Class Notes; Week 1, 1/15/2016

Introduction

Final worth 200 pts
Two midterms both worth 100 pts each
Homework worth 150pts total and will be turned in every Friday, there will be between 10-12 assigned Quizzes worth 100pts total and will be taken every Friday.

Review of Polynomial Formulas and Equations

Quadratic-

$$
\begin{aligned}
& \text { Formula: } a x^{2}+b x+c=0 \\
& \text { Equation: } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Third Degree Polynomial:
Formula: $a x^{3}+b x^{2}+c x+d=0$
Equation: Was solved in 1539 by Cardano.
Fourth Degree Polynomial:
Formula: $a x^{4}+b x^{3}+c x^{2}+d x+e=0$
Equation: Was solved in 1545 by Ferrari.
Fifth Degree Polynomial:
It is impossible to find radical solutions of polynomials with degree greater than or equal to five.
i.e. the solution can not be expressed just by the coefficients of the polynomials.

Discovered by Galois (1811-1832) that it is impossible to find a " $x . . . "$
Considered the Galois Theory.

Chapter 1

Day 1
The Division Algorithim
Theorem 1.1
Let $a, b \in \mathbb{Z}$ where $b>0$, then there exists a unique $q, r \in \mathbb{Z}$ where $a=b q+r$ and $0 \leq r<b$.
Example. Example: $\frac{82}{7}$
Where 7 is the divisor, 82 is the dividend, 11 is the quotient, and 5 is the remainder.

Well-Ordering Axiom Every non-empty subset of the set of non-negative integers $\left(\mathbb{Z}_{+}\right)$contains a smallest element.
Is this true?
Not Always

Example. $S=\{1,8,10,13\}$ and $S_{1}=\{0,5,10,11\}$ and $S_{2}=\{x \mid 0<x<1\}$
Where S_{2} is taken from the "integer" condition.
Therefore, S_{2} does not contain the smallest element.

Proving Theorem 1.1

Let $a, b \in \mathbb{Z}$ be fixed where $b>0$. Consider set $S=\{a-b x \mid x \in \mathbb{Z} a n d a-b x \geq 0\}$
So, S is a non-negative subset of integers.

Step 1: Non-empty

First, show $a+b|a| \geq 0$ so $a+b|a| \in S$
Since $b>0$ we can say $b \geq 1$
So, $b|a| \geq|a|$ when $|a|>0$
$b|a| \geq-a$
$a+b|a| \geq 0$
Which implies that S is non-empty.
Step 2: Find q and r
Find $q, r \in \mathbb{Z}$ such that $a=b q+r$
By Well-Ordering Axiom S contains a smallest element: call this r.
Since $r \in S$ we know that $r \geq 0$ and $r=a-b x$ for some x.
Let $x=q$
Thus, $r=a-b q \Longleftrightarrow a=b q+r$ and $r \geq 0$
Step 3: Show that $r<b$
Proof by Contradiction.
Assume that $r<b$ is false, thus the new true statement would be $r \geq b$
So, $r-b \geq 0$ then when we plug in what it means for $r \in S$ we see that $r-b \geq 0 \Longrightarrow(a-b q)-b$
By simplifying: $(a-b q)-b \Rightarrow a-b q-b \Rightarrow a-b(q+1)$
Since $a-b(q+1)$ is a non-negative integer, it reasons that it is an element of S.
This creates a contradiction.
When $r-b<r \Rightarrow a-b(q+1)=r-b<r \Rightarrow a-b(q+1)<r$
It contradicts that r is the smallest element of S.
Thus, $r \geq b$ is false and $r<b$ is true.
Step 4: Show that q and r are unique
If there are $q, r, q_{1}, r_{1} \in \mathbb{Z}$ such that $a=b q+r$ and $a=b q_{1}+r_{1}$
where $0 \leq r<b$, and $0 \leq r_{1}<b$.
So, $a=a \Rightarrow b q+r=b q_{1}+r_{1} \Rightarrow b q-b q_{1}=r_{1}-r \Rightarrow b\left(q-q_{1}\right)=r_{1}-r$
Sidenote: $0 \leq r<b \Rightarrow-b<-r \leq 0$ and $0 \leq r_{1}<b$

$$
\text { So, }-b<r_{1}-r<b
$$

From here, we plug in our solution for $r_{1}-r$

$$
\begin{gathered}
\text { See, }-b<b\left(q-q_{1}\right)<b \Rightarrow-1<q-q_{1}<1 \\
\text { By } q-q_{1}=0 \Rightarrow q=q_{1} \\
\text { If } q=q_{1} \text { then } r=r_{1}
\end{gathered}
$$

Day 2

Review from last time

$a, b \in \mathbb{Z}$
Then, for the Division Algorithim $a=b q+r$
We assume $b>0$ and $0 \leq r<b$
Now, we can say a an be either positive or negative.
Example. 1
$a=4327$ and $b=281$ $\frac{a}{b}=\frac{4327}{281}=15.39857 \ldots$
Or, in $a=b q+r$ form $q=15$ and $r=112$.

