MTH310 - Notes for Exam 2

Section 001

Class Notes; Week 7, 2/26/2016

Day 18

This Time

Section 3.3
Isomorphism and Homomorphism

Example. 1
(0], [2], [4] in Zs

+ 10
010
414
212

4
1
2
0
o042

0
4
2

2
2
0
4
2
0
2

4

So {[0], 2

w»—o+2 O | O

N = O
() Naw)

Multiplication identity: 0, Addition identity: 1

3 elements form a ring: no other structure. They are identical.

Isomorphism

A ring R is isomorphic to a ring S (In symbols: R = S) if there is a function f: R — S such that:

(i) f is injective: f(a) = f(b) = a=10

(ii) f is surjective: Ya € S3b € R(f(a) = b)

MSU

(i) f(a +b) = f(a) + f(b)
(iv) f(ab) = f(a)f(b)
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In this case F'is called isomorphic.

In the example: f:0—0,1—4,2—2for0,1,2€ Zz and 0,4,2 € S, s ={0,2,4} C Zg
4+2=14+2and4*2=1x%2
So (one-to-one, or injective):

Example. f(x) = z is injective
g(z) = 2% is not injective: because g(2) = g(—2) = 4 but 2 # —2

When you have two distinct elements mapped to the same element they are not injective. = a # b =
fla) # f(b)
Also, onto = surjective.
Example. 1
From student: in Zs {0, 4,8} to Zs

Example. 2
in ZIO {0, 2, 4, 6, 8} to Z5

Example. 3

k field has all 2X2 matrices of this form.
Claim k£ = C = {a + bila,b € R} (i = v/—1)

proof: f: —ab 2 —a+h
b

(formal notation: f( _ab . ) =a+ bi)
A a b TS
(i) injectivity: let f((_b a>> = f((_S T)) €K
a+bi:r+si:>a:7“andb:s:>(a b):<r S)
—b a —5 T

Thus f is injective

ii) surjectivity: for any a + bi € C 3 a b € K such that f b =a+b
—b a

i) fla+0) = )+ 50). S0 7(( 4 Z)+(_: D= b) (2
T R S S () IR (RO AR
f((_ab Z>)+f( " j)):a+bz'+r+si:(a+r)+(b+s)i

—S

(s ) (s ()

3)) f((‘”“_bs “”br) (ac — bd) + (ad + bd)i

-5 T —as —br —bs+ar
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f((“ b>)-f(< r i)):(a+bi)-(r+si) — qc+ cbi+ adi — bd = (ac — bd) + (cb + ad)i

—b a —s
Therefore K is isomorphic to C

Homomorphism

If only satisfying the (iii) and (iv) conditions of isomorphic definition.

Formal Definition

Let R and S be rings. A function : R — S is said to be homomorphic if f(a +b) = f(a) + f(b) and
f(ab) = f(a)f(b) for all a,b € R

Example. f:C — C called complex conjugate map
fla+bi) =a—1bi

we can verify f is an ismorphism.

Day 19
Section 3.3
Example. 1
For any ring R C S the zero map from Z : R — S given by Z(r) = 0, for all r € R
Z(a+0b)=0,=Z(a)+ Z(b) = 0, + 0
Z(ab) = Z(a)Z(b) = 05
Example. 2
f 7 — Z6
f(a) = [a] for any a € Z you can check: f(a+0b) = [a+b] = f(a) + f(b) = [a] + [b] = [a + ]
f(ab) = [ab] = [a][b] = f(a)f ()
f is surjective: f(1) = f(7), 1 # 7 in
Example. 3
The map g : R — M(R) given by g(r) = _OT 2

If g is a homomorphism the map will become a ring and right hand side is a subring.

g(r) = Or S) is homomorphism.

o= (10,0 ,) = a0 +als

—r—s r+s

o) = (0, ) =t

—rs rs

Homework: ¢ is injective but not surjective.
CAUTION: f(x) = x + 2 Is this homomorphic?
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No; fla+b)=a+b+2#a+2+b+2= f(a)+ f(D)
Theorem

Let f: R — S be a homomorphism of rings, then:

(i) f(Or) = 05
(i) f(~a) = —(a)
(it) fa—b) = f(a) — (2
If R is a ring with 1z and F' is surjective:
(iv) S is a ring with identity 15 = f(1g)
(v) If w is a unit of R, then f(u) is a unit in S and f(u)™' = f(u™!)

