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Section 1.1, Question 7

Prove that the square of any integer a is either of the form 3k or 3k + 1 for some integer
k.
Answer. By the division algorithm, any integer a must have the form a = 3q + r where
0 ≤ r ≤ 2. If r = 0, then a = 3q and thus a2 = (3q)2 = 9q2 = 3(3q2), so by letting k = 3q2

we see that a2 = 3k for some integer k. If r = 1, then a = 3q + 1 and a2 = (3q + 1)2 =
9q2+6q+1 = 3(3q2+2q)+1, so letting k = 3q2+2q we see that a2 = 3k+1 for some integer
k. Finally, if r = 2, then a2 = (3q+2)2 = 9q2+12q+4 = 9q2+12q+3+1 = 3(3q2+4q+1)+1,
so letting k = 3q2 + 4q + 1 we see that a2 = 3k + 1 for some integer k.

Section 1.2, Question 11

If n ∈ Z, what are the possible values of (n, n+2) and (n, n+6)?
Answer. In the first case, let d = (n, n+ 2). Then d|n and d|(n+ 2) so there exist integers
j, k so that jd = n and kd = n+ 2. This implies that 2 = (n+ 2)−n = kd− jd = d(k− j),
so d is a positive integer that divides 2. This says d = 1 or d = 2, both of which can occur
(the former case occurs when n = 1, and the latter case occurs when n = 2).

Similarly, let d = (n, n + 6). Similar to above, we have that d|6 so since d > 0 we have
d ∈ {1, 2, 3, 6}. All of these occur (respectively, when n = 1, 2, 3, and 6).

Section 1.2, Question 14

Find the smallest positive integer in the sets {6u + 15v|u, v ∈ Z} and {12r + 17s|r, s ∈
Z}.
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Answer. By the proof of Theorem 1.2 (Hungerford), the smallest positive integer in the
set {ax+ by|a, b ∈ Z} is gcd(x, y). Therefore the smallest positive integer in the first set is
gcd(6, 15) = 3, and the smallest positive integer in the second set is gcd(12, 17) = 1. (To
show these actually are the greatest common divisors, one may list all the factors of 6, 15,
12, and 17 and choose the largest).

Section 1.3, Question 27

Prove that if a prime p > 3, then p2 + 2 is composite.
Answer. By the division algorithm, p has the form 3k, 3k+1, or 3k+2 for some k ∈ Z. If
p = 3k, then 3|p and since p is prime the only numbers that divide p are 1 and p. Therefore
p = 3 which violates our assumption that p > 3.

We claim that in the other two cases, 3|p. Note that since p > 3, p2 + 2 > 11, so 3 is a
proper divisor of p2 + 2 (meaning it is neither 1 nor p2 + 2) so it is not prime.

If p = 3k + 1, p2 + 2 = (3k + 1)2 + 2 = 9k2 + 6k + 1 + 2 = 3(3k2 + 2k + 1), so 3|p2 + 2.

If p = 3k + 2, p2 + 2 = (3k + 2)2 + 2 = 9k2 + 12k + 4 + 2 = 3(3k2 + 4k + 2) so 3|p2 + 2.
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