
MTH310 - Notes for Exam 2 Section 001

Class Notes; Week 7, 2/26/2016

Day 18

This Time

Section 3.3
Isomorphism and Homomorphism

Example. 1
[0], [2], [4] in Z6

+ 0 4 2

0 0 4 2
4 4 2 0
2 2 0 4

* 0 4 2

0 0 0 0
4 0 4 2
2 0 2 4

So {[0], [2], [4]} is a subring.
Now, in Z3

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

* 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

Multiplication identity: 0, Addition identity: 1
3 elements form a ring: no other structure. They are identical.

Isomorphism

A ring R is isomorphic to a ring S (In symbols: R ∼= S) if there is a function f : R→ S such that:

(i) f is injective: f(a) = f(b)⇒ a = b

(ii) f is surjective: ∀a ∈ S∃b ∈ R(f(a) = b)

(iii) f(a+ b) = f(a) + f(b)

(iv) f(ab) = f(a)f(b)
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In this case F is called isomorphic.

In the example: f : 0→ 0 , 1→ 4 , 2→ 2 for 0, 1, 2 ∈ Z3 and 0, 4, 2 ∈ S, s = {0, 2, 4} ⊂ Z6

4 + 2 = 1 + 2 and 4 ∗ 2 = 1 ∗ 2
So (one-to-one, or injective):

Example. f(x) = x is injective
g(x) = x2 is not injective: because g(2) = g(−2) = 4 but 2 6= −2

When you have two distinct elements mapped to the same element they are not injective. ⇒ a 6= b ⇒
f(a) 6= f(b)

Also, onto = surjective.

Example. 1
From student: in Z12 {0, 4, 8} to Z3

Example. 2
in Z10 {0, 2, 4, 6, 8} to Z5

Example. 3(
a b
−b a

)
∈M2(R)

k field has all 2X2 matrices of this form.
Claim k ∼= C = {a+ bi|a, b ∈ R} (i =

√
−1)

proof: f :

(
a b
−b a

)
→ a+ bi

(formal notation: f(

(
a b
−b a

)
) = a+ bi)

(i) injectivity: let f(

(
a b
−b a

)
) = f(

(
r s
−s r

)
) ∈ K

a+ bi = r + si⇒ a = r and b = s⇒
(
a b
−b a

)
=

(
r s
−s r

)
Thus f is injective

(ii) surjectivity: for any a+ bi ∈ C ∃
(
a b
−b a

)
∈ K such that f(

(
a b
−b a

)
) = a+ bi

(iii) f(a+ b) = f(a) + f(b). So: f(

(
a b
−b a

)
+

(
r s
−s r

)
) = f(

(
a b
−b a

)
) + f(

(
r s
−s r

)
)

f(

(
a b
−b a

)
+

(
r s
−s r

)
) = f(

(
a+ r b+ s
−b− s a+ r

)
) = (a+ r) + (b+ s)i

f(

(
a b
−b a

)
) + f(

(
r s
−s r

)
) = a+ bi+ r + si = (a+ r) + (b+ s)i

(iv) f(

(
a b
−b a

)
·
(
r s
−s r

)
) = f(

(
a b
−b a

)
) · f(

(
r s
−s r

)
)

f(

(
a b
−b a

)
·
(
r s
−s r

)
) = f(

(
ar − bs as+ br
−as− br −bs+ ar

)
) = (ac− bd) + (ad+ bd)i
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f(

(
a b
−b a

)
) · f(

(
r s
−s r

)
) = (a+ bi) · (r + si) = ac+ cbi+ adi− bd = (ac− bd) + (cb+ ad)i

Therefore K is isomorphic to C

Homomorphism

If only satisfying the (iii) and (iv) conditions of isomorphic definition.

Formal Definition

Let R and S be rings. A function : R → S is said to be homomorphic if f(a + b) = f(a) + f(b) and
f(ab) = f(a)f(b) for all a, b ∈ R

Example. f : C→ C called complex conjugate map
f(a+ bi) = a− bi

we can verify f is an ismorphism.

Day 19

Section 3.3

Example. 1
For any ring R ⊂ S the zero map from Z : R→ S given by Z(r) = 0s for all r ∈ R

Z(a+ b) = 0s = Z(a) + Z(b) = 0s + 0s

Z(ab) = Z(a)Z(b) = 0s

Example. 2
f : Z→ Z6

f(a) = [a] for any a ∈ Z you can check: f(a+ b) = [a+ b] = f(a) + f(b) = [a] + [b] = [a+ b]
f(ab) = [ab] = [a][b] = f(a)f(b)

f is surjective: f(1) = f(7), 1 6= 7 in Z
Example. 3

The map g : R→M2(R) given by g(r) =

(
0 0
−r r

)
If g is a homomorphism the map will become a ring and right hand side is a subring.

g(r) =

(
0 0
−r r

)
is homomorphism.

g(r + s) =

(
0 0

−r − s r + s

)
= g(r) + g(s)

g(rs) =

(
0 0
−rs rs

)
= g(r)g(s)

Homework: g is injective but not surjective.
CAUTION: f(x) = x+ 2 Is this homomorphic?
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No; f(a+ b) = a+ b+ 2 6= a+ 2 + b+ 2 = f(a) + f(b)

Theorem

Let f : R→ S be a homomorphism of rings, then:

(i) f(0R) = 0s

(ii) f(−a) = −f(a)

(iii) f(a− b) = f(a)− f(b)

If R is a ring with 1R and F is surjective:

(iv) S is a ring with identity 1S = f(1R)

(v) If u is a unit of R, then f(u) is a unit in S and f(u)−1 = f(u−1)

Proving this

(i) f(0R) + f(0R) = f(0R + 0R)⇒ f(0R) + f(0R) = f(0R)⇒ f(0R) = 0S addition identity.