Proving this

(i) f(Or) + f(Or) = f(Or + Or) = f(Or) + f(Or) = f(Or) = f(Or) = Os addition identity.
(ii) f(a) + f(=a) = f(a+ (=a)) = f(Or) = Os
So, f(—a) = —f(a)

(iii) f(a—b) = f(a) + f(=b) = fa) + f(=b) = f(a) — f(b)

(iv) Consider: f(r-1g) = f(r)f(1r) = f(r) = f(1r) =S

(v) If w is a unit of R, there exists u™ where f(u-u™') = f(1z) =

flu) - flu™) =1sg= (fu)' = f(u™)

If f: R— S is a function then the image of f is the subset of S/

(image) Imf = {s € S|s = f(r)} If f is surjective then Imf = S.
Cor. 3.4

If R — S is a homomorphism of ring then the image of f is a subring in S. By theorem 3.10:
(iii) [Closure under subtraction] and f(ab) = f(a)f(b) [closure under multiplication]
Img f is a subring by theorem 3.6

Example. 1
Lo = Z3 X7, by multiplying principle we know right hand side has 12 elements.
for RXS : (1g, 1g) will be the identity in (RX.S)
Define: f(1 1,1)

=
F@) = f1+1) = f() + f(1) = (2.2)

W

MSU
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f(9) = (O? 1)
f(10) = (1,2)
(1) =(2,3)
f(12) = (0,0)

f(lawa]) = (lals, [ala) = f(11) = (2,3)

Prove homomorphism under addition and multiplication for homework.

Example. 2
The I‘il’lg Z4 and ZQXZQ
Assume f is homomorphism: f(1) = (1,1)
f(2) = (0,0)
f(0) = (0,0)
240 in Z4
Therefore f is not injective.

Example. 3
Q, R, C are not isomorphic to Z
[sQ=7Z?7
@ has infinitely many units while Z has 2 : —1 and 1

Day 20
Went over exam 1
Went over homework

Section 3.3, problem 21

a®b=a+b—1,a®b=a+b—ab for Z!

Show isomorphic to Z

Assume already prove injective and surjective.

fla+b) = f(a) @ f(b)7?
=1l—-a—-0b07="1—-a®l—-b=1—a+1-b—-1=1—a—0»b

This time

Example. 1
a b\
k(4 )=c
Loy = 13 X7y
Ly ¥ U X7s
Is it possible: Zg = Z15?
Apparently no: cordinality is not the same.
So, if cardinality are different, immediately not isomorphic.
How about Zg & Zy X747
No. number of units should be the same.
Zg : 1,3,5,7and ZoXZy : (1,1),(1,3)
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4 # 2 impossible to be isomorphic.
How about Z = Q
1, —1 compared to infinitely many

Example. 2

If R commutative ring and f : R — S isomorphic then S is commutative.

proof
VYa,b € R ab= ba
f(ab) = f(ba) € S
F(@)f(b) = £(b)f(a)
Ve,y € S, zy =yxr = f(r) some r € R?
Show by proving surjectivity.
If not surjective, commutative proof fails.

Think about for next time

Lpn = Ln XLy, if (nym) =1

End of week 7!
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Class Notes; Week 8, 2/29/2016

Day 21

Going Over Quiz

Problem 1

Tg = Ty X 7Vig
f([als) = (lal2, [a]3)

f(0) =(0,0)

(1) =(1,1)

1(5) = (1,2)

fla+b) = f(a) + f(b) = ([a+ 0]z, [a +b]s) = ([a]s, [a]3) + ([b]2, [b]3) = f(a) + f (D)
f(ab) = f(a)f(b)

Last Time

Lnn = Ly XLy, if (Mmyn) =1
Not hard if you pay attention to the map

Review- f: R — S * S commutative and f homomorphism: f(ab) = f(ba) = f(a)f(b) = f(b)f(a)

This Time

Chapter 4

Polynomial Rings

Let R be any ring, A be a polynomial with coefficients in R is an expression of the form:
aop + a1z + asx?® + - - - + a,z™ where n is a non-negative integer and ag, a,,...a, € R.

Assume zx is a larger ring RC R,z € R,z ¢ R
ao+am+am?---+a,m™ER,a; EZL
Theorem 4.1
If R is a ring, then there exists a ring P that contains an element x that is not in R and has the properties:
() RCP
(2) za = ax for every a € R
(3) every element of P can be written in the form: ag + a1 + agz® + -+ - + a,2" some n > 0 and a; € R
(4) representation of element P in (3) is unique in the sense:
if n <m and ag+ a1z + asx?® + - - - + @, 2" = by + bz 4+ box® 4 - - - + b, 2™ then a; = b; for i < n and b; = 0p
for each 2 > n
(5) ag + a1 + asx® + - -+ + a,x" = 0g <= a; = Og

The ring P called polynomials with coeffiecients in R and denote it by R[z].

MSU 7
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Example. 1
mr & Z[x] , 32* + 5z 4+ 6 € Z[z], not always true.
Q]
R[z] , * + 1 = 0, disjoint and doesn’t readily have 2 roots.
Clx] , always has two roots.

Example. 2
Define addition on R[z]

f(z) =3x +4in Z[z] , g(x) = 4z + 1 in Z;|x]
f(z)+g(x) =Tx +5—5in Z;[z]
Example. 3
h(x) =2x + 1 in Zg[x] , k(x) = 3z in Zg|x]
h(z) + k(x) = (22 + 1)(3x) = 622 + 3z = 3z in Zg[z]

If we have: (ag + a1x + ax?® + -+ + a,2")(bo + by + box? + -+ - + bpx™)
For each k& > 0 the coefficient of z* given by: aoby + a;bp_1 + asbp_o + ... arb, = Zf:o a;br_;

R without 1p is R[x] with/without 1p,?

