
MTH310 - Notes for Exam 1 Section 001

Class Notes; Week 1, 1/15/2016

Introduction
Final worth 200pts
Two midterms both worth 100pts each
Homework worth 150pts total and will be turned in every Friday, there will be between 10-12 assigned
Quizzes worth 100pts total and will be taken every Friday.

Review of Polynomial Formulas and Equations
Quadratic-

Formula: ax2 + bx+ c = 0
Equation: x = −b±

√
b2−4ac
2a

Third Degree Polynomial:

Formula: ax3 + bx2 + cx+ d = 0
Equation: Was solved in 1539 by Cardano.

Fourth Degree Polynomial:

Formula: ax4 + bx3 + cx2 + dx+ e = 0
Equation: Was solved in 1545 by Ferrari.

Fifth Degree Polynomial:

It is impossible to find radical solutions of polynomials with degree greater than or equal to five.
i.e. the solution can not be expressed just by the coefficients of the polynomials.

Discovered by Galois (1811 - 1832) that it is impossible to find a ”x . . . ”
Considered the Galois Theory.

Chapter 1
Day 1

The Division Algorithim
Theorem 1.1
Let a, b ∈ Z where b > 0 , then there exists a unique q, r ∈ Z where a = bq + r and 0 ≤ r < b .

Example. Example: 82

7

Where 7 is the divisor, 82 is the dividend, 11 is the quotient, and 5 is the remainder.

Well-Ordering Axiom Every non-empty subset of the set of non-negative integers (Z+) contains a smallest
element.
Is this true?
Not Always
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Example. S = {1, 8, 10, 13} and S1 = {0, 5, 10, 11} and S2 = {x|0 < x < 1}
Where S2 is taken from the ”integer” condition.

Therefore, S2 does not contain the smallest element.

Proving Theorem 1.1
Let a, b ∈ Z be fixed where b > 0. Consider set S = {a− bx|x ∈ Zanda− bx ≥ 0}
So, S is a non-negative subset of integers.

Step 1: Non-empty
First, show a+ b|a| ≥ 0 so a+ b|a| ∈ S

Since b > 0 we can say b ≥ 1
So, b|a| ≥ |a| when |a| > 0

b|a| ≥ −a
a+ b|a| ≥ 0

Which implies that S is non-empty.

Step 2: Find q and r
Find q, r ∈ Z such that a = bq + r

By Well-Ordering Axiom S contains a smallest element: call this r.
Since r ∈ S we know that r ≥ 0 and r = a− bx for some x.

Let x = q
Thus, r = a− bq ⇐⇒ a = bq + r and r ≥ 0

Step 3: Show that r < b
Proof by Contradiction.

Assume that r < b is false, thus the new true statement would be r ≥ b
So, r − b ≥ 0 then when we plug in what it means for r ∈ S we see that r − b ≥ 0 =⇒ (a− bq)− b

By simplifying: (a− bq)− b ⇒ a− bq − b ⇒ a− b(q + 1)
Since a− b(q + 1) is a non-negative integer, it reasons that it is an element of S.

This creates a contradiction.
When r − b < r ⇒ a− b(q + 1) = r − b < r ⇒ a− b(q + 1) < r

It contradicts that r is the smallest element of S.
Thus, r ≥ b is false and r < b is true.

Step 4: Show that q and r are unique
If there are q, r, q1, r1 ∈ Z such that a = bq + r and a = bq1 + r1

where 0 ≤ r < b , and 0 ≤ r1 < b.
So, a = a ⇒ bq + r = bq1 + r1 ⇒ bq − bq1 = r1 − r ⇒ b(q − q1) = r1 − r

Sidenote: 0 ≤ r < b ⇒ −b < −r ≤ 0 and 0 ≤ r1 < b
So, −b < r1 − r < b

From here, we plug in our solution for r1 − r
See, −b < b(q − q1) < b ⇒ −1 < q − q1 < 1

By q − q1 = 0 ⇒ q = q1
If q = q1 then r = r1
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Day 2

Review from last time
a, b ∈ Z
Then, for the Division Algorithim a = bq + r
We assume b > 0 and 0 ≤ r < b
Now, we can say a an be either positive or negative.

Example. 1
a = 4327 and b = 281
a
b
= 4327

281
= 15.39857 . . .

Or, in a = bq + r form q = 15 and r = 112.

Example 2
a = −7432 and b = 453

a
b
= −7432

453
= −16− 0.40618 · · · = −17 + 0.5938 . . .

Or, in a = bq + r form q = −17 and r = 269.

This Time

Section 1.2: Divisibility
Definition: Let a, b ∈ Z where b 6= 0
Say b divides a (b | a) or that b is a divisor of a.
If a = bc for some c ∈ Z then b | a.
In Symbols:

”b divides a” ⇒ b | a
”b does not divide a” ⇒ b ∤ a

Example. 3 | 24
7 ∤ 24

Note 1
Every non-zero integer b divides 0 because 0 = b0

Note 2
For all a ∈ Z see that 1 | a because a = 1a

Remark
If b | a then a = bc.
We can see that −a = b(−c). Thus, a and −a have the same divisors.

Comment 1
Every divisor of the non-zero integer a is less than or equal to |a|.

[In otherwords: if a = 6 all the divisors are ±1,±2,±3,±6]

Comment 2
A non-zero integer has only finite amount of divisors.
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Definition: Let a, b ∈ Z where a, b 6= 0.
The Greatest Common Divisor (gcd) of a, b is the largest integer that divides both a and b.
[In otherwords: d is the gcd of a, b provided that (i) d | a and d | b and (ii) If c | a and c | b then c ≤ d.]
Note: this is notated by (i) d = gcd(a, b) or (ii) (a, b) = d.

Example. (12, 30) = 6
Because 12 = 2 · 6 and 30 = 5 · 6

Theorem 1.2
Let a, b ∈ Z where a, b 6= 0 and d = gcd(a, b) for some d ∈ Z
Then, there exists (not necessarily unique) u, v ∈ Z such that d = a · u+ b · v

Example. Example
(12, 30) = 6 ⇒ 6 = 30 · (1) + 12 · (−2) ⇒ 6 = 6

So the Theorem works.