(ii) f(a) + f(−a) = f(a+ (−a)) = f(0R) = 0S

So, f(−a) = −f(a)

(iii) f(a− b) = f(a) + f(−b) = f(a) + f(−b) = f(a)− f(b)

(iv) Consider: f(r · 1R) = f(r)f(1R) = f(r)⇒ f(1R) = S

(v) If u is a unit of R, there exists u−1 where f(u · u−1) = f(1R) = 1S ,
f(u) · f(u−1) = 1S ⇒ (f(u))−1 = f(u−1)

If f : R→ S is a function then the image of f is the subset of S/

(image) Imf = {s ∈ S|s = f(r)} If f is surjective then Imf = S.

Cor. 3.4

If R→ S is a homomorphism of ring then the image of f is a subring in S. By theorem 3.10:
(iii) [Closure under subtraction] and f(ab) = f(a)f(b) [closure under multiplication]
Img f is a subring by theorem 3.6

Example. 1
Z12
∼= Z3XZ4 by multiplying principle we know right hand side has 12 elements.

for RXS : (1R, 1S) will be the identity in (RXS)
Define: f(1) = (1, 1)

f(2) = f(1 + 1) = f(1) + f(1) = (2, 2)
f(3) = (0, 3)
f(4) = (1, 0)
f(5) = (2, 1)
f(6) = (0, 2)
f(7) = (1, 3)
f(8) = (2, 0)
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f(9) = (0, 1)
f(10) = (1, 2)
f(11) = (2, 3)
f(12) = (0, 0)

f([a12]) = ([a]3, [a]4)⇒ f(11) = (2, 3)
Prove homomorphism under addition and multiplication for homework.

Example. 2
The ring Z4 and Z2XZ2

Assume f is homomorphism: f(1) = (1, 1)
f(2) = (0, 0)
f(0) = (0, 0)
2 6= 0 in Z4

Therefore f is not injective.

Example. 3
Q,R,C are not isomorphic to Z

Is Q ∼= Z??
Q has infinitely many units while Z has 2 : −1 and 1

Day 20

Went over exam 1

Went over homework

Section 3.3, problem 21

a⊕ b = a+ b− 1 , a⊗ b = a+ b− ab for Z1

Show isomorphic to Z
Assume already prove injective and surjective.
f(a+ b) = f(a)⊕ f(b)??
⇒ 1− a− b? =?1− a⊕ 1− b = 1− a+ 1− b− 1 = 1− a− b

This time

Example. 1

K.

(
a b
−b a

)
∼= C

Z12
∼= Z3XZ4

Z4 6∼= Z2XZ3

Is it possible: Z6
∼= Z12?

Apparently no: cordinality is not the same.
So, if cardinality are different, immediately not isomorphic.

How about Z8
∼= Z2XZ4?

No. number of units should be the same.
Z8 : 1, 3, 5, 7 and Z2XZ4 : (1, 1), (1, 3)
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4 6= 2 impossible to be isomorphic.
How about Z ∼= Q

1,−1 compared to infinitely many

Example. 2
If R commutative ring and f : R→ S isomorphic then S is commutative.

proof
∀a, b ∈ R ab = ba
f(ab) = f(ba) ∈ S
f(a)f(b) = f(b)f(a)

∀x, y ∈ S , xy = yx = f(r) some r ∈ R?
Show by proving surjectivity.

If not surjective, commutative proof fails.

Think about for next time

Zmn
∼= ZnXZm if (n,m) = 1

End of week 7!
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Class Notes; Week 8, 2/29/2016

Day 21

Going Over Quiz

Problem 1
Z6
∼= Z2XZ3

f([a]6) = ([a]2, [a]3)
f(0) = (0, 0)
f(1) = (1, 1)

. . .
f(5) = (1, 2).

f(a+ b) = f(a) + f(b)⇒ ([a+ b]2, [a+ b]3) = ([a]2, [a]3) + ([b]2, [b]3) = f(a) + f(b)
f(ab) = f(a)f(b)

Last Time

Zmn
∼= ZmXZn if (m,n) = 1

Not hard if you pay attention to the map

Review- f : R→ S * S commutative and f homomorphism: f(ab) = f(ba)⇒ f(a)f(b) = f(b)f(a)

This Time

Chapter 4

Polynomial Rings

Let R be any ring, A be a polynomial with coefficients in R is an expression of the form:
a0 + a1x+ a2x

2 + · · ·+ anx
n where n is a non-negative integer and a0, a1, . . . an ∈ R.

Assume x is a larger ring R ⊂ R′ , x ∈ R′ , x 6∈ R
a0 + a1π + a2π

2 · · ·+ anπ
n ∈ R , ai ∈ Z

Theorem 4.1

If R is a ring, then there exists a ring P that contains an element x that is not in R and has the properties:

(1) R ⊂ P
(2) xa = ax for every a ∈ R

(3) every element of P can be written in the form: a0 + a1x+ a2x
2 + · · ·+ anx

n some n ≥ 0 and ai ∈ R
(4) representation of element P in (3) is unique in the sense:

if n ≤ m and a0 + a1x+ a2x
2 + · · ·+ anx

n = b0 + b1x+ b2x
2 + · · ·+ bmx

m then ai = bi for i ≤ n and bi = 0R

for each i > n
(5) a0 + a1x+ a2x

2 + · · ·+ anx
n = 0R ⇐⇒ ai = 0R

The ring P called polynomials with coeffiecients in R and denote it by R[x].
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Example. 1
πx 6∈ Z[x] , 3x2 + 5x+ 6 ∈ Z[x], not always true.