R[z] without 1g[

{ looking at 2Z: F is even integer set. Ex]: 2z 4+ 4, ax... has no identity}
SO! R has multiplication identity 1z it is the same identity for R[] (1r[y)

Set idea for next time: R integral domain is R[x]?
yes. R integral domain = R|x] is also.
If R is a field, is R[z]?
. _ ~ 1
Not always: R(z) = 3z + 1 inverse 5 ¢ P.

Day 22

Definition

Let f(x) = ap+ a1z + asz®+ - - - + a,x" be a polynomial in R[z] with a,, # 0z. Then a, is called the leading
coefficient of f(z). The degree of f(x) is the integer n (denoted by: degf(x))

Example. 1
f(x) = =325+ 9z
deg(x) = 5 the constant polynomial is degree 0.

Theorem 4.2

If R is an integral domain and f(z) , g(x) are nonzero polynomials in R[z], then:
deg(f(z)g(x)) = degf(x)+ degg(x).

MSU 8
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Example. False/Counter
in Zg[z] — integral domain.

flz) =3z, g(z) =2z
f(x)g(x) = 62* = 0 in Zg|x]

Example. 2
R works because R is an integral domain.

Proving this

Suppose f(z) = ag + a1 + ax® + -+ + a,a"™ , g(x) = by + byw + box? + -+ - + by z™

f(x) - g(x) = agby + (aghy + arbo)x + - - - + apbyx™*™
SinceR is an integral domain — a,, , a,, # Og
degf(z) =n , degg(x) =m
So: deg(f - g) = (n+m) = degf(z) + degg(x)
Cor. 4.4

Let R be a ring. If f(z) , g(x) and f(x)g(z) are nonzero in R[z|, then:
deg(f(2)g(x)) < degf(x)+ degg(z)

Cor. 4.3
If R is an integral domain, then so is R[z].

Proving this

1R[s) exists? 1p exists since R is an integral domain.

L) = 1r , f(2)1lRp = f(@)1r = f(2)
is R[z] commutative? [homework problem].

NOTE: homework 7 asks to prove R[x] commutative by R commutative.
f(x)g(x) =07 =7f(x) =0 or g(x) =0

Directly

Saying: f(x)g(z) = agbo + (aghy + ar1bg)x + - - - + @by, x™ ™™ = 0 means every coefficient is 0.

Without loss of generality: since R is an integral domain ag =0or by =0,a; =0o0r by =0...

Contradiction

If f(x) #0, g(x) #05 a, #0, by # 0= f(z)g(z) #0

Say R is commutative = R[z] is
R is a ring with identity = R[] is
-what about if R[z] is a ring with identity, so is R? Not always.

MSU 9
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Example. 1
E is even numbers.
Elz] =2z +4 or 2o+ 6 or 2z + 8
-what about if R is a field, then R|x] is too?
yes / no 7 No, not necessarily.

Example. 2

3z +1 € Rlz] = 557 €?R[z] no.

Cor. 4.5
Let R be integral domain f(x) € R[z|. Then f(z) is a unit in R[z] <= f(x) constant polynomial that is a
unit in R. (not every element in R is a unit, same for R|x]).

Proving this

First: if f(z) is a unit then by definition f(z)g(z) = 1gy) some g(x) € R[z] , 1z = 1g
by theorem 4.2: deg(f(x)g(z)) =0 = degf(z)+ degg(z).
know deg f(z) > 0 and deg g(x) >0
forces: degf(z) >0, degg(z) >0=0=0+0
f(z)=ap , g(x) =by = aphbg = 1 = ag is a unit in R
Secondly: a is a unit = there exists b€ Rsucha-b=1

Example. 1
What is the unit in Z[z]? 1 and —1.
1 and —1 are units in Z thus are units in Z[x].

Example. 2
If 52 + 1 € Zgs[x] a unit?
Zos|x] not an integral domain.
bx + 1 € Zos[x] : say it is a unit, what is the multiplicative inverse-
(52 +1)(200 + 1) =1 = 1002% + 250 + 1 = 1
So, when R[z]| not integral domain, it becomes difficult.

Day 23
Going over homework
Section 3.3 problem 42.

Loy = L3 X7y

f(lali2) = ([a]s, [a]4)
Injective: f([ali2) = f([bli2) = ([als, [a]la) = ([bls, [b]4) = [a]12 = [bl12 , [a]z = [b]s in Z3 , [a]ls = [D]4
a =b( mod 12)

MSU 10
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NOTE: b=3x+a for k=0,1,2,3
b=aora+3ora+6ora-+9 these all have different remainders thus: b = a in Z,
Specifically.

More generally: Z,,, = Z, XZ,, when (n,m) =1
Fla+b) = ([a+bls, [a +bla) = ([als + Bl [ala + ) = (s [ala) + (B3, [Bls) = £(a) + £(B)

problem 35.

