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Class Notes; Week 11, 3/28/2016

Day 30

Question from Exam

(1) Equation resulting in 4 roots under Z6

x · (x+ 1) = 0 then [0], [2], [3], [5] all are roots in Z6

(2) Equation resulting in 4 roots under Z8

(x− 2) · (x− 4) = 0 then [0], [2], [4], [6] are all roots in Z8

This Time

Lemma 4.22

Let f(x), g(x), h(x) ∈ Z[x] with f(x) = g(x) · h(x).
If p is a prime that divides every coefficient of f(x) then either p divides every coefficient of g(x) or p divides
every coefficient of h(x)

(similar to p|a · b⇒ p|a or p|b)

Proving This

f(x) = a0 + a1x+ · · ·+ akx
k , p|ai for all 0 ≤ i ≤ k

g(x) = b0 + b1x+ · · ·+ bmx
m and h(x) = c0 + c1x+ · · ·+ cnx

n

f(x) = g(x)h(x)
Now: Assume the Lemma is false, then p does not divide some coefficient of g(x) and for some coefficient

of h(x).
Let br be the first coefficient of g(x) not divisible by p, and ct be the first coefficient of h(x) not divisible

by p
⇒ p|bi∀0 ≤ i ≤ r and p|cj∀0 ≤ j ≤ t

Consider: ar+t of f(x) since f(x) = g(x)h(x)
Σr+t
i=0bicr+t−i = ar+t = b0cr+t + b1cr+t−1 + · · ·+ br+tc0

brct = ar+t − [b0cr+t + · · ·+ br−1ct+1]− [br+1ct−1 + · · ·+ br+tc0]
Where we see that ar+t is a multiple of p by definition, p|bi∀0 ≤ i ≤ r , and p|cj∀0 ≤ j ≤ t

Then, all are multiples of p. brct is a multiple of p.
So p|br or p|ct contradicting br and ct not divisible by p.

Theorem 4.23

Let f(x) be a polynomial with integer coefficients.
Then, f(x) factor as a product of polynomials of degree m and n in Q[x]⇐⇒ f(x) factors as a product of
polynomials of degree m and n in Z[x].
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Example. f(x) = (x− 1)(x− 2) reducible in Z[x]
and is therefore reducible in Q[x] since Z ⊂ Q.

Conversely:
If f(x) = g(x)h(x) , g, h ∈ Q[x] why can we say that g, h ∈ Z[x]??

This is a homework problem.

Theorem 4.24

Eisenstein’s Criterion:

f(x) = a0 + a1x+ . . . anx
n ∈ Z[x].

p|a0, a1 . . . an−1 and p - an , p2 - a0 ⇒ f is irreducible in Q[x] (Z[x]).

Proving This

If f(x) reducible: f(x) = (b0 + b1x+ . . . brx
r)(c0 + c1x+ . . . csx

s).
bi, cj ∈ Z : a0 = b0c0 and p|a0 ⇒ p|b0 or p|c0.

Also, p2 - a0 ⇒ p - c0 if p|b0
an = brcs : Let bk be the first of bi not divisible by p

p|bi for i < k and ak = b0ck + b1ck−1 + · · ·+ bkc0 ⇒ bkc0 = ak − [b0ck + b1ck−1 + · · ·+ bk−1c1].
This creates a contradiction. Neither bk or c0 could be divisible by p but this shows they are.

