Class Notes; Week 11, 3/28/2016

Day 30

Question from Exam

(1) Equation resulting in 4 roots under \mathbb{Z}_{6}
$x \cdot(x+1)=0$ then [0], [2], [3], [5] all are roots in \mathbb{Z}_{6}
(2) Equation resulting in 4 roots under \mathbb{Z}_{8}
$(x-2) \cdot(x-4)=0$ then [0], [2], [4], [6] are all roots in \mathbb{Z}_{8}

This Time

Lemma 4.22

Let $f(x), g(x), h(x) \in \mathbb{Z}[x]$ with $f(x)=g(x) \cdot h(x)$.
If p is a prime that divides every coefficient of $f(x)$ then either p divides every coefficient of $g(x)$ or p divides every coefficient of $h(x)$

$$
\text { (similar to } p|a \cdot b \Rightarrow p| a \text { or } p \mid b \text {) }
$$

Proving This

$$
\begin{aligned}
& f(x)=a_{0}+a_{1} x+\cdots+a_{k} x^{k}, p \mid a_{i} \text { for all } 0 \leq i \leq k \\
& g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \text { and } h(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n} \\
& \quad f(x)=g(x) h(x)
\end{aligned}
$$

Now: Assume the Lemma is false, then p does not divide some coefficient of $g(x)$ and for some coefficient of $h(x)$.
Let b_{r} be the first coefficient of $g(x)$ not divisible by p, and c_{t} be the first coefficient of $h(x)$ not divisible by p

$$
\Rightarrow p \mid b_{i} \forall 0 \leq i \leq r \text { and } p \mid c_{j} \forall 0 \leq j \leq t
$$

Consider: a_{r+t} of $f(x)$ since $f(x)=g(x) h(x)$

$$
\sum_{i=0}^{r+t} b_{i} c_{r+t-i}=a_{r+t}=b_{0} c_{r+t}+b_{1} c_{r+t-1}+\cdots+b_{r+t} c_{0}
$$

$$
b_{r} c_{t}=a_{r+t}-\left[b_{0} c_{r+t}+\cdots+b_{r-1} c_{t+1}\right]-\left[b_{r+1} c_{t-1}+\cdots+b_{r+t} c_{0}\right]
$$

Where we see that a_{r+t} is a multiple of p by definition, $p \mid b_{i} \forall 0 \leq i \leq r$, and $p \mid c_{j} \forall 0 \leq j \leq t$
Then, all are multiples of $p . b_{r} c_{t}$ is a multiple of p.
So $p \mid b_{r}$ or $p \mid c_{t}$ contradicting b_{r} and c_{t} not divisible by p.

Theorem 4.23

Let $f(x)$ be a polynomial with integer coefficients.
Then, $f(x)$ factor as a product of polynomials of degree m and n in $\mathbb{Q}[x] \Longleftrightarrow f(x)$ factors as a product of polynomials of degree m and n in $\mathbb{Z}[x]$.

Example. $f(x)=(x-1)(x-2)$ reducible in $\mathbb{Z}[x]$
and is therefore reducible in $\mathbb{Q}[x]$ since $\mathbb{Z} \subset \mathbb{Q}$.
Conversely:
If $f(x)=g(x) h(x), g, h \in \mathbb{Q}[x]$ why can we say that $g, h \in \mathbb{Z}[x] ? ?$
This is a homework problem.

Theorem 4.24

Eisenstein's Criterion:
$f(x)=a_{0}+a_{1} x+\ldots a_{n} x^{n} \in \mathbb{Z}[x]$.
$p \mid a_{0}, a_{1} \ldots a_{n-1}$ and $p \nmid a_{n}, p^{2} \nmid a_{0} \Rightarrow f$ is irreducible in $\mathbb{Q}[x](\mathbb{Z}[x])$.

Proving This

If $f(x)$ reducible: $f(x)=\left(b_{0}+b_{1} x+\ldots b_{r} x^{r}\right)\left(c_{0}+c_{1} x+\ldots c_{s} x^{s}\right)$.

$$
b_{i}, c_{j} \in \mathbb{Z}: a_{0}=b_{0} c_{0} \text { and } p\left|a_{0} \Rightarrow p\right| b_{0} \text { or } p \mid c_{0}
$$

Also, $p^{2} \nmid a_{0} \Rightarrow p \nmid c_{0}$ if $p \mid b_{0}$
$a_{n}=b_{r} c_{s}$: Let b_{k} be the first of b_{i} not divisible by p
$p \mid b_{i}$ for $i<k$ and $a_{k}=b_{0} c_{k}+b_{1} c_{k-1}+\cdots+b_{k} c_{0} \Rightarrow b_{k} c_{0}=a_{k}-\left[b_{0} c_{k}+b_{1} c_{k-1}+\cdots+b_{k-1} c_{1}\right]$.
This creates a contradiction. Neither b_{k} or c_{0} could be divisible by p but this shows they are.