Proving Theorem 1.2
Let S be the set of all linear combinations of a and b.
That is: S = {a ·m+ b · n|m,n ∈ Z}

Step 1: Non-empty
Use the Well-ordering Principle to show that:

If x ∈ S then x ∈ Z+

Note: a · a+ b · b = a2 + b2 ≥ 0
S+ = {a ·m+ b · n|m,n ∈ Z and a ·m+ b · n ≥ 0}

So, S+ is a non-empty set.
Then, by well-ordering principle, S+ must contain the smallest positive integer, which we will call t.

Step 2: Prove that t = gcd(a, b)
Must check two things:

(i) t | a and t | b
(ii) If c | a and c | b then c ≤ t

Step 2(i): Show that t | a and t | b
By Division Algorithim, there are q, r ∈ Z such that a = tq + r where 0 ≤ r < t

r = a− tq = a− (a · u+ b · v)q
⇒ r = a− a · u · q − b · v · q
⇒ r = a(1− u · q) + b(−v · q)

Thus, r is also linear combination of a and b
r ∈ S , r < t (Since t is the smallest element in S+)

We know that r is not positive.
Since r ≥ 0 the only possibility is that r = 0.
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Day 3

Continue From Last Time
Proving Theorem 1.2 :
If (a, b) = d then there exists u, v ∈ Z such that a · u+ b · v = d
S+ must contain the smallest positive integer, which we will call t where t is the gcd of a and b.
Must check two things:
(i) t | a and t | b
(ii) If c | a and c | b then c ≤ t

Proving (i): Show that t | a and t | b
By Division Algorithim, there are q, r ∈ Z such that a = tq + r where 0 ≤ r < t

r = a− tq = a− (a · u+ b · v)q
⇒ r = a− a · u · q − b · v · q
⇒ r = a(1− u · q) + b(−v · q)

Thus, r = a(1− u · q) + b(−v · q) ∈ S when u, q, v ∈ Z
Since r < t and t is the smallest non-negative (positive) element in S and r ≥ 0

we know that r = 0

another way of saying the last point
Since r < t and t is the smallest positive element in S , r ∈ S and r ≤ 0

When considering 0 ≤ r < t
We see that r = 0

So, when r = 0 in a = tq + r ⇒ t | a
There is a similar arguement for b.

We can show that t | b in the same manner.

Proving (ii) : If c | a and c | b then c ≤ t
If c | a and c | b then ∃k, s ∈ Z such that a = ck and b = cs

Again: t is the smallest positive integer of S.
t = a · u+ b · v = (ck)u+ (cs)v = c(ku+ sv)

Where ku+ sv ∈ Z
This implies that c | t

Which implies that c ≤ |t| = t

This Time
Theorem 1.3
Let a, b ∈ Z where a, b 6= 0 and d, e ∈ Z+

d is the gcd of (a, b) ⇐⇒ (i) d | a and d | b and (ii) If c | a and c | b then c | b.
Example. Consider the number 30 and 12

Divisors: 1, 2, 3, 4, 5, 6, 10, 10, 15, 30
And 1, 2, 3, 4, 6, 12

The common divisors: 1, 2, 3, 6
So, gcd(30, 12) = 6

Where 3, 2, 1 are all factors of 6 and common factors of 30 and 12.
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Proving Theorem 1.3
So, for the ”if and only if” statement (⇐⇒) we must prove both sides of the argument.

Proving ⇒
1. gcd(a, b) = d ⇒ (i) d | a and d | b and (ii) If c | a and c | b then c | b

(i) By definition: If d = gcd(a, b) then d | a and d | b
(ii) If d = gcd(a, b) then d = au+ bv where u, v ∈ Z by Theorem 1.2

So, if c | a and c | b can we prove that c | d ?
Let a = ck and b = cs for some k, s ∈ Z

Plug in to d = au+ bv
d = (ck)u+ (cs)v ⇒ c(ku+ sv) where ku+ vs ∈ Z

Then by definition, c | d
Thus when gcd(a, b) = d ⇒ (i) d | a and d | b and (ii) If c | a and c | b then c | b

Proving ⇐
2. (i) d | a and d | b and (ii) If c | a and c | b then c | b ⇒ gcd(a, b) = d
If d is a positive integer that satisfies (i) and (ii) then gcd(a, b) = d

Proving (i)
This is trivial: by definition this is true.

Proving (ii)
If c | a and c | b then c | d

This implies that c ≤ |d| = d
Thus c ≤ d

Thus when c | a and c | b then c | d ⇒ gcd(a, b) = d

Since both conditions imply the gcd(a, b) = d we know the statement is true.

Therefore, d is the gcd of (a, b) ⇐⇒ (i) d | a and d | b and (ii) If c | a and c | b then c | b is a true statement.

Asking The Class
If a | b · c , then a | b or a | c.
Is this true?

No
Example: a = 6 , b = 2 , c = 3

However
There are sometimes where it does work.

If a, b are already prime and the gcd(a, b) = 1 then a | b · c ⇒ a | c

Theorem 1.4
If a | b · c and gcd(a, b) = 1 then a | c
Proving Theorem 1.4
Since (a, b) = 1 by Theorem 1.2 ∃u, v ∈ Z such that au+ bv = 1.
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Professor’s Way
Multiply by c

auc+ bvc = c and see a | bc ⇒ bc = ar for some r ∈ Z
auc+ v(ar) = c
a(uc+ vr) = c
Thus, a | c

Student Idea
bc = am

Side-note: bv = 1− au
b = 1−au

v

(back to the original thing)
(1−au

v
)c = am

(1− au)c = amv
c− auc = amv
c = amv + auc
c = a(mv + uc)

Thus by definition, a | c
Note: this way works, but it is different from what the text.

End of Week 1!
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Class Notes; Week 2, 1/22/2016

Day 4

Hints for Homework 1

Example. 1
75 = 3 · 25 This is not needed.

7 + 5 = 12 Since 3 | 12 thus 3 | 75
Example 2

96375
9 + 6 + 3 + 7 + 5 = 30 Since 3 | 30 thus 3 | 96375

Example 3
375 = 3 · 100 + 7 · 10 + 5 · 1
99 + 1 = 100 Use this to see:

10n ≡ 1 mod 3
Then you can simplify the argument from this.