Q[x]
R[x] , x2 + 1 = 0, disjoint and doesn’t readily have 2 roots.

C[x] , always has two roots.

Example. 2
Define addition on R[x]

f(x) = 3x+ 4 in Z7[x] , g(x) = 4x+ 1 in Z7[x]
f(x) + g(x) = 7x+ 5− 5 in Z7[x]

Example. 3
h(x) = 2x+ 1 in Z6[x] , k(x) = 3x in Z6[x]

h(x) + k(x) = (2x+ 1)(3x) = 6x2 + 3x = 3x in Z6[x]

If we have: (a0 + a1x+ a2x
2 + · · ·+ anx

n)(b0 + b1x+ b2x
2 + · · ·+ bmx

m)
For each k ≥ 0 the coefficient of xk given by: a0bk + aibk−1 + a2bk−2 + . . . akbo =

∑k
i=0 aibk−i

R without 1R is R[x] with/without 1R[x]?
R[x] without 1R[x]

{ looking at 2Z: E is even integer set. E[x] : 2x+ 4, ax... has no identity}
SO! R has multiplication identity 1R it is the same identity for R[x] (1R[x])

Set idea for next time: R integral domain is R[x]?
yes. R integral domain ⇒ R[x] is also.

If R is a field, is R[x]?
Not always: R(x) = 3x+ 1 inverse 1

3x+1
6∈ P .

Day 22

Definition

Let f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n be a polynomial in R[x] with an 6= 0R. Then an is called the leading
coefficient of f(x). The degree of f(x) is the integer n (denoted by: degf(x))

Example. 1
f(x) = −3x5 + 9x

deg(x) = 5 the constant polynomial is degree 0.

Theorem 4.2

If R is an integral domain and f(x) , g(x) are nonzero polynomials in R[x], then:
deg(f(x)g(x)) = degf(x)+ degg(x).
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Example. False/Counter
in Z6[x] → integral domain.

f(x) = 3x , g(x) = 2x
f(x)g(x) = 6x2 = 0 in Z6[x]

Example. 2
R works because R is an integral domain.

Proving this

Suppose f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n , g(x) = b0 + b1x+ b2x
2 + · · ·+ bmx

m

f(x) · g(x) = a0b0 + (a0b1 + a1b0)x+ · · ·+ anbmx
n+m

SinceR is an integral domain → an , am 6= 0R

degf(x) = n , degg(x) = m
So: deg(f · g) = (n+m) = degf(x) + degg(x)

Cor. 4.4

Let R be a ring. If f(x) , g(x) and f(x)g(x) are nonzero in R[x], then:
deg(f(x)g(x)) ≤ degf(x)+ degg(x)

Cor. 4.3

If R is an integral domain, then so is R[x].

Proving this

1R[x] exists? 1R exists since R is an integral domain.
1R[x] = 1R , f(x)1R[x] = f(x)1R = f(x)

is R[x] commutative? [homework problem].

NOTE: homework 7 asks to prove R[x] commutative by R commutative.
f(x)g(x) = 0?⇒?f(x) = 0 or g(x) = 0

Directly

Saying: f(x)g(x) = a0b0 + (a0b1 + a1b0)x+ · · ·+ anbmx
n+m = 0 means every coefficient is 0.

Without loss of generality: since R is an integral domain a0 = 0 or b0 = 0 , a1 = 0 or b1 = 0 . . .

Contradiction

If f(x) 6= 0 , g(x) 6= 0 ; an 6= 0 , bm 6= 0⇒ f(x)g(x) 6= 0

Say R is commutative ⇒ R[x] is
R is a ring with identity ⇒ R[x] is
-what about if R[x] is a ring with identity, so is R? Not always.
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Example. 1
E is even numbers.

E[x] = 2x+ 4 or 2x+ 6 or 2x+ 8
-what about if R is a field, then R[x] is too?

yes / no ? No, not necessarily.

Example. 2
3x+ 1 ∈ R[x]⇒ 1

3x+1
? ∈?R[x] no.

Cor. 4.5
Let R be integral domain f(x) ∈ R[x]. Then f(x) is a unit in R[x]⇐⇒ f(x) constant polynomial that is a
unit in R. (not every element in R is a unit, same for R[x]).

Proving this

First: if f(x) is a unit then by definition f(x)g(x) = 1R[x] some g(x) ∈ R[x] , 1R[x] = 1R

by theorem 4.2: deg(f(x)g(x)) = 0 = degf(x)+ degg(x).
know deg f(x) ≥ 0 and deg g(x) ≥ 0

forces: degf(x) ≥ 0 , degg(x) ≥ 0⇒ 0 = 0 + 0
f(x) = a0 , g(x) = b0 ⇒ a0b0 = 1⇒ a0 is a unit in R

Secondly: a is a unit ⇒ there exists b ∈ R such a · b = 1

Example. 1
What is the unit in Z[x]? 1 and −1.

1 and −1 are units in Z thus are units in Z[x].

Example. 2
If 5x+ 1 ∈ Z25[x] a unit?

Z25[x] not an integral domain.
5x+ 1 ∈ Z25[x] : say it is a unit, what is the multiplicative inverse-

(5x+ 1)(20x+ 1) = 1⇒ 100x2 + 25x+ 1 = 1
So, when R[x] not integral domain, it becomes difficult.

Day 23

Going over homework

Section 3.3 problem 42.