Day 31

Got Exam 2 back

Going Over Exam

Problem 1 (1) f(x) is irreducible: degf < 4⇒ there exists y such that f(y) = 0
degf = 1 then it is not reducible

degf < 4⇒ degf = 2 or degf = 3⇒ reducible implies having a degree 1 factor
If degf = 2 and reducible ⇒ f = g(x)h(x) both degree 1. f = g(x)h(x) = (ax+ b)(cx+ d)⇒ f(−b

a
) = 0

Problem 3 (3) There exists a p prime
p|ai , 0 ≤ i < n , p - an and p2 - a0

then f(x) = a0 + a1x+ · · ·+ anx
n irreducible in Q[x] / Z[x]

(4) x5 + 7
p = 7 then 7 - a5 , 7|a4, a3, a2, a1, a0? , 72 - a0

Problem 4 (1) f(x) = x25 + 3x4 − 8x3 + 11x+ 1 divided by x− 1
Can do by long division, but quicker (correct way):

f(1) = 1 + 3− 8 + 11 + 1 = 8

(2) Monic associate:
divide by i — i · (x3 + 2 · i · x2 − i · x+ i)

(3) Is x3 − 3 irreducible in Z5?
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f(2) = 22 − 3 = 5 = 0
Thus x− 2|f(x).

Problem 5 (2) Z6[x] : f(x) = x2 + x
Since Z6 no a field see: 0, 2, 3, 5 are all roots

(3) Z7 is field
f ∈ Z7[x] has four roots if degf = 2

No.

(4) Z8[x] : f(x) = x2 − 1 with 1, 3, 5, 7
or g(x) = x2 + 2x wih 0, 2, 4, 6

This Time

From last time we know:
Theorem 4.23

f(x) reducible in Q[x]⇐⇒ reducible in Z[x]

Proving This

(⇐) Trivial
f(x) ∈ Z[x]. If f(x) = g(x)h(x) and g(x), h(x) ∈ Z[x]

then g, h ∈ Q[x] and f reducible in Q[x]

(⇒) If f(x) reducible in Q[x]
f(x) = g(x)h(x) and g(x), h(x) ∈ Q[x]

Side note: q ∈ Q then q = b
a

some a, b ∈ Z where gcd(a, b) = 1

There exists: c, d ∈ Z such c · g(x) ∈ Z[x] and d · h(x) ∈ Z[x]
Since f = g · h⇒ c · d · f(x) = c · g(x)d · h(x). Where c · g(x)d · h(x) ∈ Z[x]

and c · d ∈ Z and c · d > 1
There exists p prime such p|c · d⇒ cd = pt , t ∈ Z

p divides every coefficient of cdf(x).
By Lemma 4.22: p divides every coefficient of c · g(x) or p divides every coefficient of d · h(x)

If p divides every coefficient of c · g(x) then c · g(x) = p · k(x) some k ∈ Z[x]
degg(x) =degk(x)

p · t · f(x) = c · d · f(x) = c · g(x)d · h(x) = p · k(x)d · h(x)⇒ t · f(x) = k(x)d · h(x)
You repeat the process with any prime factor of t and cancel prime factors from both sides.

Eventually: f(x) is the product of two integer coefficient polynomials.

Example. f(x) = x5 + 8x4 + 3x2 + 4x+ 7 in Z[x]
Prove f is irreducible.

x = ±1 or ±7
[f ]2 = x5 + x2 + 1 irreducible in Z2[x]
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If f(x) is irreducible in Zp[x] (p prime) then f is irreducible in Z[x].
⇐⇒ f reducible in Z[x] then f is reducible in Zp[x].

f = gh ∈ Z[x]
[f ]p = [g]p[h]p

f = (x2 + 3)(x+ 1)⇒ [f ]3 = [x2(x+ 1)]

Day 32

Quiz Day

Going Over Homework

This Time

Example. f(x) = x5 + 8x4 + 3x2 + 4x+ 7 irreducible in Q[x]
[f(x)]2 = x5 + x2 + 1 in Z2[x]

Prove irreducible in Z2[x]⇒ irreducible in Q[x]

Theorem 4.25

Let f(x) = akx
k + · · ·+ a1x+ a0 ∈ Z[x] and p is positive prime that does not divides ak.

If f̄(x) irreducible in Zp[x] then f(x) irreducible in Q[x].
f̄(x) = [ak]px

k + · · ·+ [a1]px+ [a0]p in Zp[x]

Proving This

If f(x) reducible in Z[x] then f̄(x) reducible in Zp[x]⇐⇒ If f̄(x) is irreducible in Zp[x] then f(x) is irreducible
in Z[x].