This Time

Section 1.3: Primes and Factorizations
Definition: Let p ∈ Z. p is said to be prime if p 6= 0 , ±1 and the only divisors of p are ±1 and ±p.

Example. 2, 3, 5, 7, 11, 13, 17, 19, . . .

Note
There are infinitely any primes.

Proving this
Prove by contradiction: Assume there exists a finite amount of primes
Represented by p1, p2, . . . pn
M = p1 · p2 · . . . pn + 1 but p1 ∤ M
All primes cannot divide M implies M is prime.
This contradicts that you listed all possible primes.
Thus, the Note is true.
Master Prime Number
For context, primes can be written as 2n − 1

Example. 257883161 − 1 is the biggest prime number
This is not trivial because it has 17, 425, 170 digits
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Euler
A 16th century mathematician
Used hand notation to show that 231 − 1 is prime
[2, 147, 483, 647]

Frank, Nelson, and Cole
In 1876 Lucas proved that 267 − 1 is not a prime number.
40 years later. in 1903 Frank showed that 267 − 1 = 761838257287 · 193707921 .
This helped in having people recognize him as the greatest mathematician in the 21st century.
[Just a little history about prime numbers]

Remark 1
p is prime ⇐⇒ −p is prime.

Remark 2
If p, q are prime and p | q, then p = ±q

Note: Since q is prime, p can only be ±1 or ±q
But by definition p is prime, p 6= ±1

So, p = ±q

Theorem 1.5
Let p ∈ Z where p 6= 0,±1
p is prime ⇐⇒ p has the property: If p | b · c then p | b or p | c.
Proving Theorem 1.5
Prove both sides

p is prime ⇒ p has the property: If p | b · c then p | b or p | c
If p is prime, then (p, b) = 1 and (p, c) = 1

p and b relatively prime, p and c relatively prime.
By Theorem 1.4 we know p | c or p | b holds.

Thus, this is trivial.

p has the property: If p | b · c then p | b or p | c ⇒ p is prime
(This is a homework problem)

Corsllary 1.6
If p is prime and p | a1 · a2 · . . . an , then p | ai for some i

Proving Corrally 1.6
If p | a1 · a2 · . . . an ⇐⇒ p | a1 · (a2 ·3 · . . . an)
By theorem 1.5 p | a, or p | a2 · a3 · . . . an
If p | a1 we are done.

If not, p | a2 · a3 · . . . an.
Continue this process and we see that after n steps, there exists i such that p | ai.
Theorem 1.7
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Every integer except 0,±1 is a product of primes.

Proving Theorem 1.7
Prove by contradiction.

Let S be the set of all integers greater than 1 that are not a product of primes.
Prove that S = ∅

So say that S = ∅ , then by Well - Ordering Axiom S contains the smallest positive element m
m is not prime, then there exists a, b ∈ Z such that m = a · b

Know, this implies a, b /∈ S
which means that they are a product of primes.

a be represented by a = p1 · p2 · . . . pr
b represented by b = q1 · q2 · . . . qs

Where all p1, qi are primes ⇒ a · b = p1 · q1 · p2q2 · . . . pr · qs
Then, m is the product of primes.

This contradicts that m is an element of S which only holds the integers that are not products of primes.
Therefore, S must be the empty set.

State Theorems 1.8 and 1.10

Theorem 1.10
Let n > 1 If n has no positive prime factors less than or equal to

√
n then n is prime.

Proving Theorem 1.10 If n is a composition number n can be represented a · b (n = a · b)
If a >

√
n and b >

√
n ⇒ n = a · b > n

This is not possible.

Example. 137 = a · b
At least a or b ≤

√
137 ≡ 12

Check all primes under 12 (2, 3, 5, 7, 11)

Theorem 1.8
The Fundamental Theorem of Arithmetic.
Every integer n , n 6= 0,±1 is a product of primes.
Prime Factorization is unique in:

n = p1 · p2 · . . . pr and n = q1 · q2 · . . . qs

Then r = s (The number of prime factors are equal).
After renaming and reordering: p1 = ±q1 . . . pr = ±qr.

Day 5

Quiz Day
Turn in Homework
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Going over assignment

Section 1.3 Problem 34
Prove or disprove: If n ∈ Z and n > 2 then there exists a prime p ∈ Z such that n < p < n!

Let n ∈ Z where n ≥ 3
Assume m = n!− 1
This is less then n!

If m is prime, we are done.

If m is not prime, there exists p prime such that p | m < n!
Now, show p > n

Let k ∤ n!− 1 if k ∈ {2, 3, 4, . . . n}
So , p > n

Section 1.3 Problem 36 Prove that when p, q ≥ 5 and prime, then 24 | p2 − q2

24 | p2 − q2 ⇒ 3 · 8 | p2 − q2

Proving 3 | p2 − q2

p prime ⇒ p = 3k, 3k + 1, 3k + 2
except not 3k because it is prime and cannot have a factor besides ±p or ±1.

p2 = 9k2 + 6k + 1 = 1 mod (3) or p2 = 9k2 + 12k + 4 = 1 mod (3).

Proving 8 | p2 − q2

Similar reasoning.

This Time

Chapter 2

Congruence in Z and Modular Arithmetic

Section 2.1

Definition: Let a, b, n ∈ Z where n > 0
Then a is congruent to b modular n provided that n | a− b.

In symbols: a ≡ b mod n or a ≡ b(n)

Example. 1
17 ≡ 5 mod 6

Example 2
23 ≡ 17 mod 6 ⇒ 23 ≡ 5 mod 6
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This is a conditional and an ⇐⇒ statement.

Modular System
Two non-trivial theorems:

1. If p prime and p ∤ a then ap−1 ≡ 1 mod p
Fermat little theorem

2. If p prime then (p− 1)! ≡ −1 mod p
Wilson theorem.

Example. 1
26 ≡ 1 mod 7

36 ≡? mod 7 ⇒ 36 ≡ 1 mod 7
46 ≡ 1 mod 7
56 ≡ 1 mod 7

These are all true.