Day 31

Got Exam 2 back

Going Over Exam

Problem 1 (1) $f(x)$ is irreducible: $\operatorname{deg} f<4 \Rightarrow$ there exists y such that $f(y)=0$ $\operatorname{deg} f=1$ then it is not reducible
$\operatorname{deg} f<4 \Rightarrow \operatorname{deg} f=2$ or $\operatorname{deg} f=3 \Rightarrow$ reducible implies having a degree 1 factor
If $\operatorname{deg} f=2$ and reducible $\Rightarrow f=g(x) h(x)$ both degree 1. $f=g(x) h(x)=(a x+b)(c x+d) \Rightarrow f\left(\frac{-b}{a}\right)=0$
Problem 3 (3) There exists a p prime

$$
p \mid a_{i}, 0 \leq i<n, p \nmid a_{n} \text { and } p^{2} \nmid a_{0}
$$

then $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ irreducible in $\mathbb{Q}[x] / \mathbb{Z}[x]$
(4) $x^{5}+7$
$p=7$ then $7 \nmid a_{5}, 7 \mid a_{4}, a_{3}, a_{2}, a_{1}, a_{0} ?, 7^{2} \nmid a_{0}$
Problem 4 (1) $f(x)=x^{25}+3 x^{4}-8 x^{3}+11 x+1$ divided by $x-1$
Can do by long division, but quicker (correct way):

$$
f(1)=1+3-8+11+1=8
$$

(2) Monic associate:
divide by $i-i \cdot\left(x^{3}+2 \cdot i \cdot x^{2}-i \cdot x+i\right)$
(3) Is $x^{3}-3$ irreducible in \mathbb{Z}_{5} ?
$f(2)=2^{2}-3=5=0$
Thus $x-2 \mid f(x)$.
Problem 5 (2) $\mathbb{Z}_{6}[x]: f(x)=x^{2}+x$
Since \mathbb{Z}_{6} no a field see: $0,2,3,5$ are all roots
(3) \mathbb{Z}_{7} is field
$f \in \mathbb{Z}_{7}[x]$ has four roots if $\operatorname{deg} f=2$
No.
(4) $\mathbb{Z}_{8}[x]: f(x)=x^{2}-1$ with $1,3,5,7$ or $g(x)=x^{2}+2 x$ wih $0,2,4,6$

This Time

From last time we know:
Theorem 4.23
$f(x)$ reducible in $\mathbb{Q}[x] \Longleftrightarrow$ reducible in $\mathbb{Z}[x]$

Proving This

$$
\begin{gathered}
(\Leftarrow) \text { Trivial } \\
f(x) \in \mathbb{Z}[x] \text {. If } f(x)=g(x) h(x) \text { and } g(x), h(x) \in \mathbb{Z}[x] \\
\text { then } g, h \in \mathbb{Q}[x] \text { and } f \text { reducible in } \mathbb{Q}[x] \\
(\Rightarrow) \text { If } f(x) \text { reducible in } \mathbb{Q}[x] \\
f(x)=g(x) h(x) \text { and } g(x), h(x) \in \mathbb{Q}[x]
\end{gathered}
$$

Side note: $q \in \mathbb{Q}$ then $q=\frac{b}{a}$ some $a, b \in \mathbb{Z}$ where $\operatorname{gcd}(a, b)=1$
There exists: $c, d \in \mathbb{Z}$ such $c \cdot g(x) \in \mathbb{Z}[x]$ and $d \cdot h(x) \in \mathbb{Z}[x]$
Since $f=g \cdot h \Rightarrow c \cdot d \cdot f(x)=c \cdot g(x) d \cdot h(x)$. Where $c \cdot g(x) d \cdot h(x) \in \mathbb{Z}[x]$
and $c \cdot d \in \mathbb{Z}$ and $c \cdot d>1$
There exists p prime such $p \mid c \cdot d \Rightarrow c d=p t, t \in \mathbb{Z}$
p divides every coefficient of $c d f(x)$.
By Lemma 4.22: p divides every coefficient of $c \cdot g(x)$ or p divides every coefficient of $d \cdot h(x)$ If p divides every coefficient of $c \cdot g(x)$ then $c \cdot g(x)=p \cdot k(x)$ some $k \in \mathbb{Z}[x]$

$$
\operatorname{deg} g(x)=\operatorname{deg} k(x)
$$

$$
p \cdot t \cdot f(x)=c \cdot d \cdot f(x)=c \cdot g(x) d \cdot h(x)=p \cdot k(x) d \cdot h(x) \Rightarrow t \cdot f(x)=k(x) d \cdot h(x)
$$

You repeat the process with any prime factor of t and cancel prime factors from both sides.