(⇐) Then f(x) = g(x)h(x) , g, h ∈ Z[x]
[f(x)]p = [g(x)]p[h(x)]p ⇒ f̄(x) = ḡ(x)h̄(x) , ḡ, h̄ ∈ Zp[x]

So: f̄(x) reducible in Zp[x].

Example. deg1 factor: x , x+ 1 ; f(0) = 1 , f(1) = 1 6= 0

deg2 factor: x2 + x+ 1 , x2 + 1 , x2 + x , x2

Where: x2 not possible–reducible as x
x2 + x not possible–reducible as x(x+ 1)
x2 + 1 not possible–reducible as (x+ 1)2 = x2 + 2x+ 1 = x2 + 1
gh at least one of degree≤ 2

(⇒) If false: f(x) irreducible in Z[x] 6⇒ f̄(x) irreducible in Zp[x]
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Example. x2 + 1 ireducible in Z[x] but reducible in Z2[x]

Section 4.6: Irreduciblity in R[x] and C[x]

Theorem 4.26

”Fundamental Theorem of Algebra”

Every non-constant polynomial in C[x] has a root in C⇐⇒ degf = n , f ∈ C[x] then f has n roots in C.

Cor. 4.27

A polynomial irreducible in C[x]⇐⇒ deg1 polynomials.

Cor. 4.28

Every non-constant polynomial f(x) of degree n in C[x] can be written in the form : c(x−a1)(x−a2) . . . (x−
an) for some c, a1, a2, . . . , an ∈ C
This factorization is unique except the order of factors.

End of week 11!
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Class Notes; Week 12, 4/4/2016

Day 33

Going Over Quiz

Question 2
(1)
√
p 6∈ Q for p positive prime.

√
p = m

n
⇒ p = m2

n2 where gcd(m,n) = 1
Eventually you get a contradiction.
(2) x2 − p has no rational roots → ±√p is a root
By Rational root test: ax+ b , a|1 , b|p⇒ x = ±1 or ±p
Prove f(±1) 6= 0 , f(±p) 6= 0
1− p < 0 , −1− p < 0 , p2 − p = p(p− 1) > 0 which means none of the answers are rational
Thus:

√
p irrational.

This Time

Lemma 4.29

If f(x) ∈ R[x] and a+ bi is a root of f(x) in C then a− bi is also a root of f(x)

Proving This

z = a+ bi , z̄ = a− bi
f ∈ R[x] if f(z) = 0⇒ f(z̄) = 0

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 , ai ∈ R
f(z) = 0⇒ anx

n + an−1x
n−1 + · · ·+ a1x+ a0 = 0

Here: we note the fact– ¯c+ d = c̄+ d̄ , also that–c̄d = c̄d̄
If c̄ = c⇐⇒ c ∈ R

0 = 0̄⇒ ¯f(z) = ¯anzn + an−1zn−1 + · · ·+ a1z + a0 = ¯anzn + ¯an−1zn−1 + · · ·+ ¯a1z + ā0 =
anz̄n + an−1 ¯zn−1 + · · ·+ a1z̄ + a0 = f(z̄)

Thus: z̄ is also a root of f(x)

Theorem 4.30

A ploynomial f(x) is ireducible in R[x] ⇒ f(x) is a first degree polynomial of f(x) = ax2 + bx + c with
b2 − 4ac < 0

Proving This

Suppose f(x) had deg≥ 2 and irreducible in R[x], then f(x) has a root w ∈ C by theorem 4.26
(Fundamental Theorem).

By Lemma 4.29: w̄ also a root of f(x), w 6= w̄
f(x) = (x− w)(x− w̄)Q(x) in C[x] some Q(x) ∈ C[x].