Example 2
6! ≡ −1 mod 7

Example 3
78 ≡? mod 7 ⇒ 78 ≡ 1 mod 8

156 ≡ 1 mod 7
176 ≡ 1 mod 7

These are trivial because it is reliant upon p ∤ a

Theorem 2.1

Equivalent classes

Let n be a positive integer.
For all a, b, c ∈ Z

1
a ≡ a mod n

2
a ≡ b mod n ⇒ b ≡ a mod n

3
a ≡ b mod n and b ≡ c mod n ⇒ a ≡ c mod n

Proving Theorem 2.1
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1 : Reflexive
Trivial.

2 : Symmetric
King of trivial, but a little more work.

3 : Transative
a = qn+ r then it is trivial.

See n | a− b and n | b− c ⇒ n | a− b+ b− c = n | a− c

This is an important foundation to prove theories.

End of Week 2!

Class Notes; Week 3, 1/29/2016

Day 6

Hints from the Grader
Tom Gannon
gannonth@msu.edu

Example. Expected Homework solution
Let n ∈ Z what are the values of (n , n+ 2)?

Let d = gcd(n, n+ 2) for some n ∈ Z
then d | n and d | n+ 2

There are l, k ∈ Z where n = d · k and n+ 2 = d · l by definition of divisibility
Then 2 = 2 + n− n = d · l − d · k ⇒ 2 = d · (l − k)
Thus d | 2 and the only positive divisors of 2 = 1, 2

Therefore the only possible values are 1, 2.

Question 2 From Quiz

p | b · c ⇒ p | b or p | c, Prove this is prime
Assume p = m · n for some m,n ∈ Z
Two conditions: (1) p | m ⇒ m

p
= 1

n

For m
p
∈ Z ⇒ 1

n
∈ Z only when n = ±1

Thus p is prime.
Similar reasoning for p | n
p has a factor d, d | p ⇒ p = d · t for some t ∈ Z
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this implies that p | d or p | t
If d | p and p | d ⇒ p = ±d

This Time

Theorem 2.2
If a ≡ b mod n and c ≡ d mod n then a+ c ≡ b+ n mod n and ac ≡ bd mod n

Example. 4 ≡ 1 mod 3 and 5 ≡ 2 mod 3
4 + 5 ≡ 1 + 2 mod 3 and 4 · 5 ≡ 1 · 2 mod 3

Proving Theorem 2.2
If a ≡ b mod n , c ≡ d mod n then n | (a− b) and n | (c− d).
(1) Since n | (a− b) and n | (c− d) , then n | (a− b) + (c− d)
Then n | (a+ c)− (b+ d) ⇒ a+ c ≡ b+ d mod n
(2) Home work problem
Hint: a = n · k1 + r , b = n · k2 + r , c = n · k3 + r1 , d = n · k4 + r1

Definition
Let a, n ∈ Z where n > 0
The congruent class of a modulo n ( denoted [a]) is the set of all the integers that are congruent to n :
[a] = {b|b ∈ Z, b ≡ a mod n}
[a] = {b|b = a+ k · n some k ∈ Z} = {a+ k · n|k ∈ Z}

Example. 1
In Congruence modulo 5 we have:

[9] = {9 + 5k|k ∈ Z} = {· · · − 6,−1, 4, 9, 14, 19 . . . }
[9] = [14] = [−6]

Example. 2
In modulo 3 we see:

[2] = {· · · − 4,−1, 2, 5, 8, 11 . . . }

Theorem 2.3
a ≡ c mod n ⇐⇒ [a] = [c]

Proving Theorem 2.3

⇒ If a ≡ c mod n ⇒ [a] ⊆ [c] and [c] ⊆ [a]
Let b ∈ [a] prove b ∈ [c]

By definition b ≡ a mod n
Since a ≡ c mod n by transitivity b ≡ c mod n

Thus, b ∈ [c] and [a] ⊆ [c]

Let d ∈ [c] prove d ∈ [a]
By definition d ≡ c mod n

By reflexive property: a ≡ c mod n ⇒ c ≡ a mod n
Then by transitivity: d ≡ a mod n
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Thus, d ∈ [a] and [c] ⊆ [a]
Therefore [a] = [c]

⇐ If [a] = [c] ⇒ a ≡ c mod n
Let a ∈ [a]

Then a ≡ a mod n
a ∈ [a] ⇒ a ∈ [c] then a ≡ c mod n

Corallary 2.4
Two congruence classes modulo n either disjoint or identical.

So. [a] = [c] or [a] ∩ [c] = ∅
Proving Cor. 2.4
If [a] and [c] are disjoint, then we are done.

If not, we have a bit more work.

[a] ∩ [c] 6= ∅ then [a] ∩ [c] = {b}
b ∈ [a] ⇒ b ≡ a mod n
b ∈ [c] ⇒ b ≡ c mod n

By reflexive, then transitive we see a ≡ c mod n
Then by theorem 2.3 [a] = [c]

Thus when the intersect is not the empty set, the classes are equal.

State Corallary 2.5
Let n > 1 where n ∈ Z and consider congruence modulo n
(1) If a ∈ Z and r is the remainder 0 ≤ r < n
When a divided n then [a] = [r]
(2) Then, there are exactly n distinct congruent classes, namely:
[0], [1], [2], . . . [n− 1] that are possible

Day 7

From Last Time
Proving Cor. 2.5

Let n > 1 be an integer and consider congruence modulo n
(1) If a ∈ Z and r is the remainder 0 ≤ r < n
When a divided n then [a] = [r]
(2) Then, there are exactly n distinct congruent classes, namely:
[0], [1], [2], . . . [n− 1] that are possible

(1)
a = n · q + r when q ∈ Z , 0 ≤ r < n

a− r = n · q
a ≡ r mod n by theorem 2.3 [a] = [r]

[Remember: [a] holds all the integers such that their remainder is in the same set.]
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(2)
We have [0], [1], [2], . . . [n− 1] as a list on n congruent classes.

Need to show that these n classes are all distinct.
Proof by contradiction.