Eventually: $f(x)$ is the product of two integer coefficient polynomials.
Example. $f(x)=x^{5}+8 x^{4}+3 x^{2}+4 x+7$ in $\mathbb{Z}[x]$
Prove f is irreducible.
$x= \pm 1$ or ± 7
$[f]_{2}=x^{5}+x^{2}+1$ irreducible in $\mathbb{Z}_{2}[x]$

If $f(x)$ is irreducible in $\mathbb{Z}_{p}[x]$ (p prime) then f is irreducible in $\mathbb{Z}[x]$.
$\Longleftrightarrow f$ reducible in $\mathbb{Z}[x]$ then f is reducible in $\mathbb{Z}_{p}[x]$.

$$
\begin{gathered}
f=g h \in \mathbb{Z}[x] \\
{[f]_{p}=[g]_{p}[h]_{p}} \\
f=\left(x^{2}+3\right)(x+1) \Rightarrow[f]_{3}=\left[x^{2}(x+1)\right]
\end{gathered}
$$

Day 32

Quiz Day

Going Over Homework

This Time

Example. $f(x)=x^{5}+8 x^{4}+3 x^{2}+4 x+7$ irreducible in $\mathbb{Q}[x]$

$$
[f(x)]_{2}=x^{5}+x^{2}+1 \text { in } \mathbb{Z}_{2}[x]
$$

Prove irreducible in $\mathbb{Z}_{2}[x] \Rightarrow$ irreducible in $\mathbb{Q}[x]$

Theorem 4.25

Let $f(x)=a_{k} x^{k}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]$ and p is positive prime that does not divides a_{k}. If $\bar{f}(x)$ irreducible in $\mathbb{Z}_{p}[x]$ then $f(x)$ irreducible in $\mathbb{Q}[x]$.
$\bar{f}(x)=\left[a_{k}\right]_{p} x^{k}+\cdots+\left[a_{1}\right]_{p} x+\left[a_{0}\right]_{p}$ in $\mathbb{Z}_{p}[x]$

Proving This

If $\mathrm{f}(\mathrm{x})$ reducible in $\mathbb{Z}[x]$ then $\bar{f}(x)$ reducible in $\mathbb{Z}_{p}[x] \Longleftrightarrow$ If $\bar{f}(x)$ is irreducible in $\mathbb{Z}_{p}[x]$ then $f(x)$ is irreducible in $\mathbb{Z}[x]$.

$$
\begin{gathered}
(\Leftarrow) \text { Then } f(x)=g(x) h(x), g, h \in \mathbb{Z}[x] \\
{[f(x)]_{p}=[g(x)]_{p}[h(x)]_{p} \Rightarrow \bar{f}(x)=\bar{g}(x) \bar{h}(x), \bar{g}, \bar{h} \in \mathbb{Z}_{p}[x]}
\end{gathered}
$$

$$
\text { So: } \bar{f}(x) \text { reducible in } \mathbb{Z}_{p}[x] \text {. }
$$

Example. deg1 factor: $x, x+1 ; f(0)=1, f(1)=1 \neq 0$
deg2 factor: $x^{2}+x+1, x^{2}+1, x^{2}+x, x^{2}$
Where: x^{2} not possible-reducible as x
$x^{2}+x$ not possible-reducible as $x(x+1)$
$x^{2}+1$ not possible-reducible as $(x+1)^{2}=x^{2}+2 x+1=x^{2}+1$
$g h$ at least one of degree ≤ 2
(\Rightarrow) If false: $f(x)$ irreducible in $\mathbb{Z}[x] \nRightarrow \bar{f}(x)$ irreducible in $\mathbb{Z}_{p}[x]$

Example. $x^{2}+1$ ireducible in $\mathbb{Z}[x]$ but reducible in $\mathbb{Z}_{2}[x]$

Section 4.6: Irreduciblity in $\mathbb{R}[x]$ and $\mathbb{C}[x]$
Theorem 4.26
"Fundamental Theorem of Algebra"
Every non-constant polynomial in $\mathbb{C}[x]$ has a root in $\mathbb{C} \Longleftrightarrow \operatorname{deg} f=n, f \in \mathbb{C}[x]$ then f has n roots in \mathbb{C}.
Cor. 4.27
A polynomial irreducible in $\mathbb{C}[x] \Longleftrightarrow$ deg1 polynomials.
Cor. 4.28
Every non-constant polynomial $f(x)$ of degree n in $\mathbb{C}[x]$ can be written in the form : $c\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots(x-$ $\left.a_{n}\right)$ for some $c, a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{C}$ This factorization is unique except the order of factors.

End of week 11!