Z12
∼= Z3XZ4

f([a]12) = ([a]3, [a]4)
Injective: f([a]12) = f([b]12)⇒ ([a]3, [a]4) = ([b]3, [b]4)⇒ [a]12 = [b]12 , [a]3 = [b]3 in Z3 , [a]4 = [b]4

a ≡ b( mod 12)
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NOTE: b = 3x+ a for k = 0, 1, 2, 3
b = a or a+ 3 or a+ 6 or a+ 9 these all have different remainders thus: b = a in Z4

Specifically.
More generally: Zmn

∼= ZmXZn when (n,m) = 1
f(a+ b) = ([a+ b]3, [a+ b]4) = ([a]3 + [b]3, [a]4 + [b]4) = ([a]3, [a]4) + ([b]3, [b]4) = f(a) + f(b)

problem 35.

(1)
E ∼= Z : no. E doesn’t have identity, Z does.

* f : E → Z : f(a) = a
2

is a homomorphism under addition but not under multiplication

(2)

RXRXRXR→M2(R) =

(
a b
c d

)
commutative → not commutative

(3)
Q→ R

Student answer: infinity number of units
Professor: cardinality: countable infinity → uncountable infinity.

for bijection cardinality must equal.

(4)
ZXZ2 → Z

cardinality doesn’t match.

This Time

R is an integral domain so is R[x] (not always true for field)
Division Algorithm: a, b ∈ Z b 6= 0 , a = b · q + r
q and r unique and 0 ≤ r < b

Theorem 4.6

The division Algorithm in F [x]
Let F be a field and (x) , g(x) ∈ F [x] , g(x) 6= 0.
Then there exists unique P g(x) and r(x) such: f(x) = g(x) · q(x) + r(x)
such either r(x) = 0 or degr(x) < degg(x).

End of week 8!
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Class Notes; Week 9, 3/18/2016

Day 24

Going Over Quiz

Problem 1
- Z16 : 8 units and Z4XZ4 : 4 units. Units don’t match, therefore not isomorphic.

- according to homomorphic properties:
f(0) = (0, 0) , f(1) = (1, 1) , f(1 + 1) = (2, 2)

But f(4) = (4, 4) = (0, 0) = f(0) but since 0 6= 4 the function is not injective and therefore not isomorphic

Problem 2
1.) R : integral domain

unit R[x]⇐⇒ constant polynomial a is a unit in R
Specifically: R[x] non-zero real number unit in Z[x] which only has the units: 1 and −1

2.) 5x+ 1 in Z25[x]
No. Z25[x] not an integral in the first place.

- (20x+ 1)(5x+ 1) = 1 in Z25[x]
- (1 + 5x)(1 + 5x) = 1 + 25x = 1 + 0 = 1. (1 + 5x)(1− 5x) = 1− 25x = (1 + 5x)(1 + 20x)

This Time

Section 4.2: Divisibility in F[x]

Definition: Let F be a field and a(x), b(x) ∈ F [x] with b(x) 6= 0. We say b(x) divides a(x) [or b(x) is a factor
of a(x)] and write b(x) | a(x) if a(x) = b(x) · h(x) for some h(x) ∈ F [x].

Example. 1
(2x+ 1)|(6x2 − x− 2) in Q[x]

Show (6x2 − x− 2) can be represented by (2x+ 1) and something else
(6x2 − x− 2) = (2x+ 1)(3x− 2)

Example. 2
(10x+ 5)|(6x2 − x− 2) is true, but why?

Because: the definition of field is that all nonzero elements are unit.
6x2 − x− 2 = (2x+ 1)(3x+ 2)⇒ 6x2 − x− 2 = 1

5
(10x+ 5)(3x+ 2)

⇒ 6x2 − x− 2 = (10x+ 5)(3
5
x− 2

5
) in Q[x]

Note
So be careful of the domain because it does play a role.

Example. 3
x2 + 1 in R[x] it is impossible

x2 + 1 in Q[x] is okay.
x2 + 1 = (x− i)(x+ i)
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Note
Again: it is very important to be careful of the properties.

Theorem 4.7

Let F be a field and a(x), b(x) ∈ F [x] with b 6= 0
(1) if b(x) divides a(x) then c · b(x) divides a(x) for each non-zero c ∈ F [x].
(2) Every divisor of a[x] has degree less than or equal to dega(x)

Example. a|b⇒ a ≤ |b|

Proving this

(1) If b(x) factor of a(x)⇒ a(x) = b(x) · h(x)
By definition.

c ∈ F , c · b(x)(c−1h(x)) = a(x)
because c 6= 0, c is a unit and c−1 exists ⇒ c · b(x)|a(x)

(2) If b(x)|a(x)⇒ a(x) = b(x)h(x) [Division Algorithm]
Then by theorem 4.2 - dega(x) = degb(x)+ degh(x)

Since the degrees are non-negative ⇒ degb(x) ≤ dega(x)
⇒ 0 ≤ degb(x) ≤ dega(x).

Definition: Let F be a field and a(x), b(x) ∈ F [x] bot not zero. Greatest common divisor (GCD) if a(x) and
b(x) is the monic polynomial of the highest degree that divides both a(x) and b(x).

