ring with identity $1_S = f(1_R)$
(v) If u is a unit of R, then $f(u)$ is a unit in S and $f(u)^{-1} = f(u^{-1})$

Proving this

$$\begin{array}{ll} ({\rm i}) \ f(0_R) + f(0_R) = f(0_R + 0_R) \Rightarrow f(0_R) + f(0_R) = f(0_R) \Rightarrow f(0_R) = 0_S \ {\rm addition\ identity.} \\ ({\rm ii}) \ f(a) + f(-a) = f(a + (-a)) = f(0_R) = 0_S \ {\rm So}, \ f(-a) = -f(a) \\ ({\rm iii}) \ f(a - b) = f(a) + f(-b) = f(a) + f(-b) = f(a) - f(b) \\ ({\rm iv}) \ {\rm Consider:} \ f(r \cdot 1_R) = f(r)f(1_R) = f(r) \Rightarrow f(1_R) = S \\ ({\rm v}) \ {\rm If} \ u \ {\rm is\ a\ unit\ of\ } R, \ {\rm there\ exists\ } u^{-1} \ {\rm where\ } f(u \cdot u^{-1}) = f(1_R) = 1_S \ , \\ f(u) \cdot f(u^{-1}) = 1_S \Rightarrow (f(u))^{-1} = f(u^{-1}) \\ {\rm If\ } f: R \to S \ {\rm is\ a\ function\ then\ the\ image\ of\ } f \ {\rm is\ the\ subset\ of\ } S/ \end{array}$$

(image) $\text{Imf} = \{s \in S | s = f(r)\}$ If f is surjective then Imf = S.

Cor. 3.4

If $R \to S$ is a homomorphism of ring then the image of f is a subring in S. By theorem 3.10: (iii) [Closure under subtraction] and f(ab) = f(a)f(b) [closure under multiplication] Img f is a subring by theorem 3.6

Example. 1

 $\mathbb{Z}_{12} \cong \mathbb{Z}_3 X \mathbb{Z}_4 \text{ by multiplying principle we know right hand side has 12 elements.}$ $for <math>RXS : (1_R, 1_S)$ will be the identity in (RXS)Define: f(1) = (1, 1)f(2) = f(1+1) = f(1) + f(1) = (2, 2)f(3) = (0, 3)f(4) = (1, 0)f(5) = (2, 1)f(6) = (0, 2)f(7) = (1, 3)f(8) = (2, 0) f(9) = (0,1)f(10) = (1,2)f(11) = (2,3)f(12) = (0,0)

$$f([a_{12}]) = ([a]_3, [a]_4) \Rightarrow f(11) = (2, 3)$$

Prove homomorphism under addition and multiplication for homework.

Example. 2

The ring \mathbb{Z}_4 and $\mathbb{Z}_2 X \mathbb{Z}_2$ Assume f is homomorphism: f(1) = (1, 1)f(2) = (0, 0)f(0) = (0, 0) $2 \neq 0$ in \mathbb{Z}_4 Therefore f is not injective.

Example. 3 $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are not isomorphic to \mathbb{Z} Is $\mathbb{Q} \cong \mathbb{Z}$?? \mathbb{Q} has infinitely many units while \mathbb{Z} has 2: -1 and 1

Day 20

Went over exam 1

Went over homework 0.1in Section 3.3, problem 21 $a \oplus b = a + b - 1$, $a \otimes b = a + b - ab$ for \mathbb{Z}^1 Show isomorphic to \mathbb{Z} Assume already prove injective and surjective. $f(a + b) = f(a) \oplus f(b)$?? $\Rightarrow 1 - a - b$? =?1 - $a \oplus 1 - b = 1 - a + 1 - b - 1 = 1 - a - b$

This time

 $K. \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \cong \mathbb{C}$ $\mathbb{Z}_{12} \cong \mathbb{Z}_3 X \mathbb{Z}_4$ $\mathbb{Z}_4 \not\cong \mathbb{Z}_2 X \mathbb{Z}_3$ Is it possible: $\mathbb{Z}_6 \cong \mathbb{Z}_{12}$? Apparently no: cordinality is not the same. So, if cardinality are different, immediately not isomorphic. How about $\mathbb{Z}_8 \cong \mathbb{Z}_2 X \mathbb{Z}_4$? No. number of units should be the same. $\mathbb{Z}_8 : 1, 3, 5, 7$ and $\mathbb{Z}_2 X \mathbb{Z}_4 : (1, 1), (1, 3)$

Example. 1

 $4 \neq 2$ impossible to be isomorphic. How about $\mathbb{Z} \cong \mathbb{Q}$ 1, -1 compared to infinitely many

Example. 2

If R commutative ring and $f: R \to S$ isomorphic then S is commutative.

proof

 $\forall a, b \in R \ ab = ba$ $f(ab) = f(ba) \in S$ f(a)f(b) = f(b)f(a) $\forall x, y \in S \ , xy = yx = f(r) \text{ some } r \in R?$ Show by proving surjectivity. If not surjective, commutative proof fails.

Think about for next time

 $\mathbb{Z}_{mn} \cong \mathbb{Z}_n X \mathbb{Z}_m$ if (n, m) = 1

End of week 7!