(1)
E =7 : no. E doesn’t have identity, Z does.
YfE—=7Z: fla)=%

is a homomorphism under addition but not under multiplication

(2)
RXRXRXR — My(R) = (¢ Z

commutative — not commutative

(3)

Q—R
Student answer: infinity number of units
Professor: cardinality: countable infinity — uncountable infinity.

for bijection cardinality must equal.

(4)

1X7y — 7

cardinality doesn’t match.

This Time

R is an integral domain so is R[z] (not always true for field)
Division Algorithm: a, b€ Zb#0,a=b-q+r
q and r unique and 0 < r < b

Theorem 4.6

The division Algorithm in F[x]

Let F' be a field and (z) , g(x) € Flz] , g(x) # 0.

Then there exists unique P g(z) and r(z) such: f(z) = g(z) - q(z) + r(z)
such either r(z) = 0 or degr(z) < degg(z).

End of week 8!
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Class Notes; Week 9, 3/18/2016

Day 24
Going Over Quiz

Problem 1
- Zng : 8 units and Z4X7Z, : 4 units. Units don’t match, therefore not isomorphic.
- according to homomorphic properties:
£0) = (0,0), f(1) = (1,1), f(1+1) = (2,2)
But f(4) = (4,4) = (0,0) = f(0) but since 0 # 4 the function is not injective and therefore not isomorphic
Problem 2
1.) R : integral domain
unit R[z] <= constant polynomial a is a unit in R
Specifically: R[z] non-zero real number unit in Z[z] which only has the units: 1 and —1
2.) bx + 1 in Z25|x]
No. Z25[z| not an integral in the first place.
- (202 4+ 1)(5z + 1) = 1 in Z25[z]
-(1+52)(1+52)=1+25x=14+0=1. (1+52)(1 —5z) =1— 25z = (14 5z)(1 + 202)

This Time
Section 4.2: Divisibility in F[x]

Definition: Let F be a field and a(z),b(x) € Flz] with b(z) # 0. We say b(x) divides a(x) [or b(z) is a factor
of a(z)] and write b(x) | a(z) if a(x) = b(z) - h(z) for some h(z) € F[z].

Example. 1
(22 + 1)|(62* — x — 2) in Q[z]
Show (622 — x — 2) can be represented by (22 + 1) and something else
(622 —x —2) = (22 + 1)(3z — 2)
Example. 2
(10z + 5)|(62% — x — 2) is true, but why?
Because: the definition of field is that all nonzero elements are unit.
62° — 1 — 2= (2z + 1)(3z + 2) = 62% — x — 2 = 1(10z + 5)(3z + 2)
= 62° — x — 2 = (102 + 5)(2z — 2) in Qz]

Note
So be careful of the domain because it does play a role.

Example. 3
r? + 1 in R[z] it is impossible
2? + 1 in Q[z] is okay.
24+ 1= (x—1i)(r+1)

MSU 12
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Note
Again: it is very important to be careful of the properties.

Theorem 4.7

Let F be a field and a(x),b(z) € F[z] with b # 0
(1) if b(x) divides a(x) then ¢ - b(x) divides a(z) for each non-zero ¢ € F|x].
(2) Every divisor of a[z] has degree less than or equal to dega(z)

Example. alb = a < |b|

Proving this

(1) If b(zx) factor of a(z) = a(z) = b(x) - h(zx)
By definition.
ceF,c-bx)(ch(x)) = a(z)
because ¢ # 0, ¢ is a unit and ¢! exists = ¢ - b(z)|a(z)
(2) If b(x)|a(z) = a(x) = b(x)h(x) [Division Algorithm]
Then by theorem 4.2 - dega(x) = degb(x)+ degh(z)
Since the degrees are non-negative = degb(x) < dega(x)
= 0 < deghb(z) < dega(z).

Definition: Let F be a field and a(x), b(z) € F[z] bot not zero. Greatest common divisor (GCD) if a(z) and
b(x) is the monic polynomial of the highest degree that divides both a(z) and b(x).

In other words: d(z) is the ged of a(z) and b(z) provided that d(x) is the monic, and:
(1) d(w)|a(z) and d(x)|b(x)
(2) If ¢(z)|a(z) and c(z)|b(x) then dege(z) < degd(z)

Note
Monic: in a polynomial F[z] is said to be monic if its leading coefficient is 15

Example. a(x) =2z + 523 =52 — 2= 2z + 1)(z + 2)(z + 1)(x — 1)
b(z) =22% — 32% — 20 = x(22% — 3x — 2) = x(2x + 1)(z — 2)
then ged(a(z),b(z)) =22+ 17
No: x + %

Day 25

Hint towards Homework

Section 4.2 Problem 5
(¢) 2® —iz® +4a —4i , 2* + 1 in C[z]
23 —ir? +dr —di =2 (v — 1) +4(x —i) = (2 + 4)(x — 1)
>+ 1= (z—1i)(x—1)
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Last Time

b(z)|a(x) <= a(x) = b(x)h(x) for some h(x) € F[z]

This Time

Theorem 4.8

Let F' be a field and a(z),b(x) € F[z] both not zero, then there is a unique ged d(x) of a(x),b(x) (where
unique is similar to monic). Furthermore, there are (not necessarily unique) polynomials u(x),v(z) € F|x]
such that: d(z) = a(x)u(z) + b(z)v(x)

RECALL
d = ged(a, b) there exists u,v € Z such that d = a-u+ b- v - Well-ordering Axiom
plb-c=p|borp]|cthen pis prime.