Let (x− w)(x− w̄) = g(x) then g(x) = (x− w)(x− w̄) where
w = r + si⇒ g(x) = (x− r − si)(x− r + si) = x2 − 2rx+ r2 + s2 ∈ R[x]
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So: g(x) ∈ R[x]. Then prove Q[x] ∈ R[x]
By Division Algorithm: f(x) = g(x)q(x) + r(x) , r(x) = 0 or degr(x) <degg(x)

Left for us to do on our own: Is Q(x) ∈ R[x].

Example. x4 + 1
(1) x4 + 1 = (x− w)(x− w̄)Q(x) = (x2 −

√
2x+ 1)(x2 +

√
2x+ 1) = x4 + 1

(2) x4 = −1 = cos(π) + isin(π) = eiπ = x4 ⇒ x = ei
π
4 = cos(π

4
) + isin(π

4
) =

√
2
2

+
√
2
2
i = w

Cor. 4.31

Every polynomial of odd degree in R[x] has a root.

Proving This

By theorem 4.14:
f(x) = p1(x)p2(x) . . . pk(x) with pi irreducible in R[x]

Each pi(x) has degree of 1 or 2
degf =degp1+degp2 + . . . degpk

Since f(x) has odd degree at east 1 of pi(x) has deg= 1
then f has deg1 factor in R[x]⇒ a root in R[x].

Day 34

Last Time

If f ∈ R[x] and f irreducible in R[x] , degf ≥ 2 then f has a complex root w ∈ C (w 6∈ R). f also has a
root w̄.
f(x) = (x− w)(x− w̄)h(x) h(x)? ∈ R[x]
If w = r + si⇒ (x2 − 2rx+ r2 + s2)h(x)⇒ f(x) = g(x)h(x)
Division Algorithm.

This Time

f(x) is real, (x2 − 2rx+ r2 + s2) is real [R[x]]
Consider: f(x) = g(x)q(x) + r(x) where q(x), r(x) unique ∈ R[x]
q(x) = h(x) , r(x) = 0
thus h(x) ∈ R[x].

Chapter 5
Congruence in F [x] and Congruence Class Arithmetic

Definition

Let F be a field. f(x), g(x), p(x) ∈ F [x] with p(x) 6= 0
Then f(x) congruent to g(x)modp(x) (Noted: f(x) ≡ g(x) mod p(x))
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Provided that p(x) divides f(x)− g(x).

Example. in Q[x].
x2 + x+ 1 ≡ (x+ 2) mod (x+ 1)

(x+ 1)h(x) = (x2 + x+ 1)− (x+ 2) = (x2 − 1) = (x+ 1)(x− 1)
⇒ h(x) = x− 1 and thus this is true.

Theorem 5.1

F is a field. p(x) 6= 0 , p(x) ∈ F [x]. Then the relation of congruence class modulo p(x) is:
(1) reflexive: f(x) ≡ f(x) mod p(x)
(2) symmetric: if f(x) ≡ g(x) mod p(x) then g(x) ≡ f(x) mod p(x)
(3) transitive: if f(x) ≡ g(x) mod p(x) and g(x) ≡ h(x) mod p(x) then f(x) ≡ h(x) mod p(x)

Proving This

This is an adapted proof from Theorem 2.1

Theorem 5.2

F is a field. p 6= 0 . p(x) ∈ F [x].
If f(x) ≡ g(x) mod p(x) and h(x) ≡ k(x) mod p(x) then:
(1) f(x) + h(x) ≡ g(x) + k(x) mod p(x)
(2) f(x)h(x) ≡ g(x)k(x) mod p(x)

Proving This

This is an adapted proof from Theorem 2.2

Definition

F is a field. f(x), p(x) ∈ F [x] , p 6= 0.
Th congruence class (or residue class) of f(x) mod p(x) is denoted by: [f(x)]
And, consists of all polynomials in F [x] that are congruent to f(x) mod p(x).
That is:
[F (x)] = {g(x)|g(x) ∈ F [x] and g(x) ≡ f(x) mod p(x)}
[F (x)] = {f(x) + k(x)p(x)|k(x) ∈ F [x]}