Class Notes; Week 12, 4/4/2016

Day 33

Going Over Quiz

Question 2

(1) $\sqrt{p} \notin \mathbb{Q}$ for p positive prime.
$\sqrt{p}=\frac{m}{n} \Rightarrow p=\frac{m^{2}}{n^{2}}$ where $\operatorname{gcd}(m, n)=1$
Eventually you get a contradiction.
(2) $x^{2}-p$ has no rational roots $\rightarrow \pm \sqrt{p}$ is a root

By Rational root test: $a x+b, a|1, b| p \Rightarrow x= \pm 1$ or $\pm p$
Prove $f(\pm 1) \neq 0, f(\pm p) \neq 0$
$1-p<0,-1-p<0, p^{2}-p=p(p-1)>0$ which means none of the answers are rational
Thus: \sqrt{p} irrational.

This Time

Lemma 4.29

If $f(x) \in \mathbb{R}[x]$ and $a+b_{i}$ is a root of $f(x)$ in \mathbb{C} then $a-b_{i}$ is also a root of $f(x)$

Proving This

$$
\begin{gathered}
z=a+b_{i}, \bar{z}=a-b_{i} \\
f \in \mathbb{R}[x] \text { if } f(z)=0 \Rightarrow f(\bar{z})=0 \\
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, a_{i} \in \mathbb{R} \\
f(z)=0 \Rightarrow a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
\end{gathered}
$$

Here: we note the fact $-c \overline{+} d=\bar{c}+\bar{d}$, also that $-\bar{c} d=\bar{c} \bar{d}$
If $\bar{c}=c \Longleftrightarrow c \in \mathbb{R}$

$$
0=\overline{0} \Rightarrow f \overline{(z})=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}=a_{n}^{-} z^{n}+a_{n-1}^{-} z^{n-1}+\cdots+a_{1}^{-} z+\overline{a_{0}}=
$$

$$
a_{n} \bar{z}^{n}+a_{n-1} z^{\overline{n-1}}+\cdots+a_{1} \bar{z}+a_{0}=f(\bar{z})
$$

Thus: \bar{z} is also a root of $f(x)$

Theorem 4.30

A ploynomial $f(x)$ is ireducible in $\mathbb{R}[x] \Rightarrow f(x)$ is a first degree polynomial of $f(x)=a x^{2}+b x+c$ with $b^{2}-4 a c<0$

Proving This

Suppose $f(x)$ had $\operatorname{deg} \geq 2$ and irreducible in $\mathbb{R}[x]$, then $f(x)$ has a root $w \in \mathbb{C}$ by theorem 4.26
(Fundamental Theorem).
By Lemma 4.29: \bar{w} also a root of $f(x), w \neq \bar{w}$ $f(x)=(x-w)(x-\bar{w}) Q(x)$ in $\mathbb{C}[x]$ some $Q(x) \in \mathbb{C}[x]$.
Let $(x-w)(x-\bar{w})=g(x)$ then $g(x)=(x-w)(x-\bar{w})$ where

$$
w=r+s i \Rightarrow g(x)=(x-r-s i)(x-r+s i)=x^{2}-2 r x+r^{2}+s^{2} \in \mathbb{R}[x]
$$

So: $g(x) \in \mathbb{R}[x]$. Then prove $Q[x] \in \mathbb{R}[x]$
By Division Algorithm: $f(x)=g(x) q(x)+r(x), r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$
Left for us to do on our own: Is $Q(x) \in \mathbb{R}[x]$.

Example. $x^{4}+1$
(1) $x^{4}+1=(x-w)(x-\bar{w}) Q(x)=\left(x^{2}-\sqrt{2} x+1\right)\left(x^{2}+\sqrt{2} x+1\right)=x^{4}+1$
(2) $x^{4}=-1=\cos (\pi)+i \sin (\pi)=e^{i \pi}=x^{4} \Rightarrow x=e^{i \frac{\pi}{4}}=\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i=w$

Cor. 4.31
Every polynomial of odd degree in $\mathbb{R}[x]$ has a root.

Proving This

By theorem 4.14:
$f(x)=p_{1}(x) p_{2}(x) \ldots p_{k}(x)$ with p_{i} irreducible in $\mathbb{R}[x]$
Each $p_{i}(x)$ has degree of 1 or 2
$\operatorname{deg} f=\operatorname{deg} p_{1}+\operatorname{deg} p_{2}+\ldots \operatorname{deg} p_{k}$
Since $f(x)$ has odd degree at east 1 of $p_{i}(x)$ has deg=1
then f has deg 1 factor in $\mathbb{R}[x] \Rightarrow$ a root in $\mathbb{R}[x]$.