Proving this

Step 1: Non-empty
Consider S: linear combination of a(z) and b(z) , S = {a(z)m(z) + b(x)n(z)|m,n € Fz]}
Find a monic polynomial of smallest degree in S.
Use the Well-ordering Principle to show that:

If a(x) € S then a(z) € Fz]

Note: a(z) - a(z) + b(x) - b(z) = a(x)* + b(x)* > 0

ST ={a(z) - m(x) + b(x) - n(z)|m(zx),n(x) € Flz] and a(z) - m(x) + b(z) - n(x) > 0}
So, ST is a non-empty set.
Then, by well-ordering principle, ST must contain the smallest polynomial, which we will call ¢(x).

Step 2: Prove that t(z) = ged(a(z), b(x))
Must check two things:
(i) t(x) [ a(z) and t(x) | b(x)
(ii) If ¢(z) | a(x) and c(x) | b(x) then c(z) < t(z)

Proving (i): Show that t(x) | a(z) and t(x) | b(z)
By Division Algorithim, there are ¢(z),r(z) € Flz| such that a(x) = t(z)q(x) 4+ r(x) where 0 < degr(z) <
degt(z)

r(z) = a(r) = t(z)q(x) = a(r) — (a(z) - u(x) + b(z) - v(z))q(x)

= r(x) = a(r) —a(z) - u(z) - q(x) — b(x) - v(z) - ¢(x)

= r(z) = a(x)(1 = u(z) - ¢(x)) + b(z)(—v(z) - ()
Thus, 7(z) = (@)1 — ) - €) + Hr)(—(2) - ) € § when u(a),4(x). v(z) € Pl
Since degr(z) < degt(x) and t(z) is the monic polynomial in S and degr(z) > 0
we know that degr(x) =0
So, when degr(z) = 0 in a(z) = t(x)q(z) + r(z) = t(z) | a(x)
There is a similar arguement for b(x).
We can show that #(x) | b(z) in the same manner.

Proving (ii) : If ¢(x) | a(z) and ¢(z) | b(z) then dege(x) < degt(z)
If ¢(x) | a(z) and c(z) | b(x) then Jk(x), s(x) € Flx] such that a(x) = c(z)k(z) nd b(x) = c(z)s(x)
Again: t is the smallest polynomial of S.
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t(x) = a(z) -u(z) +b(x) - v(z) = (c()k(x))u(z) + (c(z)s(z))v(z) = c(z)(k(z)u(z) + s(z)o(r))
Where k(z)u(z) + s(z)v(z) € flz]
This implies that ¢(x) | t(x)
Which implies that dege(z) < deg|t(x)| = degt(z)

Corollary 4.9

Let F be a field and a(x),b(z) € F[z] # 0. A monic polynomial d(x) € F[z] is ged of a(x),b(z) <= (i)
d(x) | a(z) and d(x) | b(z) and (ii) If ¢(z) | a(x) and c(x) | b(z) then c(z) | d(x)

Proving this

Proving =
1. ged(a(z),b(z)) = d(z) = (i) d(z) | a(z) an(% a)l(ft)ig b)(a:) and (ii) If ¢(z) | a(z) and ¢(x) | b(x) then
x)) then d(x) | a(z) and d(z) | b(x)

(i) By definition: If d(x) = ged(a(z), b(
(i) If d(z) = ged(a(z), b(x)) then d(z) = a(x)u(z) + b(z)v(z) where u(z),v(x) € F[z] by Theorem 4.8
So, if ¢(x) | a(x) and ¢(x) | b(x) can we prove that c(x) | d(z) ?
Let a(z) = c(z)k(x) and b(z) = c(z)s(z) for some k(z), s(x) € F[z]
Plug in to d(z) = a(x)u(x) + b(x)v(z)
d(z) = (c(z)k(z))u(z) + (c(z)s(x))v(r) = c(z)(k(z)u(z) + s(z)v(z)) where k(z)u(z) + v(z)s(r) € Flz]
Then by definition, ¢(x) | d(z)
Thus when ged(a(z),b(z)) = d(z) = (i) d(z) | a(x) and d(x) | b(x) and (ii) If ¢(z) | a(z) and ¢(x) | b(x)
then c(z) | b(x)
Proving <
2. (i) d(z) | a(z) and d(z) | b(x) and (ii) If ¢(x) | a(z) and ¢(x) | b(x) then
c(x) | b(x) = ged(a(x), b(x)) = d(x)
If d(x) is a polynomial that satisfies (i) and (ii) then ged(a(z),b(x)) = d(x)
Proving (i)
This is trivial: by definition this is true.
Proving (ii)
If ¢(x) | a(z) and c(z) | b(x) then ¢(x) \ ( )
This implies that dege(z) < deg|d(z)| = degd(z)
Thus dege(z) < degd(x)
Thus when ¢(x) | a(x) and c(z) | b(z) then c(z) | d(z) = ged(a(z),b(z)) = d(x)