Example. 1
Congruence modulo x2 + 1 in R[x]

[x2 + 1] = {2x+ 1 + k(x)(x2 + 1)|k(x) ∈ R[x]}
Example. 2

Consider congruence modulo x2 + x+ 1 in Z2[x]
[x2] = [x+ 1]⇐⇒ x2 ≡ (x+ 1) mod (x2 + x+ 1)

x2 + x+ 1|x2 − (x+ 1) = x2 + x+ 1
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{0, 1} , ax+ b⇒ [0], [1], [x], [x+ 1]

Theorem 5.3

If f(x) ≡ g(x) mod p(x)⇐⇒ [f(x)] = [g(x)]

Cor. 5.4

2 congruence class modulo p(x) are either disjoint or identical.

Cor. 5.5

Let F be a field and p(x) ∈ F [x].
degp(x) = n and consider congruence modulo p(x):
(1) If f(x) ∈ F [x] and r(x) is the remainder when f(x) is divided by p(x), then [f(x)] = [r(x)]
(2) Let S be the set consisting of zero polynomials and all the polynomials of deg< n in F [x].
Then every congruence class modulo p(x) is the class of some polynomial in S and the congruence classes
of different polynomials in S are distinct.

SUPER IMPORTANT:
The set of all congruent class modulo p(x) is denoted:

F [x]/(p(x))

Example. 1
Consider congruence modulo x2 + 1 in R[x].

-consider the remainder on division by x2 + 1
= [ax+ b]? ∼= C

Example. 2
Z2[x]/(x3 + x+ 1) = [ax2 + bx+ c] where a, b, c ∈ {0, 1}

8 element solutions

Example. 3
Zn[x]/(p(x))

if degp(x) = k then the remainder: a0 + a1x+ · · ·+ ak−1x
k−1

answer is nk.

Day 35

Quiz Day

Going Over Homework

Problem 18: part c

x5 + 4x4 + 2x3 + 3x2 − x+ 5 in Q[x]
x = ±1,±5: f(1) 6= f(−1) 6= f(5) 6= f(−5) 6= 0
X deg2 or deg3 proving all parts in modulo 2:
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x5 + x2 + x+ 1
If x5 + x2 + x+ 1 irreducible in Z2[x]⇒ f irreducible in Z[x].

X [f ]2 = x5 + x2 + x+ 1 , f̄(1) = 0
x2 + x+ 1 only irreducible: x+ 1|f̄ : f̄ reducible in Z2[x]

. . . if (x2 + bx± 1 or (±5)|f(x)
On pg. 115 there is a guide for solving this.

Eventually solve for b unsolvable in Z[x]
(x3 + bx2 + cx+ 5)(x2 + bx+ 1)

bx4 + ax4 = 4x2 ⇒ b+ a = 4⇒ a = 4− b
1 + ab+ c = 2⇒ (4− b)b+ c = 2⇒ 4b− b2 + c = 2

5a+ c = −1⇒ c = −1− 5a⇒ c = −1− 5(4− b)⇒ c = −1− 20 + 5b⇒ c = −21 + 5b
So: 4b− b2 − 21 + 5b = 2⇒ −b2 + 9b− 21 = 2⇒ b2 − 9b+ 21 = −2

This Time

Section 5.2

F [x]/(p(x))

Example. Z2[x]/(x2 + x+ 1) = [ax+ b]
[x], [x+ 1], [0], [1] ∼=: Z4? Z2XZ2? none?
x3 ∈ Z2[x], x3 = (x2 + x+ 1)q(x) + r(x)

Assume brackets:
+ 0 1 x x+1
0 0 1 x x+1
1 1 0 x+1 x
x x x+1 0 1

x+1 x+1 x 1 0

* 0 1 x x+1
0 0 0 0 0
1 0 1 x x+1
x 0 x x+1 1

x+1 0 x+1 1 x

(1) Is Z2[x]/(x2 + x+ 1) an integral domain?
If ab = 0⇒ a = 0 or b = 0

Yes.
Is it a field?