Day 34

Last Time

If $f \in \mathbb{R}[x]$ and f irreducible in $\mathbb{R}[x], \operatorname{deg} f \geq 2$ then f has a complex root $w \in \mathbb{C}(w \notin \mathbb{R})$. f also has a root \bar{w}.
$f(x)=(x-w)(x-\bar{w}) h(x) h(x) ? \in \mathbb{R}[x]$
If $w=r+s i \Rightarrow\left(x^{2}-2 r x+r 2+s^{2}\right) h(x) \Rightarrow f(x)=g(x) h(x)$
Division Algorithm.

This Time

$f(x)$ is real, $\left(x^{2}-2 r x+r 2+s^{2}\right)$ is real $[\mathbb{R}[x]]$
Consider: $f(x)=g(x) q(x)+r(x)$ where $q(x), r(x)$ unique $\in \mathbb{R}[x]$
$q(x)=h(x), r(x)=0$
thus $h(x) \in \mathbb{R}[x]$.

Chapter 5

Congruence in $F[x]$ and Congruence Class Arithmetic

Definition

Let F be a field. $f(x), g(x), p(x) \in F[x]$ with $p(x) \neq 0$
Then $f(x)$ congruent to $g(x) \bmod p(x)$ (Noted: $f(x) \equiv g(x) \bmod p(x))$

Provided that $p(x)$ divides $f(x)-g(x)$.

$$
\begin{gathered}
\text { Example. in } \mathbb{Q}[x] . \\
(x+1) h(x)=\left(x^{2}+x+1 \equiv(x+2) \bmod (x+1)\right. \\
\Rightarrow h(x)=x-1 \text { and thus this is true. }
\end{gathered}
$$

Theorem 5.1

F is a field. $p(x) \neq 0, p(x) \in F[x]$. Then the relation of congruence class modulo $p(x)$ is:
(1) reflexive: $f(x) \equiv f(x) \bmod p(x)$
(2) symmetric: if $f(x) \equiv g(x) \bmod p(x)$ then $g(x) \equiv f(x) \bmod p(x)$
(3) transitive: if $f(x) \equiv g(x) \bmod p(x)$ and $g(x) \equiv h(x) \bmod p(x)$ then $f(x) \equiv h(x) \bmod p(x)$

Proving This

This is an adapted proof from Theorem 2.1

Theorem 5.2

F is a field. $p \neq 0 . p(x) \in F[x]$.
If $f(x) \equiv g(x) \bmod p(x)$ and $h(x) \equiv k(x) \bmod p(x)$ then:
(1) $f(x)+h(x) \equiv g(x)+k(x) \bmod p(x)$
(2) $f(x) h(x) \equiv g(x) k(x) \bmod p(x)$

Proving This

This is an adapted proof from Theorem 2.2

Definition

F is a field. $f(x), p(x) \in F[x], p \neq 0$.
Th congruence class (or residue class) of $f(x) \bmod p(x)$ is denoted by: $[f(x)]$
And, consists of all polynomials in $F[x]$ that are congruent to $f(x) \bmod p(x)$.
That is:
$[F(x)]=\{g(x) \mid g(x) \in F[x]$ and $g(x) \equiv f(x) \bmod p(x)\}$
$[F(x)]=\{f(x)+k(x) p(x) \mid k(x) \in F[x]\}$
Example. 1

$$
\begin{aligned}
& \text { Congruence modulo } x^{2}+1 \text { in } \mathbb{R}[x] \\
& {\left[x^{2}+1\right]=\left\{2 x+1+k(x)\left(x^{2}+1\right) \mid k(x) \in \mathbb{R}[x]\right\}}
\end{aligned}
$$

Example. 2
Consider congruence modulo $x^{2}+x+1$ in $\mathbb{Z}_{2}[x]$

$$
\begin{aligned}
{\left[x^{2}\right]=} & {[x+1] \Longleftrightarrow x^{2} \equiv(x+1) \bmod \left(x^{2}+x+1\right) } \\
& x^{2}+x+1 \mid x^{2}-(x+1)=x^{2}+x+1
\end{aligned}
$$

$$
\{0,1\}, a x+b \Rightarrow[0],[1],[x],[x+1]
$$

Theorem 5.3

If $f(x) \equiv g(x) \bmod p(x) \Longleftrightarrow[f(x)]=[g(x)]$

Cor. 5.4

2 congruence class modulo $p(x)$ are either disjoint or identical.
Cor. 5.5
Let F be a field and $p(x) \in F[x]$.
$\operatorname{deg} p(x)=n$ and consider congruence modulo $p(x)$:
(1) If $f(x) \in F[x]$ and $r(x)$ is the remainder when $f(x)$ is divided by $p(x)$, then $[f(x)]=[r(x)]$
(2) Let S be the set consisting of zero polynomials and all the polynomials of deg<n in $F[x]$.