Since both conditions imply the ged(a(x),b(z)) = d(x) we know the statement is true.
Therefore, d(x) € F[z] is ged of a(z),b(z) <= (i) d(z) | a(x) and d(z) | b(z) and (ii) If ¢(z) | a(x) and
c(x) | b(z ) then ¢(x) | d(z) is a true statement.

Theorem 4.10

Let F' be a field and a(z),b(x) € F[z]. If a(z)|b(x)c(x) and a(x),b(x) relatively prime (d(xz) = 1) then
a(x)|c(z).

Proving this
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Since (a(x),b(z)) = d(xz) = 1 by Theorem 4.8 Ju(z),v(x) € F|x] such that a(x)u(x) + b(z)v(z) = 1.

Multiply by c¢(z)
a(x)u(z)e(x) + b(z)v(zr)e(r) = c(x) and see a(x) | b(z)c(x) = b(x)c(x) = a(z)r(x) for some r(z) € F[z]
a(z)u(z)c(z) + v(z)(a(z)r(r)) = c(z)
a(x)(u(z)e(z) +v(z)r(r)) = (z)
Thus, a(z) | c(x)

Section 4.3: Irreducibles and Unique Factorizations
f(z) is an associate of g(x) in f[x] <= f(z) = ¢ g(x) for some ¢ # 0 € F
Example. 327 +2 = 2% + 2

Definition: Let F' be a field. A non-constant polynomial p(z) € F[z] is said to be irreducible if its only
divisors are its associates and the non-zero constant.

Note

A constant polynomial that is not irreducible = reducible.
Note

every degree 1 polynomial in F[z] is irreducible in F[z].

Theorem 4.11
Let F be a field. A non-zero polynomial f(x) is reducible in F[z] <= f(z) can be written as a product of
two polynomials of a lower degree.

Proving this

= First. Assume f(z) is reducible.
Then it must have a divisor (g(x)) that is neither an associate or a non-zero constant
such that f(z) = g(z)h(x) some h(x) € F|x]
(prove g(z), h(x) degree strictly less then f(z)).
Second. Proof by Contradiction: degf(z) = degg(x) = degh(x) = 0 = h(x) is a constant.
(same for g(x) = ¢) which contradicts the above statement that g(z) is not an associate.

< Almost trivial by definition.
If divisors both lower degree then they are not associate because associate = same degree.

Theorem 4.12

Let F' be a field and p(z) a non-constant polynomial in F'[z], then the following are equivalent:
(i) p(z) is irreducible

(ii) b(x), c(z) € Flz] such if p(z)|b(x)c(x) then p(x)|b(x) or p(x)|c(x)
(iii) If r(z), s(z) € F[z] such that p(x) = r(x)s(z) then r(x) or s(x) is a non-zero constant polynomial.

Day 26

Going over Homework
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Section 4.3 Problem 6
2?2 +1 = (ax + b)(cr + d) in Q[x]
= acz® + (bc + ad)z + bd where ac = 1 and bd = 0 and bc + ad = 0
Show this impossible: a = % , §l+g:%:0 , bzé

= ¢+ d? = 0 But since ¢, d non-negative, only true is when 2, d> = 0 which contradicts that they are not 0

This Time
Theorem 4.14

Let F be a field. Every non-constant polynomial f(x) € F[z] is a product of irreducible polynomials in
F[z]. The factorization is unique in that:

if f(x) =pi(x)p2(x)...p(x) and f(z) = q1(x)qa(x) . .. gs(x) with p;(z), ¢;(x) irreducible then r = s

After re-ordering and re-naming: p;(z) is an associate of ¢;(x) fori =1,2,...r

Proving this
Prove by contradiction.

Let S be the set of all integers greater than 1 that are not a product of primes.
Prove that S =10
So say that S = () , then by Well - Ordering Axiom S contains the smallest positive element m(x)
m(x) is not prime, then there exists a(x), b(x) € F[z] such that m(z) = a(z) - b(x)
Know, this implies a(z),b(x) ¢ S
which means that they are a product of primes.
a(z) be represented by a(z) = p1(x) - p2(x) - ... pr(2)
b(x) represented by b(z) = ¢1(z) - ¢2(x) - . .. qs()
Where all p;(x), ¢;(x) are primes = a(z) - b(x) = p1(z) - q1(2) - p2(2)g2(x) - ... pr(x) - g5 ()
Then, m(z) is the product of primes.
This contradicts that m(z) is an element of S which only holds the integers that are not products of
primes.

Therefore, S must be the empty set.