Assume s, t are distinct elements in the list such that [s] = [t]
By theorem 2.3 [s] = [t] ⇒ s ≡ t mod n

⇒ s− t = n · k some k ∈ Z
⇒ n mod s− t ⇒ −n < s− t < n

Where the only case is s = t
This contradicts that s and t are distinct integers.

Thus, no two of [0], [1], [2], . . . [n− 1] are congruent modulo n
By theorem 2.3 [0], [1], [2], . . . [n− 1] are all distinct.

Example. 3
N = {{3 · k}, {3 · k + 1}, {3 · k + 2}}

2
N = {{2 · k}, {2 · k + 1}} (even or odd cases)

This Time

Definition: The set of all congruent classes modulo n is denoted Zn (read ”Z mod n)

Example. In real numbers this is true:
If a · b = o ⇒ a = 0 or b = 0
But in Z4 this is not true:

[2] · [2] = [0] in Z4

Section 2.2

Modular Arithmetic

[a] ∈ Zn of [0], [1], [2] . . . [n− 1] is the bracket a set containing infinitely many numbers
The sum of [a] and [c] is the class containing a+ c

In symbols:
[a] + [c] = [a+ c]
And for multiplication we see:
[a] · [c] = [a · c]

Example. 1
N = {{3 · k}, {3 · k + 1}, {3 · k + 2}}

[a] = [3 · k + 1] , [c] = [3 · k + 2]
[a] + [c] = [3 · k + 1] + [3 · k + 2] = [3 · k + 3] = [3 · k] which is the set of all integers divisible by 3

[a+ c] = [3 · k + 1 + 3 · k + 2] = [6k + 3] = [3k] which is the set of all integers divisible by 3
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Example. 2
Z5

[3] + [4] = [3 + 4] = [7] = [2]
[3] · [2] = [3 · 2] = [6] = [1]

Theorem 2.6

If [a] = [b] and [c] = [d] in Zn then [a+ c] = [b+ d] and [ac] = [bd]

Confirm Not Prove
[a] = [b] ⇒ a ≡ b mod n
[c] = [d] ⇒ c ≡ d mod n
Say there is a very nice algebraic structure between them.

Definition:
Addition and Multiplication in Zn are defined:
(1) [a] + [c] = [a+ c]
(2) [a] · [c] = [a · c]

Example. Addition and Multiplication Table in Z3

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

* 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

[2] + [2] = [2] · [2]

Properties of Modulo arithmetic
(1)If a, b ∈ Z then a+ b ∈ Z [Closure for addition]
(2) a+ (b+ c) = (a+ b) + c [Associative of addition]
(3) a+ b = b+ a [Commutative addition]
(4) There exists an 0 such that a+ 0 = 0 + a = a [Addition identity]
(5) a+ x = 0 has a solution in Z
(6) a, b ∈ Z then a · b ∈ Z [Closure for multiplication]
(7) a(b · c) = (a · b)c [Associative of multiplication]
(8) a(b+ c) = ab+ bc and (a+ b)c = ac+ bc [Distributive laws]
(9) a · b = b · a [Commutative multiplication]
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(10) a · 1 = 1 · a = a [Multiplication identity]
(11) a · b = 0 then a = 0 or b = 0

True for [in Zn]
(1) , (2) , (3) , (4) , (5) , (6) , (7) , (8) , (9) , (10)

(5) [a] + [n− 1]

Not (11)
For Zn if n is not prime

[a]k = [a] · [a] · . . . [a] for k ∈ Z (k factors) exponent of Zn

Example. 1
in Z5

[3]2 = [4]
[3]4 = [1]

Example. 2
Solve (x2 + [5]) · x = [0] in Z6

[0] = [0] [3] = [0]
[1] = [0] [4] = [0]
[2] = [0] [5] = [0]

Day 8

Quiz Day
Turn in Homework

Going over assignment

Section 2.1 Problem 21(b)

Every positive integer is congruent to the sum of its integers modulo 9.

38 ≡ 2 mod 9
11235 ≡ 3 mod 9

10n ≡ 1 mod 9 for all n ⇒ (9 + 1)n

378 = 3 · 102 + 7 · 10 + 8
an · an−1 · an−2 . . . a1 = an · 10n−1 + an−1 · 10n−2 + . . . a1 · 100

⇒ a1 + a2 . . . an mod 9

This Time

Congruence in Z and Modular Arithmetic

Section 2.3
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The structure of Zp (p is prime) and Zn

New notation: Zn [0], [1], [2] . . . [n− 1]
If making no confusion, we write:
0, 1, 2 . . . n− 1] in Zn

Example. 1
In Z6:

2 · 3 = 0 instead of [2] · [3] = [0]
We use 2 in Zn instead of [2] in Zn

Example 2
Addition Table of Z3

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

Example. 3 In Z6 solution for 2 · x = 1?
No solution

Question
For what kind n , 2 · x = 1 with solutions?
n and a , a · x = 1

Theorem 2.8

If p > 1 where p ∈ Z then the conditions are equivalent when:
(1) p is prime
(2) For any a 6= 0 in Zp then a · x+ 1 has a solution in Zp

(3) Whenever b · c = 0 in Zp then b = 0 or c = 0
Proving Theorem 2.8
(1) ⇒ (2) ⇒ (3) ⇒ (1)

(1) ⇒ (2)
If p is prime and a 6= 0 in Zp

a 6≡ 0 mod p
gcd(a, p) = 1 ⇒ au+ pv = 1 some u, v ∈ Z

⇒ au ≡ 1 mod p

(2) ⇒ (3)
If a · b = 0 in Zp

a 6= 0 in Zp ⇒ by (2) a · u = 1
Thus 1 · b = 0 in Zp

⇒ b = 0 in Zp

0 = u · 0 = u · a · b = a · u · b = 1 · b = b
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(3) ⇒ (1)
If b · c = 0 in Zp ⇒ b = 0 or c = 0

⇒ p | b · c ⇒ p | b or p | c
(? ⇒ p is prime - this is from Quiz 1)

Assume factor d of p
Prove d = ±p

End of Week 3!