Then every congruence class modulo $p(x)$ is the class of some polynomial in S and the congruence classes of different polynomials in S are distinct.

SUPER IMPORTANT:

The set of all congruent class modulo $p(x)$ is denoted:

$$
F[x] /(p(x))
$$

Example. 1
Consider congruence modulo $x^{2}+1$ in $\mathbb{R}[x]$. -consider the remainder on division by $x^{2}+1$

$$
=[a x+b] ? \cong \mathbb{C}
$$

Example. 2

$$
\mathbb{Z}_{2}[x] /\left(x^{3}+x+1\right)=\left[a x^{2}+b x+c\right] \text { where } a, b, c \in\{0,1\}
$$

8 element solutions
Example. 3
$\mathbb{Z}_{n}[x] /(p(x))$
if $\operatorname{deg} p(x)=k$ then the remainder: $a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}$
answer is n^{k}.

Day 35

Quiz Day

Going Over Homework

Problem 18: part c

$$
\begin{aligned}
& \quad x^{5}+4 x^{4}+2 x^{3}+3 x^{2}-x+5 \text { in } \mathbb{Q}[x] \\
& x= \pm 1, \pm 5: f(1) \neq f(-1) \neq f(5) \neq f(-5) \neq 0 \\
& \underline{X} \text { deg } 2 \text { or deg3 proving all parts in modulo } 2:
\end{aligned}
$$

$$
x^{5}+x^{2}+x+1
$$

If $x^{5}+x^{2}+x+1$ irreducible in $\mathbb{Z}_{2}[x] \Rightarrow \underline{f}$ irreducible in $\mathbb{Z}[x]$.
$\underline{X}[f]_{2}=x^{5}+x^{2}+x+1, \bar{f}(1)=0$
$x^{2}+x+1$ only irreducible: $x+1 \mid \bar{f}: \bar{f}$ reducible in $\mathbb{Z}_{2}[x]$
\ldots if $\left(x^{2}+b x \pm 1\right.$ or $(\pm 5) \mid f(x)$
On pg. 115 there is a guide for solving this.
Eventually solve for b unsolvable in $\mathbb{Z}[x]$
$\left(x^{3}+b x^{2}+c x+5\right)\left(x^{2}+b x+1\right)$
$b x^{4}+a x^{4}=4 x^{2} \Rightarrow b+a=4 \Rightarrow a=4-b$

$$
1+a b+c=2 \Rightarrow(4-b) b+c=2 \Rightarrow 4 b-b^{2}+c=2
$$

$$
5 a+c=-1 \Rightarrow c=-1-5 a \Rightarrow c=-1-5(4-b) \Rightarrow c=-1-20+5 b \Rightarrow c=-21+5 b
$$

So: $4 b-b^{2}-21+5 b=2 \Rightarrow-b^{2}+9 b-21=2 \Rightarrow b^{2}-9 b+21=-2$

This Time

Section 5.2
$F[x] /(p(x))$
Example. $\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right)=[a x+b]$
$[x],[x+1],[0],[1] \cong: \mathbb{Z}_{4}$? $\mathbb{Z}_{2} X \mathbb{Z}_{2}$? none?
$x^{3} \in \mathbb{Z}_{2}[x], x^{3}=\left(x^{2}+x+1\right) q(x)+r(x)$

Assume brackets:				
+	0	1	x	$\mathrm{x}+1$
0	0	1	x	$\mathrm{x}+1$
1	1	0	$\mathrm{x}+1$	x
x	x	$\mathrm{x}+1$	0	1
$\mathrm{x}+1$	$\mathrm{x}+1$	x	1	0
$*$	0	1	x	$\mathrm{x}+1$
0	0	0	0	0
1	0	1	x	$\mathrm{x}+1$
x	0	x	$\mathrm{x}+1$	1
$\mathrm{x}+1$	0	$\mathrm{x}+1$	1	x

(1) Is $\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right)$ an integral domain?

If $a b=0 \Rightarrow a=0$ or $b=0$
Yes.
Is it a field?
Yes. $1 \rightarrow 1, x \rightarrow x+1, x+1 \rightarrow x$.
(2) \mathbb{Z}_{4} is not a field.
(3) $\mathbb{Z}_{2} X \mathbb{Z}_{2}$ is not a field:
$(1,0) \cdot(a, b)=(1,1)$? no.
So: $\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right)$ is not congruent to any of them.

End of week 12!

Class Notes; Week 13, 4/11/2016

Day 36

Going Over Quiz

Question 1

(1) $\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right)$ congruence classes:
$=[a x+b]=[0],[1],[x],[x+1]$
(2) Yes: because \mathbb{Z}_{2} is a commutative ring $\Rightarrow \mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right)$ is a commutative ring.
(3) Yes: every non-zero element has a multiplication inverse
$x(x+1)=x^{2}+x \equiv 1 \bmod x^{2}+x+1$
(4) $\mathbb{Z}_{2} X \mathbb{Z}_{2}$ is this a field?

