MTH 310 HW 1 Solutions

Jan 22, 2016

Section 1.1, Question 7

Prove that the square of any integer a is either of the form $3 k$ or $3 k+1$ for some integer k.
Answer. By the division algorithm, any integer a must have the form $a=3 q+r$ where $0 \leq r \leq 2$. If $r=0$, then $a=3 q$ and thus $a^{2}=(3 q)^{2}=9 q^{2}=3\left(3 q^{2}\right)$, so by letting $k=3 q^{2}$ we see that $a^{2}=3 k$ for some integer k. If $r=1$, then $a=3 q+1$ and $a^{2}=(3 q+1)^{2}=$ $9 q^{2}+6 q+1=3\left(3 q^{2}+2 q\right)+1$, so letting $k=3 q^{2}+2 q$ we see that $a^{2}=3 k+1$ for some integer k. Finally, if $r=2$, then $a^{2}=(3 q+2)^{2}=9 q^{2}+12 q+4=9 q^{2}+12 q+3+1=3\left(3 q^{2}+4 q+1\right)+1$, so letting $k=3 q^{2}+4 q+1$ we see that $a^{2}=3 k+1$ for some integer k.

Section 1.2, Question 11

If $n \in \mathbb{Z}$, what are the possible values of $(\mathrm{n}, \mathrm{n}+2)$ and $(\mathrm{n}, \mathrm{n}+6)$?
Answer. In the first case, let $d=(n, n+2)$. Then $d \mid n$ and $d \mid(n+2)$ so there exist integers j, k so that $j d=n$ and $k d=n+2$. This implies that $2=(n+2)-n=k d-j d=d(k-j)$, so d is a positive integer that divides 2 . This says $d=1$ or $d=2$, both of which can occur (the former case occurs when $\mathrm{n}=1$, and the latter case occurs when $\mathrm{n}=2$).
Similarly, let $d=(n, n+6)$. Similar to above, we have that $d \mid 6$ so since $d>0$ we have $d \in\{1,2,3,6\}$. All of these occur (respectively, when $n=1,2,3$, and 6).

Section 1.2, Question 14

Find the smallest positive integer in the sets $\{6 u+15 v \mid u, v \in \mathbb{Z}\}$ and $\{12 r+17 s \mid r, s \in$ $\mathbb{Z}\}$.

Answer. By the proof of Theorem 1.2 (Hungerford), the smallest positive integer in the set $\{a x+b y \mid a, b \in \mathbb{Z}\}$ is $\operatorname{gcd}(x, y)$. Therefore the smallest positive integer in the first set is $\operatorname{gcd}(6,15)=3$, and the smallest positive integer in the second set is $\operatorname{gcd}(12,17)=1$. (To show these actually are the greatest common divisors, one may list all the factors of 6,15 , 12 , and 17 and choose the largest).

Section 1.3, Question 27

Prove that if a prime $p>3$, then $p^{2}+2$ is composite.
Answer. By the division algorithm, p has the form $3 k, 3 k+1$, or $3 k+2$ for some $k \in \mathbb{Z}$. If $p=3 k$, then $3 \mid p$ and since p is prime the only numbers that divide p are 1 and p. Therefore $p=3$ which violates our assumption that $p>3$.
We claim that in the other two cases, $3 \mid p$. Note that since $p>3, p^{2}+2>11$, so 3 is a proper divisor of $p^{2}+2$ (meaning it is neither 1 nor $p^{2}+2$) so it is not prime.
If $p=3 k+1, p^{2}+2=(3 k+1)^{2}+2=9 k^{2}+6 k+1+2=3\left(3 k^{2}+2 k+1\right)$, so $3 \mid p^{2}+2$.
If $p=3 k+2, p^{2}+2=(3 k+2)^{2}+2=9 k^{2}+12 k+4+2=3\left(3 k^{2}+4 k+2\right)$ so $3 \mid p^{2}+2$.