In other words: d(x) is the gcd of a(x) and b(x) provided that d(x) is the monic, and:
(1) d(x)|a(x) and d(x)|b(x)
(2) If c(x)|a(x) and c(x)|b(x) then degc(x) ≤ degd(x)

Note
Monic: in a polynomial F [x] is said to be monic if its leading coefficient is 1F

Example. a(x) = 2x4 + 5x3 − 5x− 2 = (2x+ 1)(x+ 2)(x+ 1)(x− 1)
b(x) = 2x3 − 3x2 − 2x = x(2x2 − 3x− 2) = x(2x+ 1)(x− 2)

then gcd(a(x), b(x)) = 2x+ 1 ?
No: x+ 1

2

Day 25

Hint towards Homework

Section 4.2 Problem 5
(c) x3 − ix2 + 4x− 4i , x2 + 1 in C[x]

x3 − ix2 + 4x− 4i = x2(x− i) + 4(x− i) = (x2 + 4)(x− i)
x2 + 1 = (x− i)(x− i)
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Last Time

b(x)|a(x)⇐⇒ a(x) = b(x)h(x) for some h(x) ∈ F [x]

This Time

Theorem 4.8

Let F be a field and a(x), b(x) ∈ F [x] both not zero, then there is a unique gcd d(x) of a(x), b(x) (where
unique is similar to monic). Furthermore, there are (not necessarily unique) polynomials u(x), v(x) ∈ F [x]
such that: d(x) = a(x)u(x) + b(x)v(x)

RECALL
d = gcd(a, b) there exists u, v ∈ Z such that d = a · u+ b · v - Well-ordering Axiom
p | b · c⇒ p | b or p | c then p is prime.

Proving this

Step 1: Non-empty
Consider S: linear combination of a(x) and b(x) , S = {a(x)m(x) + b(x)n(x)|m,n ∈ F [x]}

Find a monic polynomial of smallest degree in S.
Use the Well-ordering Principle to show that:

If a(x) ∈ S then a(x) ∈ F [x]
Note: a(x) · a(x) + b(x) · b(x) = a(x)2 + b(x)2 ≥ 0

S+ = {a(x) ·m(x) + b(x) · n(x)|m(x), n(x) ∈ F [x] and a(x) ·m(x) + b(x) · n(x) ≥ 0}
So, S+ is a non-empty set.

Then, by well-ordering principle, S+ must contain the smallest polynomial, which we will call t(x).

Step 2: Prove that t(x) = gcd(a(x), b(x))
Must check two things:

(i) t(x) | a(x) and t(x) | b(x)
(ii) If c(x) | a(x) and c(x) | b(x) then c(x) ≤ t(x)

Proving (i): Show that t(x) | a(x) and t(x) | b(x)
By Division Algorithim, there are q(x), r(x) ∈ F [x] such that a(x) = t(x)q(x) + r(x) where 0 ≤ degr(x) <

degt(x)
r(x) = a(x)− t(x)q(x) = a(x)− (a(x) · u(x) + b(x) · v(x))q(x)

⇒ r(x) = a(x)− a(x) · u(x) · q(x)− b(x) · v(x) · q(x)
⇒ r(x) = a(x)(1− u(x) · q(x)) + b(x)(−v(x) · q(x))

Thus, r(x) = a(x)(1− u(x) · q(x)) + b(x)(−v(x) · q(x)) ∈ S when u(x), q(x), v(x) ∈ F [x]
Since degr(x) < degt(x) and t(x) is the monic polynomial in S and degr(x) ≥ 0

we know that degr(x) = 0
So, when degr(x) = 0 in a(x) = t(x)q(x) + r(x)⇒ t(x) | a(x)

There is a similar arguement for b(x).
We can show that t(x) | b(x) in the same manner.

Proving (ii) : If c(x) | a(x) and c(x) | b(x) then degc(x) ≤ degt(x)
If c(x) | a(x) and c(x) | b(x) then ∃k(x), s(x) ∈ F [x] such that a(x) = c(x)k(x) and b(x) = c(x)s(x)

Again: t is the smallest polynomial of S.
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t(x) = a(x) · u(x) + b(x) · v(x) = (c(x)k(x))u(x) + (c(x)s(x))v(x) = c(x)(k(x)u(x) + s(x)v(x))
Where k(x)u(x) + s(x)v(x) ∈ f [x]

This implies that c(x) | t(x)
Which implies that degc(x) ≤ deg|t(x)| = degt(x)

Corollary 4.9

Let F be a field and a(x), b(x) ∈ F [x] 6= 0. A monic polynomial d(x) ∈ F [x] is gcd of a(x), b(x) ⇐⇒ (i)
d(x) | a(x) and d(x) | b(x) and (ii) If c(x) | a(x) and c(x) | b(x) then c(x) | d(x)

Proving this

Proving ⇒
1. gcd(a(x), b(x)) = d(x)⇒ (i) d(x) | a(x) and d(x) | b(x) and (ii) If c(x) | a(x) and c(x) | b(x) then

c(x) | d(x)
(i) By definition: If d(x) = gcd(a(x), b(x)) then d(x) | a(x) and d(x) | b(x)

(ii) If d(x) = gcd(a(x), b(x)) then d(x) = a(x)u(x) + b(x)v(x) where u(x), v(x) ∈ F [x] by Theorem 4.8
So, if c(x) | a(x) and c(x) | b(x) can we prove that c(x) | d(x) ?

Let a(x) = c(x)k(x) and b(x) = c(x)s(x) for some k(x), s(x) ∈ F [x]
Plug in to d(x) = a(x)u(x) + b(x)v(x)

d(x) = (c(x)k(x))u(x) + (c(x)s(x))v(x)⇒ c(x)(k(x)u(x) + s(x)v(x)) where k(x)u(x) + v(x)s(x) ∈ F [x]
Then by definition, c(x) | d(x)

Thus when gcd(a(x), b(x)) = d(x)⇒ (i) d(x) | a(x) and d(x) | b(x) and (ii) If c(x) | a(x) and c(x) | b(x)
then c(x) | b(x)

Proving ⇐
2. (i) d(x) | a(x) and d(x) | b(x) and (ii) If c(x) | a(x) and c(x) | b(x) then

c(x) | b(x)⇒ gcd(a(x), b(x)) = d(x)
If d(x) is a polynomial that satisfies (i) and (ii) then gcd(a(x), b(x)) = d(x)

Proving (i)
This is trivial: by definition this is true.