Example. 1
f@) =2z -2)(52 —1)(z —3) = (z — 1)(z — 2)(x — 3) = (27 — 3z + 2)(z — 3)
Example. 2
377121 is this a prime number: no.
quick way to so this: x!” 4+ 2° + 1 this is the same

no quick way to prove that it is irreducible

Section 4.4: Polynomial Functions, Roots, and Reducibility

If R is a commutative ring a,z™ + ...ax* + a1x + a9 € R[z] is a function f : R — R for each r € R,
f(r) =a,r™ + ... .asr® + air + ag
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Example. 1
22 +5r+3€R[z], f(x)=1+5+3=9
Question: two polynomials in a ring, then for any r in function does f(r) = g(r) = f(x) = g(x)? What
about for reals?

Example. 2
fO)=1,f1)=0,f2)=16+24+1=19=1
g(x) =2+ a?+1€Zsz] . g: 73— Zs

9(0)21,98):0,9(2):1

flr)=g(r) # f(x) = g(x)

Definition: Let R be commutative. f(z) € R[z]. An element a € R is said to be a root (or zero) of
polynomial f(x) if f(a) = Og

Example. 1
The root of f(z) = 2* — 3z + 2 € R[z] are: (v —2)(x — 1)
So. 1 and 2

Example. 2
The root of 2% 4+ 1 € R[z] : none
But, in C : —i and ¢

Note
Some polynomials are reducible but do not have roots

Example. 3
flx)= (2> +1)(2? + 1) € R[z]
Has no roots in R[z] but is reducible

So, if F' has roots = f is reducible BUT f is reducible # f has roots

Theorem 4.15: The remainder theorem

Let F be a field, f(z) € F|z] and a € F. The remainder when f(z) divided by the polynomial z —a is f(a)
Proving this

Division Algorithm:
f(z) = (r —a)Q(x) +r where r € F
Consider f(a) =7
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Example. f(z)=2%+2"+2, (z — 1)
f(1) =4

End of Week 9!
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Class Notes; Week 10, 3/23/2016

Day 27

Going Over Quiz

Problem 1
3r 42 in Zg
1,2,3,4,5,6
6rx+4,2x+6, ...
Problem 2
Find ged = + a + b|z® + a® + b — 3abx
23+ a® + 0% — 3abr = (x + a+ b)(2* + a* + b* — ax + bx — ab)
replace z, a, b symmetric za® + xb?

This Time

Theorem 4.15

Let F[z] be a field, f(z) € Flz] and a € F, then a is a root of f(x) <= x — a is a factor of f(x)
Proving this

fla) =0<= x —a|f(z)

(=)
If f(a)=0, f(a) is a remainder of f(z)
dividing x — a see: f(z) = (x — a)Q(z) + f(a) where f(z) = (x —a)Q(z) = (x — a)|f(z)
(<)
If f(z) =(x—a)Q(z)
Replace © = a then: f(a) = (a —a)Q(x) =0Q(z) =0

Example. f(z)=a2%—2*+2—1
f(1) =0= z —1|f(z) = reducible

If f(z) has a root r, then f(x) is reducible
(") (&) f@) =(@*+1)(2* +2) €R

Corollary 4.17

Let F be a field f(z) € F with degf > 2. If f is irreducible in F[z] then f(z) has no roots.
Corollary 4.18

If degf < 3 and f reducible (except degf = 1) then f has a root in F
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(*) degf < 3 = when f is reducible = f has a degree 1 factor = f has a root.
Corollary 4.19
If degf = 2 or 3, f is irreducible <= f has not roots in F'.

Example. Prove z° + x + 1 irreducible in Zs[z]:
FO)=1,f1)=3,f2)=8+2+1=1
f(3)=2T+3+1=1,f(4)=64+4+1=4
None are 0 and has no roots.

Note
Proving it has no roots is not enough, also state if ddeg2 or deg3.

Section 4.5: Irreducibility in Q[z]

Rational root test

polynomial in Q[z] = f(z) = apa”™ + ap12" ' 4+ ... ae2® + a12 + ap. If r # 0 and £ is a root of f(z) then
r|ag and s|a,,.
(*) ¢ = sz —r|f(z)

Example. f(r)=2z*+ 23 — 212? — 14z + 12
x could = +1,2,3,4,6,12 and 2x could = +1,3
f(=3)=0,2+3|f(z), f(3) =0= 2z —1|f(z)

So. (z + 3)(2z — 1)(2* — 2z — 4)

Question: prove f(z) = z'® 4 22° + 425 4+ 10z — 2 is irreducible?
Theorem 4.23 (Eisenstein’s Criterion)

f(x) = anx"™ + ap_ 12"t + ... ax® + a1z + ag € Z[z]. If there is a prime p such that p|ag ... a,_1 but p [a,
and p? |/ag then f(x) irreducible.