No. $(1,0) \cdot(a, b)=(1,1)$, there does not exists (a, b) in $\mathbb{Z}_{2} X \mathbb{Z}_{2}$.
(5)
(6) the choices for these are both not fields and it is thus impossible to have an isomorphic field to them.

Question 2

$\mathbb{Z}_{3}[x] /\left(x^{3}+2 x+1\right)=\left[a x^{2}+b x+c\right]$ where $3^{3}=27$ congruence classes.
[0], $[1],[x],\left[x^{2}\right],[2],[2 x],\left[2 x^{2}\right],[x+1],[x+2],\left[x^{2}+x\right],\left[x^{2}+2 x\right],\left[2 x^{2}+x\right],\left[2 x^{2}+2 x\right],[2 x+1],[2 x+2],\left[x^{2}+\right.$ $1],\left[x^{2}+2\right],\left[2 x^{2}+1\right],\left[2 x^{2}+2\right],\left[2 x^{2}+2 x+2\right],\left[x^{2}+x+1\right],\left[x^{2}+x+2\right],\left[x^{2}+2 x+1\right],\left[x^{2}+2 x+2\right],\left[2 x^{2}+x+\right.$ $1],\left[2 x^{2}+x+2\right],\left[2 x^{2}+2 x+1\right]$
More generally $=\left[a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}\right], a_{i} \in \mathbb{Z}_{k}$ and k^{n}.

This Time

Theorem 5.7

Let F be a field and $p(x)$ a non-constant polynomial in $F[x]$.
Then the set $F[x] /(p(x))$ of congruence classes modulo $p(x)$ is a commutative ring with identity.
Furthermore- $F[x] /(p(x))$ contains a subring $F *$ isomorphic to F.
Example. $\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right)$ contains \mathbb{Z}_{2} as a subring
(can be seen in the addition table)

Proving This

Let $F *$ as the subring of $F[x] /(p(x))$ consisting of the congruence classes of all the constant polynomials.
That is: $F *=\{[a] \mid a \in F\}$

$$
\begin{gathered}
\varphi: F \rightarrow F * \\
\varphi(a)=[a] \\
\varphi(a+b)=[a+b]=[a]+[b]=\varphi(a)+\varphi(b)
\end{gathered}
$$

Similar for $\varphi(a b)=\varphi(a) \varphi(b)$
Definition shows φ is surjective.
If $\varphi(a)=\varphi(b) \Rightarrow a=b .[a]=[b] . a \equiv b \bmod p(x) \Rightarrow a=b$ in F.
(proved bijection and homomorphism \rightarrow isomorphism)

Example. $\mathbb{Z} / n \cdot \mathbb{Z}=\mathbb{Z}_{n}$
$[a b]=[a][b]$ and $[b a]=[b][a]$ we know integers are commutative.
So: $[a b]=[b a] \Rightarrow[a][b]=[b][a]$
(adapted from Theorem 2.7 for the rest of the proof)
$p(x)$ irreducible in $F[x]$ equivalent to saying \mathbb{Z}_{n} is a field such that n prime.

Section 5.3: The Structure of $\mathbf{F}[\mathrm{x}] /(\mathrm{p}(\mathrm{x}))$

Theorem 5.10

Let F be a field and $p(x)$ a non-constant polynomial in $F[x]$.
Then the following statements are equivalent:
(1) $p(x)$ irreducible in $F[x]$
(2) $F[x] /(p(x))$ is a field.
(3) $F[x] /(p(x))$ is an integral domain.

Proving This

$$
(1) \rightarrow(2) \text { by Theorem } 5.9
$$

$(2) \rightarrow(3)$ this is trivial
$(3) \rightarrow(1)$ refer to: \mathbb{Z}_{n} is an integral domain $\Rightarrow n$ prime.
Also:
$\mathbb{Z}_{p}=\{[0],[1], \ldots,[p-1]\}$
Derive from: if $\operatorname{gcd}(a, b)=1$ then there exists a $u, v \in \mathbb{Z}$ such $a u+b v=1$
$\operatorname{gcd}(a, p)=1$ if $a \neq 0, a u+b v=1 \Rightarrow a u \equiv 1 \bmod p$ in polynomials readily prim means that only common factor is a constant.