Proving (ii)
If c(x) | a(x) and c(x) | b(x) then c(x) | d(x)

This implies that degc(x) ≤ deg|d(x)| = degd(x)
Thus degc(x) ≤ degd(x)

Thus when c(x) | a(x) and c(x) | b(x) then c(x) | d(x)⇒ gcd(a(x), b(x)) = d(x)

Since both conditions imply the gcd(a(x), b(x)) = d(x) we know the statement is true.

Therefore, d(x) ∈ F [x] is gcd of a(x), b(x) ⇐⇒ (i) d(x) | a(x) and d(x) | b(x) and (ii) If c(x) | a(x) and
c(x) | b(x) then c(x) | d(x) is a true statement.

Theorem 4.10

Let F be a field and a(x), b(x) ∈ F [x]. If a(x)|b(x)c(x) and a(x), b(x) relatively prime (d(x) = 1) then
a(x)|c(x).

Proving this
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Since (a(x), b(x)) = d(x) = 1 by Theorem 4.8 ∃u(x), v(x) ∈ F [x] such that a(x)u(x) + b(x)v(x) = 1.

Multiply by c(x)
a(x)u(x)c(x) + b(x)v(x)c(x) = c(x) and see a(x) | b(x)c(x)⇒ b(x)c(x) = a(x)r(x) for some r(x) ∈ F [x]

a(x)u(x)c(x) + v(x)(a(x)r(x)) = c(x)
a(x)(u(x)c(x) + v(x)r(x)) = c(x)

Thus, a(x) | c(x)

Section 4.3: Irreducibles and Unique Factorizations

f(x) is an associate of g(x) in f [x]⇐⇒ f(x) = c · g(x) for some c 6= 0 ∈ F

Example. 3x2 + 2⇒ x2 + 2
3

Definition: Let F be a field. A non-constant polynomial p(x) ∈ F [x] is said to be irreducible if its only
divisors are its associates and the non-zero constant.

Note
A constant polynomial that is not irreducible ⇒ reducible.

Note
every degree 1 polynomial in F [x] is irreducible in F [x].

Theorem 4.11
Let F be a field. A non-zero polynomial f(x) is reducible in F [x]⇐⇒ f(x) can be written as a product of
two polynomials of a lower degree.

Proving this

⇒ First. Assume f(x) is reducible.
Then it must have a divisor (g(x)) that is neither an associate or a non-zero constant

such that f(x) = g(x)h(x) some h(x) ∈ F [x]
(prove g(x), h(x) degree strictly less then f(x)).

Second. Proof by Contradiction: degf(x) = degg(x)⇒ degh(x) = 0⇒ h(x) is a constant.
(same for g(x) = c) which contradicts the above statement that g(x) is not an associate.

⇐ Almost trivial by definition.
If divisors both lower degree then they are not associate because associate ⇒ same degree.

Theorem 4.12

Let F be a field and p(x) a non-constant polynomial in F [x], then the following are equivalent:
(i) p(x) is irreducible
(ii) b(x), c(x) ∈ F [x] such if p(x)|b(x)c(x) then p(x)|b(x) or p(x)|c(x)
(iii) If r(x), s(x) ∈ F [x] such that p(x) = r(x)s(x) then r(x) or s(x) is a non-zero constant polynomial.

Day 26

Going over Homework
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Section 4.3 Problem 6
x2 + 1 = (ax+ b)(cx+ d) in Q[x]

= acx2 + (bc+ ad)x+ bd where ac = 1 and bd = 0 and bc+ ad = 0
Show this impossible: a = 1

c
, c

d
+ d

c
= c2+d2

cd
= 0 , b = 1

d

⇒ c2 +d2 = 0 But since c, d non-negative, only true is when c2, d2 = 0 which contradicts that they are not 0

This Time

Theorem 4.14

Let F be a field. Every non-constant polynomial f(x) ∈ F [x] is a product of irreducible polynomials in
F [x]. The factorization is unique in that:
if f(x) = p1(x)p2(x) . . . pr(x) and f(x) = q1(x)q2(x) . . . qs(x) with pi(x), qi(x) irreducible then r = s

After re-ordering and re-naming: pi(x) is an associate of qi(x) for i = 1, 2, . . . r

Proving this
Prove by contradiction.

Let S be the set of all integers greater than 1 that are not a product of primes.
Prove that S = ∅

So say that S = ∅ , then by Well - Ordering Axiom S contains the smallest positive element m(x)
m(x) is not prime, then there exists a(x), b(x) ∈ F [x] such that m(x) = a(x) · b(x)

Know, this implies a(x), b(x) /∈ S
which means that they are a product of primes.

a(x) be represented by a(x) = p1(x) · p2(x) · . . . pr(x)
b(x) represented by b(x) = q1(x) · q2(x) · . . . qs(x)

Where all pi(x), qi(x) are primes ⇒ a(x) · b(x) = p1(x) · q1(x) · p2(x)q2(x) · . . . pr(x) · qs(x)
Then, m(x) is the product of primes.

This contradicts that m(x) is an element of S which only holds the integers that are not products of
primes.

Therefore, S must be the empty set.