Class Notes; Week 4, 2/5/2016

Day 9

Going Over Quiz

Quiz: Question 1 part b
If p is prime ⇒ If p | ab ⇒ p | b or p | a
If p is prime and if p | ab prove p | a pr p | b

If p | b then we are done

If not, i.e. p ∤ b try to prove p | a
gcd(p, b) = 1

(way 1)
gcd(p, b) = 1 and p | ab then p | a

(way 2)
There exists u, v ∈ Z such that pu+ bv = 1

⇒ bv = 1− pu
Regard pk = ab ⇒ pkv = a− apu

⇒ p(kv + au) = a
Thus p | a

This Time Cor. 2.9

Let a, b, n ∈ Z where n > 1 and gcd(a, n) = 1
Then ax = b has a unique solution in Zn

MEMORIZE next thing
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Previosuly Proved:
If p > 1 where p ∈ Z then the conditions are equivalent when:
(1) p is prime
(2) For any a 6= 0 in Zp then a · x+ 1 has a solution in Zp

(3) Whenever b · c = 0 in Zp then b = 0 or c = 0

Proving Cor. 2.9
If gcd(a, n) = 1 ⇒ au+ nv = 1 some u, v ∈ Z
⇒ au = 1 in Zn ⇒ aub = b
So, ub is a solution of ax = b

Prove the it is unique:
If w is another solution for ax = b ⇒ aw = b
aw = b and aub = b ⇒ aw − aub = b− b = 0
⇒ a(w − ub) = 0 ⇒ au(w − ub) = u0 = 0
⇒ (w − ub) = 0 ⇒ w − ub = 0 ⇒ w = ub
Thus w = ub and the solution is unique.

Example. 1
p is not prime:

Z4 breaks for the 3rd condition

Example. 2
24x = 5 in Z95

Unique solution or not?
(95, 24) = 1

5x = 5 in Z5 then x = 1
5x = 5 in Z95 then x = 1, 20, 39 . . .

Chapter 3

Rings

Section 3.1

We like to keep our basic properties of Z and Zn

Definition
A ring is a non-empty set R equipped with two operations (usually written as addition and multiplication)
that satisfies the following axioms:

For all a, b, c ∈ R
(1) Closure under addition

If a ∈ R , b ∈ R then a+ b ∈ R
(2) Association under addition

MSU 21



MTH310 - Notes for Exam 1 Section 001

a+ (b+ c) = (a+ b) + c
(3) Commutative under addition

a+ b = b+ a
(4) Addition Identity

There exists 0r in R where a+ 0R = 0R + a = a for all a ∈ R
(5) Inverse of addition

For all a ∈ R , a+ x = 0R has a solution in R
(6) Closure under multiplication
If a ∈ R , b ∈ R then ab ∈ R

(7) Association of multiplication
a(bc) = (ab)c

(8) Distributive Laws
a(b+ c) = ab+ ac and (a+ b)c = ac+ bc

Example. 1
Z , Zn , R , C , I are all rings

Example. 2
Even numbers is a ring

Odd numbers is not: Violates the 1st axiom
M2(K) = { matrix below | a, b, c, d ∈ R}

(

a b
c d

)

Not: fails commutative of multiplication axiom

Day 10

From Last Time

Definition of Rings

Even numbers are a ring without identity
This Time

Units and Zero Divisors

Units

An element in Zn is called a unit if the equation ax = 1 has a solution.
There exists b ∈ Zn such that ab = 1
Say b is the inverse of a
Zero Divisor

A non-zero element in Zn is called a zero divisor if the equation ax = 0 has non-zero solutions
There exists c ∈ Zn such that ac = 0
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Example. 1
in Z4

0, 1, 2, 3
Neither , unit , zero-divisor , unit

Example. 2
in Z8

(Homework problem)
Units: 1, 3, 5, 7

Zero Divisors: 2, 4, 6

Definition

An integral Domain is n commutative ring R with identity 1R 6= 0R that satisfies this axiom:
(11) whenever a, b ∈ R and ab = 0R then a = 0R or b = 0R

Example. 1
in Z7

(if p is prime p | ba ⇒ p | a or p | b
an integral domain

*NOTE* every non-zero element in Z7 is a unit not a zero divisor

Example. 2
in Z6

2 · 3 = 0R but 2 6= 0R and 3 6= 0R
So if p is prime Zp is an integral domain, if not Zp is not an integral domain

Definition
A field is a computative ring with identity 1R 6= 0R that satisfies this axiom:
(12) for any a 6= 0 ∈ R the equation ax = 1R has a solution in R
[every non-zero element has multiplication inverse → a unit]

Example. in Z7

yes: so, Zp is a field such that p is prime.

Question?
Is every field an integral domain?
Yes: if ab = 0
when a = 0 we are done
when a 6= 0 there exists u such that au = 1
u(ab) = 0 ⇒ (ua)b = 0 ⇒ b = 0
Thus a field is integral domain.
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Question?
Is every integral domain a field?
Things that work: R,C,Q
Things that do not Z
Thus, no. Not every integral domain is a field.

a finite integral domain ⇒ a field

Example. 1
Check C (Complex) is a field:
(1) a+ bi ∈ C and c+ di ∈ C

a+ bi+ c+ ci = (a+ c) + (b+ d)i ∈ C
Addition closure holds
(2) associative addition

. . .
Commutative:

(a+bi)(c+di) = (c+di)(a+bi)
(10) for all a+ bi ∈ C 6= 0

1

a+bi
∈ C???

a−bi
a2+bi2

= a
a2+bi2

+ −b
a2+bi2

i ∈ C
Therefore, this satisfies all the conditions/

Example. 2
Take the set of all 2X2 matrices of the form

(

a b
−b a

)

Where a, b ∈ R
[R is real : R is a ring]

Claim k is a field.

Proof : sketch

1.

(

a b
−b a

)

∈ K +

(

c d
−d c

)

∈ K =

(

a+ c b+ d
−b− d a+ c

)

∈ K

Holds.
2. Show for everything
. . .

6.

(

a b
−b a

)

∈ K ·
(

c d
−d c

)

∈ K =

(

ac+ bd ad− bc
bc− ad bd+ ac

)

∈ K

Day 11

Quiz Day
Turn in Homework

Going over assignment

Problem 5
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(

0 r
0 0

)

with r ∈ Q
(

0 r
0 0

)

·
(

0 r1
0 0

)

=

(

0 0
0 0

)

If

(

0 r
0 0

)

·
(

0 r1
0 0

)

=

(

0 r
0 0

)

Then

(

0 r1
0 0

)

is the multiplication identity.