Theorem 5.9

Let F be a field and $p(x)$ a non constant in $F[x]$.
If $f(x) \in F[x]$ and relatively prime to $p(x)$ then $[f(x)]$ is a unit in $F[x] /(p(x))$

Proving This

By Theorem 4.5 we see there exists $u(x), v(x)$ such that $f(x) u(x)+p(x) v(x)=1 \Rightarrow f(x) u(x) \equiv 1$ $\bmod p(x)$ and $[u(x)]$ is multiplicative inverse of $[f(x)]$ in $F[x] /(p(x))$.

Day 37

F is a field.
$F[x] /(p(x))$-definition
-commutative with identity.

Theorem 5.10

Let F be a field and $p(x)$ a non-constant polynomial in $F[x]$.

Then the following statements are equivalent:
(1) $p(x)$ irreducible in $F[x]$
(2) $F[x] /(p(x))$ is a field.
(3) $F[x] /(p(x))$ is an integral domain.

SIDENOTE: R is a field $\Rightarrow R[x]$ ia an integral domain.
$\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right), \mathbb{Z}_{2}[x] /\left(x^{2}\right), \mathbb{Z}_{2}[x] /\left(x^{2}+1\right)$

Proving This

$(3) \Rightarrow(1) F[x] /(p(x))$ is an integral domain $\Rightarrow p$ ireducible in $F[x]$
Contra-positive p reducible $\Rightarrow F[x] /(p(x))$ not an integral domain.

$$
\begin{gathered}
p(x)=r(x) s(x),[r(x)],[s(x)] \in \mathbb{R} \\
\operatorname{deg} r, \operatorname{deg} s<\operatorname{deg} p \\
{[r(x)][s(x)]=[p(x)]=0}
\end{gathered}
$$

Theorem 5.11

Let F be a field and $p(x)$ irreducible in $F[x]$.
Then $F[x] /(p(x))$ is an extension field of F that contains a root of $p(x)$
($F \subseteq G$ both fields, the G extension of F)

Proving This

$$
\begin{gathered}
F[x] /(p(x)) \text { is a field by Theorem } 5.10 \text { and contains } F \\
\text { Let } \alpha=[x], p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}, a_{i} \in F \\
a_{n} \alpha^{n}+\cdots+a_{1} \alpha+a_{0} \in F[x] /(p(x)) \Rightarrow a_{n}[x]^{n}+\cdots+a_{1}[x]+a_{0}=p(x)=0
\end{gathered}
$$

Cor. 5.12

F be a field.
$f \in F[x] . f$ not constant then there exists an extension field K of F containing a root of $f(x)$.
Example. $F[x] /(p(x)) . \mathbb{R}[x] /\left(x^{2}+1\right) \neq \mathbb{R}[i] \cong \mathbb{C}=\{a i+b \mid a, b \in \mathbb{R}\}$
So: anything $\mathbb{R}[x] /\left(x^{2}+1\right)=[a x+b], a, b \in \mathbb{R}$

Can we define a map φ
$[a x+b][c x+d]=\left[a c x^{2}+(a d+b c) x+b d\right] \mid\left(x^{2}+1\right)$
$=(a d+b c) x+b d-a c$
$=(a d+b c) i+b d-a c$
$(a i+b)(c i+d)=(a d+b c) i+b d-a c$
Example. $\mathbb{Q}(\sqrt{2})=\{a \sqrt{2}+b \mid a, b \in \mathbb{Q}\} \cong \mathbb{Q}[x] /\left(x^{2}-2\right)$

Day 38

Going over Homework

Chapter 6

Ideals

Definition

A subring I of a ring R is an ideal if $\forall r \in R$ and $a \in I$ then $r a \in I$ and $a r \in I$
Example. 1
In $\mathbb{Z}, 3 \mathbb{Z}=\{0, \pm 3, \pm 6 \ldots\}$ is an ideal in \mathbb{Z}
Example. 2
$\left(\begin{array}{ll}a & 0 \\ b & 0\end{array}\right)$ is an ideal in $M_{2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}$

$$
\left(\begin{array}{cc}
r & s \\
t & u
\end{array}\right) \cdot\left(\begin{array}{ll}
a & 0 \\
b & 0
\end{array}\right)=\left(\begin{array}{ll}
a r+s b & 0 \\
a t+u b & 0
\end{array}\right)
$$

BUT: $\left(\begin{array}{ll}a & 0 \\ b & 0\end{array}\right) \cdot\left(\begin{array}{ll}r & s \\ t & u\end{array}\right)=\left(\begin{array}{ll}a r & a s \\ b r & b s\end{array}\right)$
Example. 3
$g \in I=\{f: \mathbb{R} \rightarrow \mathbb{R}$ and $f(2)=0, f$ is continuous $\}$
$f \in \mathbb{R}$ continuous function $\mathbb{R} \rightarrow \mathbb{R}$
$f g \in I$ and $g f \in I$
$f(2) g(2)=g(2) f(2)=0$

End of Week 13!