Example. 1
f(x) = (2x− 2)(1

2
x− 1)(x− 3) = (x− 1)(x− 2)(x− 3) = (x2 − 3x+ 2)(x− 3)

Example. 2
377121 is this a prime number: no.

quick way to so this: x17 + x5 + 1 this is the same
no quick way to prove that it is irreducible

Section 4.4: Polynomial Functions, Roots, and Reducibility

If R is a commutative ring anx
n + . . . a2x

2 + a1x + a0 ∈ R[x] is a function f : R → R for each r ∈ R,
f(r) = anr

n + . . . a2r
2 + a1r + a0
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Example. 1
x2 + 5x+ 3 ∈ R[x] , f(x) = 1 + 5 + 3 = 9

Question: two polynomials in a ring, then for any r in function does f(r) = g(r)⇒ f(x) = g(x)? What
about for reals?

Example. 2
f(x) = x4 + x+ 1 ∈ Z3[x] . f : Z3 → Z3

f(0) = 1 , f(1) = 0 , f(2) = 16 + 2 + 1 = 19 = 1

g(x) = x3 + x2 + 1 ∈ Z3[x] . g : Z3 → Z3

g(0) = 1 , g(1) = 0 , g(2) = 1
So no.

f(r) = g(r) 6⇒ f(x) = g(x)

Definition: Let R be commutative. f(x) ∈ R[x]. An element a ∈ R is said to be a root (or zero) of
polynomial f(x) if f(a) = 0R

Example. 1
The root of f(x) = x2 − 3x+ 2 ∈ R[x] are: (x− 2)(x− 1)

So. 1 and 2

Example. 2
The root of x2 + 1 ∈ R[x] : none

But, in C : −i and i

Note
Some polynomials are reducible but do not have roots

Example. 3
f(x) = (x2 + 1)(x2 + 1) ∈ R[x]

Has no roots in R[x] but is reducible

So, if F has roots ⇒ f is reducible BUT f is reducible 6⇒ f has roots

Theorem 4.15: The remainder theorem

Let F be a field, f(x) ∈ F [x] and a ∈ F . The remainder when f(x) divided by the polynomial x−a is f(a)

Proving this

Division Algorithm:
f(x) = (x− a)Q(x) + r where r ∈ F

Consider f(a) = r
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Example. f(x) = x8 + x7 + 2 , (x− 1)
f(1) = 4

End of Week 9!
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Class Notes; Week 10, 3/23/2016

Day 27

Going Over Quiz

Problem 1
3x+ 2 in Z9

1, 2, 3, 4, 5, 6
6x+ 4 , 2x+ 6 , . . .

Problem 2
Find gcd x+ a+ b|x3 + a3 + b3 − 3abx

x3 + a3 + b3 − 3abx = (x+ a+ b)(x2 + a2 + b2 − ax+ bx− ab)
replace x, a, b symmetric xa2 + xb2

This Time

Theorem 4.15

Let F [x] be a field, f(x) ∈ F [x] and a ∈ F , then a is a root of f(x)⇐⇒ x− a is a factor of f(x)

Proving this
f(a) = 0⇐⇒ x− a|f(x)

(⇒)
If f(a) = 0 , f(a) is a remainder of f(x)

dividing x− a see: f(x) = (x− a)Q(x) + f(a) where f(x) = (x− a)Q(x)⇒ (x− a)|f(x)

(⇐)
If f(x) = (x− a)Q(x)

Replace x = a then: f(a) = (a− a)Q(x) = 0Q(x) = 0

Example. f(x) = x3 − x2 + x− 1
f(1) = 0⇒ x− 1|f(x)⇒ reducible

If f(x) has a root r, then f(x) is reducible
(*) (⇐) f(x) = (x2 + 1)(x2 + 2) ∈ R

Corollary 4.17

Let F be a field f(x) ∈ F with degf ≥ 2. If f is irreducible in F [x] then f(x) has no roots.

Corollary 4.18

If degf ≤ 3 and f reducible (except degf = 1) then f has a root in F
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(*) degf ≤ 3⇒ when f is reducible ⇒ f has a degree 1 factor ⇒ f has a root.

Corollary 4.19

If degf = 2 or 3, f is irreducible ⇐⇒ f has not roots in F .

Example. Prove x3 + x+ 1 irreducible in Z5[x]:
f(0) = 1 , f(1) = 3 , f(2) = 8 + 2 + 1 = 1

f(3) = 27 + 3 + 1 = 1 , f(4) = 64 + 4 + 1 = 4
None are 0 and has no roots.

Note
Proving it has no roots is not enough, also state if ddeg2 or deg3.

Section 4.5: Irreducibility in Q[x]

Rational root test

polynomial in Q[x] ⇒ f(x) = anx
n + an−1x

n−1 + . . . a2x
2 + a1x + a0. If r 6= 0 and r

s
is a root of f(x) then

r|a0 and s|an.
(*) r

s
⇒ sx− r|f(x)

Example. f(x) = 2x4 + x3 − 21x2 − 14x+ 12
x could = ±1, 2, 3, 4, 6, 12 and 2x could = ±1, 3
f(−3) = 0 , x+ 3|f(x) , f(1

2
) = 0⇒ 2x− 1|f(x)

So. (x+ 3)(2x− 1)(x2 − 2x− 4)

Question: prove f(x) = x18 + 2x6 + 4x5 + 10x− 2 is irreducible?

Theorem 4.23 (Eisenstein’s Criterion)

f(x) = anx
n + an−1x

n−1 + . . . a2x
2 + a1x+ a0 ∈ Z[x]. If there is a prime p such that p|a0 . . . an−1 but p 6| an

and p2 6| a0 then f(x) irreducible.

Example. 1
Pick 2 for f(x) = x18 + 2x6 + 4x5 + 10x− 2.