Yes. 1→ 1 , x→ x+ 1 , x+ 1→ x.
(2) Z4 is not a field.

(3) Z2XZ2 is not a field:
(1, 0) · (a, b) = (1, 1)? no.

So: Z2[x]/(x2 + x+ 1) is not congruent to any of them.

End of week 12!
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Class Notes; Week 13, 4/11/2016

Day 36

Going Over Quiz

Question 1
(1) Z2[x]/(x2 + x+ 1) congruence classes:
= [ax+ b] = [0], [1], [x], [x+ 1]
(2) Yes: because Z2 is a commutative ring ⇒ Z2[x]/(x2 + x+ 1) is a commutative ring.
(3) Yes: every non-zero element has a multiplication inverse
x(x+ 1) = x2 + x ≡ 1 mod x2 + x+ 1
(4) Z2XZ2 is this a field?
No. (1, 0) · (a, b) = (1, 1), there does not exists (a, b) in Z2XZ2.
(5)
(6) the choices for these are both not fields and it is thus impossible to have an isomorphic field to them.

Question 2
Z3[x]/(x3 + 2x+ 1) = [ax2 + bx+ c] where 33 = 27 congruence classes.
[0], [1], [x], [x2], [2], [2x], [2x2], [x + 1], [x + 2], [x2 + x], [x2 + 2x], [2x2 + x], [2x2 + 2x], [2x + 1], [2x + 2], [x2 +
1], [x2 + 2], [2x2 + 1], [2x2 + 2], [2x2 + 2x+ 2], [x2 + x+ 1], [x2 + x+ 2], [x2 + 2x+ 1], [x2 + 2x+ 2], [2x2 + x+
1], [2x2 + x+ 2], [2x2 + 2x+ 1]
More generally = [an−1x

n−1 + · · ·+ a1x+ a0] , ai ∈ Zk and kn.

This Time

Theorem 5.7

Let F be a field and p(x) a non-constant polynomial in F [x].
Then the set F [x]/(p(x)) of congruence classes modulo p(x) is a commutative ring with identity.
Furthermore– F [x]/(p(x)) contains a subring F∗ isomorphic to F .

Example. Z2[x]/(x2 + x+ 1) contains Z2 as a subring
(can be seen in the addition table)

Proving This

Let F∗ as the subring of F [x]/(p(x)) consisting of the congruence classes of all the constant polynomials.
That is: F∗ = {[a]|a ∈ F}

ϕ : F → F∗
ϕ(a) = [a]

ϕ(a+ b) = [a+ b] = [a] + [b] = ϕ(a) + ϕ(b)
Similar for ϕ(ab) = ϕ(a)ϕ(b)

Definition shows ϕ is surjective.
If ϕ(a) = ϕ(b)⇒ a = b . [a] = [b]. a ≡ b mod p(x)⇒ a = b in F .

(proved bijection and homomorphism → isomorphism)
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Example. Z/n · Z = Zn
[ab] = [a][b] and [ba] = [b][a] we know integers are commutative.

So: [ab] = [ba]⇒ [a][b] = [b][a]
(adapted from Theorem 2.7 for the rest of the proof)

p(x) irreducible in F [x] equivalent to saying Zn is a field such that n prime.

Section 5.3: The Structure of F[x] / (p(x))

Theorem 5.10

Let F be a field and p(x) a non-constant polynomial in F [x].
Then the following statements are equivalent:
(1) p(x) irreducible in F [x]
(2) F [x]/(p(x)) is a field.
(3) F [x]/(p(x)) is an integral domain.