Example. 1
Pick 2 for f(z) = z'® 4+ 225 + 42° + 10z — 2.
2|a; for all a; , 1 <3 <18
2]a18 , 2% |/ay by Eisenstein criterion

Example. 2
27 + 6213 — 152% + 322 + 12
p=3

Proving this
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if f(x) irreducible: f(x) = (by + byx +...b2") - (co + 1@ + ... csx%)
then ag = by - ¢
p* [/a and plag = plbo or plcy

Day 28

Review for Exam 2

Question 1
Definition: What is a ring isomorphism? example.

A ring R is isomorphic to a ring S (In symbols: R = S) if there is a function f: R — S such that:
(i) f is injective: f(a) = f(b) = a=10
(ii) f is surjective: Ya € S3b € R(f(a) = b)
(iii) f(a +b) = f(a) + f(b)
(iv) f(ab) = f(a)f(b)
In this case F'is called isomorphic.

Example

field of 2X2 matrices of (_ab Z) € My(R)

Question 2
Definition: What is a ring homomorphism? example (only homomorphic not isomorphic).

Let R and S be rings. A function : R — S is said to be homomorphic if f(a +b) = f(a) + f(b) and
f(ab) = f(a)f(b) for all a,b € R

Question 3
f:R — R where f(z) =ax +b. If fis a homomorphism, can we solve for a, b?

fle+y)=alz+y)+0b
flx)+ fly)=ax+ay+b+b=alz+y)+2b
Then, for f(zr+vy) = f(z)+ f(y) =b=0
flzy) = azy + b = axy
f@)f(y) = (ax + b)(ay + b) = (az)(ay) = a’zy
Then for f(zy) = f(z)f(y) =a=1o0r0

Question 4
If R is commutative then R[z] commutative. Prove this.

m

Suppose f(z) = ag + a1z + azx? . .. a,a™ and g(z) = by + bix + b ... b1
R commutative: g(z)f(x)boao + (brag + boar)x ... and f(x)g(z) = g(x)f(z)
Largest x is n +m but a,b,, # Or because a,, # O and b, # Ogr
So. deg[f(z)g(x)] = n+ m = degf(z)+ degg(x) and f(x)g(x) non-zero.
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Question 5
a.) If R is an integral domain, so is R[z]? T or F.
b.) If R is a field, so is R[z|? T or F.

a.) True: Similar to last proof :
f#0,9#0=fg#0
If f9=0=f=0o0rg=0
b.) Not always true, so the question is false.

R(z) =3z + 1, R(x) € R[z]
the inverse is 3= ¢ R[z]
Question 6

GCD of 2° + 2 + 223 — 22 — 2 — 2 in Q[z] and 2* + 223 + 522 + 42 + 4 in Q[z]

4t 4203 -2 —r—-2=232*+2+2) - 1(2*+z2+2)= (23 - D)(z* + 2+ 2)
o+ 208 + 5 +dr+ 4= (Pt +2)tax(P+x+2)+ 2P+ +2) = (2 + 2+ 2)?
and the ged= 22 + 2 + 2

Question 7
Find monic associate of 3z° — 4z? 4+ 1 in Zs|[z]

1,2,3,4 units in Zs[x]:
3 — 422+ 1, 2° — 322 + 2, 42° — 222+ 3, 22° — 22 + 4
all monic associates.

Question 8
a.) Prove if f(z) has a root in F' then f(z) reducible
b.) Is converse statement correct? If not, give an example.

a.) dr € F such that f(z) =r <=z —7r|f(z), = f(z) = (z —r)Q(x)
then f is reducible
b.) No.
ex. f(x)= (22 +1)(z*+2)

Question 9
a.) If f(x) is reducible in Q[x] is it reducible in Z[xz]?
b.) If f(x) reducible in Z[z] is it reducible in Q[z]?

a.) No. Consider f(x) =22% +x
b.) Yes.
Proof by contradiction: Assume it does not.
Let p be a prime factor of the content f(z)g(z), and apply the ring homomorphism S : Z[z] — Z,[z] with
s:Z — Z, by s(z) = Sx].
Then: 0 = S(f(z)g(x)) = S(f(x)S(g(x)) so the product of the two non-zero polynomials in the integral
domain of Z,|z] is equal to zero.
This is a contradiction.
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Suppose f(z) € Z[z]. divide f(x) by its content and assume that it is primitive.
Suppose f(x) = g(z)h(x) so that g(z), h(z) € Q[z] have lower degrees.
Then abf(x) = ag(x)bh(x) so that a,b € N are the smallest integers so that ag(z), bh(z) € Z[x].
Suppose ¢ and d are the contents of ag( ) and bh(z) respectively, then abf(x) has content ab and

abf(x) = ag(x)bh(x) = (c(¢'(x))(d(h'(z)) given that ¢'(z), h'(x) are primitive.
Suppose if f(z), g(z) € Z[z] primitive, then f(z)g(x) is also. Then, ¢'(z)h’(x) is primitive so that cd is the

content of abf(x).
= ab=cd
Thus. if f(z) is reducible in Z[z] then it is reducible in Q[z].

You should be able to do all of these one your own.
Students went up in class and answered the first 7 questions, but you can find them in these notes.

Good Luck on Exam 2!

Day 29

Exam day

End of Week 10!
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