2|ai for all ai , 1 ≤ i ≤ 18
2|a18 , 22 6| a0 by Eisenstein criterion

Example. 2
x17 + 6x13 − 15x4 + 3x2 + 12

p = 3

Proving this
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if f(x) irreducible: f(x) = (b0 + b1x+ . . . brx
r) · (c0 + c1x+ . . . csx

s)
then a0 = b0 · c0

p2 6| a and p|a0 ⇒ p|b0 or p|c0

Day 28

Review for Exam 2

Question 1
Definition: What is a ring isomorphism? example.

A ring R is isomorphic to a ring S (In symbols: R ∼= S) if there is a function f : R→ S such that:
(i) f is injective: f(a) = f(b)⇒ a = b

(ii) f is surjective: ∀a ∈ S∃b ∈ R(f(a) = b)

(iii) f(a+ b) = f(a) + f(b)

(iv) f(ab) = f(a)f(b)

In this case F is called isomorphic.

Example

field of 2X2 matrices of

(
a b
−b a

)
∈M2(R)

Question 2
Definition: What is a ring homomorphism? example (only homomorphic not isomorphic).

Let R and S be rings. A function : R→ S is said to be homomorphic if f(a+ b) = f(a) + f(b) and
f(ab) = f(a)f(b) for all a, b ∈ R

Question 3
f : R→ R where f(x) = ax+ b. If f is a homomorphism, can we solve for a, b?

f(x+ y) = a(x+ y) + b
f(x) + f(y) = ax+ ay + b+ b = a(x+ y) + 2b

Then, for f(x+ y) = f(x) + f(y)⇒ b = 0
f(xy) = axy + b = axy

f(x)f(y) = (ax+ b)(ay + b) = (ax)(ay) = a2xy
Then for f(xy) = f(x)f(y)⇒ a = 1 or 0

Question 4
If R is commutative then R[x] commutative. Prove this.

Suppose f(x) = a0 + a1x+ a2x
2 . . . anx

n and g(x) = b0 + b1x+ b2x
2 . . . bmx

m

R commutative: g(x)f(x)b0a0 + (b1a0 + b0a1)x . . . and f(x)g(x) = g(x)f(x)
Largest x is n+m but anbm 6= 0R because an 6= 0R and bm 6= 0R

So. deg[f(x)g(x)] = n+m = degf(x)+ degg(x) and f(x)g(x) non-zero.
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Question 5
a.) If R is an integral domain, so is R[x]? T or F.
b.) If R is a field, so is R[x]? T or F.

a.) True: Similar to last proof :
f 6= 0 , g 6= 0⇒ fg 6= 0

If fg = 0⇒ f = 0 or g = 0
b.) Not always true, so the question is false.

R(x) = 3x+ 1 , R(x) ∈ R[x]
the inverse is 1

3x+1
6∈ R[x]

Question 6
GCD of x5 + x4 + 2x3 − x2 − x− 2 in Q[x] and x4 + 2x3 + 5x2 + 4x+ 4 in Q[x]

x5 + x4 + 2x3 − x2 − x− 2 = x3(x2 + x+ 2)− 1(x2 + x+ 2) = (x3 − 1)(x2 + x+ 2)
x4 + 2x3 + 5x2 + 4x+ 4 = x2(x2 + x+ 2) + x(x2 + x+ 2) + 2(x2 + x+ 2) = (x2 + x+ 2)2

and the gcd= x2 + x+ 2

Question 7
Find monic associate of 3x5 − 4x2 + 1 in Z5[x]

1, 2, 3, 4 units in Z5[x]:
3x5 − 4x2 + 1 , x5 − 3x2 + 2 , 4x5 − 2x2 + 3 , 2x5 − x2 + 4

all monic associates.

Question 8
a.) Prove if f(x) has a root in F then f(x) reducible
b.) Is converse statement correct? If not, give an example.

a.) ∃r ∈ F such that f(x) = r ⇐⇒ x− r|f(x) , ⇒ f(x) = (x− r)Q(x)
then f is reducible

b.) No.
ex. f(x) = (x2 + 1)(x2 + 2)

Question 9
a.) If f(x) is reducible in Q[x] is it reducible in Z[x]?
b.) If f(x) reducible in Z[x] is it reducible in Q[x]?

a.) No. Consider f(x) = 2x2 + x
b.) Yes.

Proof by contradiction: Assume it does not.
Let p be a prime factor of the content f(x)g(x), and apply the ring homomorphism S : Z[x]→ Zp[x] with

s : Z→ Zp by s(x) = S[x].
Then: 0 = S(f(x)g(x)) = S(f(x)S(g(x)) so the product of the two non-zero polynomials in the integral

domain of Zp[x] is equal to zero.
This is a contradiction.
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Suppose f(x) ∈ Z[x]. divide f(x) by its content and assume that it is primitive.
Suppose f(x) = g(x)h(x) so that g(x), h(x) ∈ Q[x] have lower degrees.

Then abf(x) = ag(x)bh(x) so that a, b ∈ N are the smallest integers so that ag(x), bh(x) ∈ Z[x].
Suppose c and d are the contents of ag(x) and bh(x) respectively, then abf(x) has content ab and

abf(x) = ag(x)bh(x) = (c(g′(x))(d(h′(x)) given that g′(x), h′(x) are primitive.
Suppose if f(x), g(x) ∈ Z[x] primitive, then f(x)g(x) is also. Then, g′(x)h′(x) is primitive so that cd is the

content of abf(x).
⇒ ab = cd

Thus. if f(x) is reducible in Z[x] then it is reducible in Q[x].

You should be able to do all of these one your own.
Students went up in class and answered the first 7 questions, but you can find them in these notes.

Good Luck on Exam 2!

Day 29

Exam day

End of Week 10!
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