Proving This

(1) → (2) by Theorem 5.9
(2) → (3) this is trivial

(3) → (1) refer to: Zn is an integral domain ⇒ n prime.
Also:

Zp = {[0], [1], . . . , [p− 1]}
Derive from: if gcd(a, b) = 1 then there exists a u, v ∈ Z such au+ bv = 1

gcd(a, p) = 1 if a 6= 0, au+ bv = 1⇒ au ≡ 1 mod p in polynomials readily prim means that only common
factor is a constant.

Theorem 5.9

Let F be a field and p(x) a non constant in F [x].
If f(x) ∈ F [x] and relatively prime to p(x) then [f(x)] is a unit in F [x]/(p(x))

Proving This

By Theorem 4.5 we see there exists u(x), v(x) such that f(x)u(x) + p(x)v(x) = 1⇒ f(x)u(x) ≡ 1
mod p(x) and [u(x)] is multiplicative inverse of [f(x)] in F [x]/(p(x)).

Day 37

F is a field.
F [x]/(p(x)) -definition
-commutative with identity.

Theorem 5.10

Let F be a field and p(x) a non-constant polynomial in F [x].
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Then the following statements are equivalent:
(1) p(x) irreducible in F [x]
(2) F [x]/(p(x)) is a field.
(3) F [x]/(p(x)) is an integral domain.

SIDENOTE: R is a field ⇒ R[x] ia an integral domain.
Z2[x]/(x2 + x+ 1) , Z2[x]/(x2) , Z2[x]/(x2 + 1)

Proving This

(3) ⇒ (1) F [x]/(p(x)) is an integral domain ⇒ p ireducible in F [x]
Contra-positive p reducible ⇒ F [x]/(p(x)) not an integral domain.

p(x) = r(x)s(x) , [r(x)], [s(x)] ∈ R
degr , degs < degp

[r(x)][s(x)] = [p(x)] = 0

Theorem 5.11

Let F be a field and p(x) irreducible in F [x].
Then F [x]/(p(x)) is an extension field of F that contains a root of p(x)

(F ⊆ G both fields, the G extension of F )

Proving This

F [x]/(p(x)) is a field by Theorem 5.10 and contains F
Let α = [x] , p(x) = anx

n + · · ·+ a1x+ a0 , ai ∈ F
anα

n + · · ·+ a1α + a0 ∈ F [x]/(p(x))⇒ an[x]n + · · ·+ a1[x] + a0 = p(x) = 0

Cor. 5.12

F be a field.
f ∈ F [x]. f not constant then there exists an extension field K of F containing a root of f(x).

Example. F [x]/(p(x)). R[x]/(x2 + 1) 6= R[i] ∼= C = {ai+ b|a, b ∈ R}
So: anything R[x]/(x2 + 1) = [ax+ b] , a, b ∈ R

Can we define a map ϕ
[ax+ b][cx+ d] = [acx2 + (ad+ bc)x+ bd]|(x2 + 1)
= (ad+ bc)x+ bd− ac
= (ad+ bc)i+ bd− ac
(ai+ b)(ci+ d) = (ad+ bc)i+ bd− ac

Example. Q(
√

2) = {a
√

2 + b|a, b ∈ Q} ∼= Q[x]/(x2 − 2)
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Day 38

Going over Homework

Chapter 6
Ideals

Definition

A subring I of a ring R is an ideal if ∀r ∈ R and a ∈ I then ra ∈ I and ar ∈ I

Example. 1
In Z , 3Z = {0,±3,±6 . . . } is an ideal in Z

Example. 2(
a 0
b 0

)
is an ideal in M2(R) = {

(
a b
c d

)
|a, b, c, d ∈ R}(

r s
t u

)
·
(
a 0
b 0

)
=

(
ar + sb 0
at+ ub 0

)
BUT:

(
a 0
b 0

)
·
(
r s
t u

)
=

(
ar as
br bs

)
Example. 3

g ∈ I = {f : R→ R and f(2) = 0 , f is continuous }
f ∈ R continuous function R→ R

fg ∈ I and gf ∈ I
f(2)g(2) = g(2)f(2) = 0

End of Week 13!
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