(d.)
(

a 0
a 0

)

(

a 0
a 0

)

·
(

b 0
b 0

)

=

(

ab 0
ab 0

)

If

(

a 0
a 0

)

·
(

1 0
1 0

)

=

(

a 0
a 0

)

Then

(

1 0
1 0

)

is the multiplication identity.

Problem 14

Let a, b, n ∈ Z where n > 1 d = (a, n) d | b ax = b has d distinct solution in Zn.
a.) 2x = 2 in Z4 1, 3
3x = 3 in Z6 1, 3, 5
[ub1], [ub1 + n1], [ub1 + 2n1] · [ub1 + (d− 1)n1]
n1 ⇒ n | d ⇒ n = n1d from problem 13
au+ nv = d ⇒ a = da1 , b = db1 , n = dn1

Zn − n = dn1

a1x = b1 in Zn

THIS WON’T BE GRADED IN THE HOMEWORK

This Time

Example. K =

(

a b
−b a

)

prove that K is a field.

Associative addition

(

(

a b
−b a

)

+

(

c d
−d c

)

) +

(

e f
−f e

)

?=?

(

a b
−b a

)

+ (

(

c d
−d c

)

+

(

e f
−f e

)

)

[Only check the non-trivial properties]
Closure under multiplication

(

a b
−b a

)

·
(

c d
−d c

)

=

(

ac− bd ad+ bc
−bc− ad ac− bd

)

Commutative multiplication
(

c d
−d c

)

·
(

a b
−b a

)

=

(

ac− bd ad+ bc
−bc− ad ac− bd

)

(

1 0
0 1

)

?∈ K? Yes

What defines a field over a ring?
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For any

(

a b
−b a

)

∈ K there is an inverse

x =

(

a
a2+b2

−b
a2+b2

b
a2+b2

a
a2+b2

)

?∈?K yes.

X ·
(

a b
−b a

)

=

(

1 0
0 1

)

true.

End of Week 4!

Class Notes; Week 5, 2/12/2016

Day 12

Going Over Quiz

Integral Domain:
A commutative ring with 1R such that if a · b = 0 ⇒ a = 0 or b = 0.

Example. Z

Some put 2Z or 3Z
is 3Z a field? No

It is not a commutative ring with 1R
{0, 3, 6, 9, 12 . . . } 3x = 1

2Z is an integral domain but not a field.

This Time

Continue with 3.1
Let a, b, n ∈ Z where n > 1 and gcd(a, n) = 1
Then ax = b has a unique solution in Zn

Example. Cartesian Product of Z6XZ = {(a, z) | a ∈ Z6, z ∈ Z}
(a, z) + (a1, z1) = (a+ a1, z + z1)
(a, z) · (a1, z1) = (a · a1, z · z1)
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Theorem 3.1
Let R and S be rings.

Definition: Addition and Multiplication
RXS by :
(r, s) + (r1, s1) = (r + r1, s+ s1)
(r, s) · (r1, s1) = (r · r1, s · s1)
Then RXS is a ring.

Note:
If R and S are both commutative then so is RXS.
If R and S are both identity then so is RXS.

2Z X M2(R)
M2(R) is not commutative, thus 2Z X M2(R) is not.
2Z is not an identity, thus 2Z X M2(R) is not.

Subring
When a subset S of ring R (S ⊂ R) is a ring under addition and multiplication in R then S is a subring.

Subfield
When a subset S of ring R (S ⊂ R) is a field under addition and multiplication in R then S is a subfield.

Example. 1
Z be a subring of Q (rationals)

Example. 2
Q a subfield of R (reals)

Z is not a subfield of R because Z is not a field (no multiplication identity)

Theorem 3.2

Suppose R is a ring and S is a subset of R (S ⊂ R) such that:
(1) S is closed under addition
- if a, b ∈ S then a+ b ∈ S
(2) S closed under multiplication
- a, b ∈ S then ab ∈ S
(3) addition identity ∈ S
(4) a ∈ S then a+ x = 0 has a solution in S
Then S is a subring of R.

Prove why this is enough:

Axioms (1 - 8) of a ring
Closure under addition

(1) S is closed under addition ⇐⇒ (1)
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(2) S closed under multiplication ⇐⇒ (6)
(3) addition identity ∈ S ⇐⇒ (4)

(4) a ∈ S then a+ x = 0 has a solution in S ⇐⇒ (5)
Leaving: (2) associative addition, (3) commutative addition, (7) associative multiplication , (8)

distribution laws.
instance (3)

for all a, b ∈ R a+ b = b+ a
a, b ∈ S ⊂ R a+ b = b+ a for any two elements in S

similar (2) , (7) , (8)
for all a, b, c ∈ R (a+ b) + c = a+ (b+ c)

a, b, c ∈ S ⊂ R

Example. 1
2Z subring Z

a ∈ 2Z ,b ∈ 2Z a+ b ∈ 2Z yes and ab ∈ 2Z yes.
0 ∈ Z yes

a+ x = 0 a ∈ 2Z then −a ∈ 2Z yes.

Example. 2

s ⊂ M2(R) by

(

a 0
b c

)

(

a 0
b c

)

+

(

a1 0
b1 c1

)

=

(

a+ a1 0
b+ b1 c+ c1

)

(

a 0
b c

)

·
(

a1 0
b1 c1

)

=

(

aa1 0
ba1 + cb1 cc1

)

(

a 0
b c

)

+

(

0 0
0 0

)

=

(

a 0
b c

)

for the zero matrix
(

a 0
b c

)

+

(

−a 0
−b −c

)

=

(

a+ a1 0
b+ b1 c+ c1

)

Example. 3
Z{

√
2} = {a+ b

√
2 | a, b ∈ Z}

check a subring in R

Day 13

Hints towards Homework:

Section 3.1 problem 25
on Q a⊕ b = a+ b+ 1
a⊙ b = ab+ a+ b
Prove it is a commutative ring with identity? and integral domain?
there exists 0R a⊕ 0R = a
a⊕ b = a ⇒ a+ b+ 1 = a ⇒ b = −1 = 0R
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there exists 1R a⊙ b = a ⇒ ab+ a+ b = a ⇒ a(b+ 1) + b = 0 ⇒ b = 0 = 1R
if ab = 0R = −1 ⇒ a = 0R or b = 0R
This Time

Section 3.2
Basic properties of rings

Theorem 3.3

For any element a in a ring R the equation a+ x = 0R has a unique solution.
Proving

By axiom 5 of a ring:
a+ x = 0R has a solution
let u be a solution → a+ u = 0R
and v be a solution → a+ v = 0R
v = v + 0R = v + (a+ u) by associative
⇒ (v + a) + u by commutative
⇒ 0R + u = u by definition

Comment

Denote the unique solution by ”−a”.
Say −a is the unique element in R where a+ (−a) = 0 = −a+ a

Example. 1
in Z6

the solution 2 + x = 0 is 4

Example. 2
in Z14

the solution 5 + x = 0 is 9

Theorem 3.4
If a+ b = a+ c in a ring R, then b = c
Sidenote: in ring R is it true that if ab = ac then b = c? No. 2 · 0 = 2 · 3 in Z6 but 0 6= 3

Proof
if a+ b = a+ c
a+ (−a) + b = a+ (−a) + c
0R + b = 0R + c ⇒ b = c

Theorem 3.5
For any elements a, b ∈ R (ring)
(1) a · 0R = 0R = 0R · a
(2) a(−b) = −ab and (−a)b = −ab
(3) −(−a) = a
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(4) −(a+ b) = (−a) + (−b)
(5) −(a− b) = (−a) + b
(6) (−a)(−b) = ab
(7) If R has an identity then (−1R)a = −a

Proof:
(1) a · 0R = 0R = 0R · a
a · 0R? =?0R
0R + 0R = 0R ⇒ a(0R + 0R) = a · 0R
⇒ a · 0R + a · 0R = a · 0R by distributive laws
⇒ 0R + a · 0R = a · 0R + a · 0R ⇒ 0R = a · 0R by theorem 3.4
(2) a(−b) = −ab and (−a)b = −ab
By definition −ab unique solution of ab+ x = 0R So any other solution of ab+ x = 0R must be −ab
We want to show a(−b) is a solution ab+ x = 0R
ab+ (a(−b)) = 0R
a(b+ (−b)) = 0R ⇒ a · 0R = 0R
Similar for (−a)b = −ab
(3) −(−a) = a
By definition the solution of −a+ x = 0R will be −(−a)
Prove a is a solution of −a+ x = 0R
−a+ a = 0R ⇒ a = −(−a)
(4) −(a+ b) = (−a) + (−b)
By definition −(a+ b) is a solution (a+ b) + x = 0R
Prove (−a) + (−b) is a solution of (a+ b) + x = 0R
(a+ b) + (−a) + (−b) = 0R ⇒ by commutative 0R = 0R ⇒ (−a) + (−b) = −(a+ b)
(5) −(a− b) = (−a) + b
Some reasoning to solve this.
Similar for (6) and (7).

Definition

For all a ∈ R
an = a · a · a . . . with n factors
am+n = am · an
(am)n = anm

Example. Let R be a ring a, b ∈ R
then (a+ b)2 = (a+ b)(a+ b) = a2 + ab+ ba+ b2

ab, ba not required to be the same.

In homework
If x2 = x for any x ∈ R R is commutative
x+ y = (x+ y)2 = x2 + xy + yx = y2

x+ y = x+ xy + yx+ y So 0 = xy + yx
Must prove xy = yx
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(x+ x2) = (2x)2 = 2x So 4x2 = 2x ⇒ 2x = 0
So xy + yx− 2yx = 0

Day 14

Quiz Day
Turn in Homework

Going over assignment

Problem 42

Prove that a finite ring with 1R has characteristic n.
n1R = 0 na = 0 for all a ∈ R
⇒ n1Ra = a · 0 = 0
a1, a2, ·an ∈ R
Assume ai + ai + ·ai = nai ∈ R
Show distinct : n1ai = n2ai ⇒ (n2 − n1)ai = 0
n1ai 6= n2ai if n1 6= n2

Since R finite, there must be an n where nai = 0 and closure under addition.

Student way

1R + 1R ∈ R ; 1R + 1R . . . 1R = n · 1R
There exists n · 1K = n2 · 1R and there exists n1 6= n2 if not infinitely many.

This Time

Theorem 3.6

Let S be a nonempty subset of a ring such that:
(1) S is closed under subtraction: a, b ∈ S → a− b ∈ S
(2) S is closed under multiplication: a, b ∈ S ⇒ ab ∈ S
Then S is a subring of R
where a− b = a+ (b) as the unique solution of b+ x = 0

Proof
By subring theorem (3 · 2?) check:
(1) close under addition
(2) close under multiplication
(3) 0 exists
(4) a+ x = 0 has a solution

why this is true
by (1) : a, b ∈ S ⇒ a− b ∈ S
So a− a ∈ S ⇒ 0 ∈ S (3)
If 0 ∈ S, a ∈ S ⇒ a− 0 ∈ S (4)
b ∈ S,−a ∈ S ⇒ b− (−a) ∈ S ⇒ b+ a ∈ S (1)
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Units and Zero Divisors:

Definition:
An element a ∈ R (ring) with 1R called a unit if there exists u ∈ R where au = 1R = ua
[in this case] u is a multiplication inverse of a and is denoted a−1

Example. 1
units in Z are?

1 and −1

Example. 2
Units in Z15 are?

1, 2, 4, 7, 8, 11, 13, 14
If a is a unit in Z15 ⇐⇒ (a, n) = 1
All others are the zero elements

Definition
An element in ring R is a zero divisor if:
(1) a 6= 0R
(2) there exists a non zero c ∈ R where ac = 0 or ca = 0

Example. 1
in Z15:

3, 5, 6, 9, 10, 12 are zero divisors

Example. 2
(

a b
c d

)

∈ M(R)

If ad− bc 6= 0 unit
otherwise a 0 divisor.

End of Week 5!
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