Example 2

$a=-7432$ and $b=453$
$\frac{a}{b}=\frac{-7432}{453}=-16-0.40618 \cdots=-17+0.5938 \ldots$
Or, in $a=b q+r$ form $q=-17$ and $r=269$.

This Time

Section 1.2: Divisibility

Definition: Let $a, b \in \mathbb{Z}$ where $b \neq 0$
Say b divides $a(b \mid a)$ or that b is a divisor of a.
If $a=b c$ for some $c \in \mathbb{Z}$ then $b \mid a$.
In Symbols:
$" b$ divides $a " \Rightarrow b \mid a$
$" b$ does not divide $a " \Rightarrow b \nmid a$

Example. 3| 24
$7 \nmid 24$

Note 1

Every non-zero integer b divides 0 because $0=b 0$

Note 2

For all $a \in \mathbb{Z}$ see that $1 \mid a$ because $a=1 a$

Remark

If $b \mid a$ then $a=b c$.
We can see that $-a=b(-c)$. Thus, a and $-a$ have the same divisors.

Comment 1

Every divisor of the non-zero integer a is less than or equal to $|a|$.
[In otherwords: if $a=6$ all the divisors are $\pm 1, \pm 2, \pm 3, \pm 6$]

Comment 2

A non-zero integer has only finite amount of divisors.

Definition: Let $a, b \in \mathbb{Z}$ where $a, b \neq 0$.
The Greatest Common Divisor (gcd) of a, b is the largest integer that divides both a and b.
[In otherwords: d is the gcd of a, b provided that (i) $d \mid a$ and $d \mid b$ and (ii) If $c \mid a$ and $c \mid b$ then $c \leq d$.] Note: this is notated by (i) $d=\operatorname{gcd}(a, b)$ or (ii) $(a, b)=d$.

Example. $(12,30)=6$
Because $12=2 \cdot 6$ and $30=5 \cdot 6$

Theorem 1.2

Let $a, b \in \mathbb{Z}$ where $a, b \neq 0$ and $d=\operatorname{gcd}(a, b)$ for some $d \in \mathbb{Z}$
Then, there exists (not necessarily unique) $u, v \in \mathbb{Z}$ such that $d=a \cdot u+b \cdot v$
Example. Example

$$
(12,30)=6 \Rightarrow 6=30 \cdot(1)+12 \cdot(-2) \Rightarrow 6=6
$$

So the Theorem works.

Proving Theorem 1.2

Let S be the set of all linear combinations of a and b.
That is: $S=\{a \cdot m+b \cdot n \mid m, n \in \mathbb{Z}\}$

Step 1: Non-empty

Use the Well-ordering Principle to show that:
If $x \in S$ then $x \in \mathbb{Z}_{+}$
Note: $a \cdot a+b \cdot b=a^{2}+b^{2} \geq 0$
$S^{+}=\{a \cdot m+b \cdot n \mid m, n \in \mathbb{Z}$ and $a \cdot m+b \cdot n \geq 0\}$
So, S^{+}is a non-empty set.
Then, by well-ordering principle, S^{+}must contain the smallest positive integer, which we will call t.
Step 2: Prove that $t=\operatorname{gcd}(a, b)$
Must check two things:
(i) $t \mid a$ and $t \mid b$
(ii) If $c \mid a$ and $c \mid b$ then $c \leq t$

Step 2(i): Show that $t \mid a$ and $t \mid b$
By Division Algorithim, there are $q, r \in \mathbb{Z}$ such that $a=t q+r$ where $0 \leq r<t$

$$
\begin{aligned}
& r=a-t q=a-(a \cdot u+b \cdot v) q \\
& \quad \Rightarrow r=a-a \cdot u \cdot q-b \cdot v \cdot q \\
& \quad \Rightarrow r=a(1-u \cdot q)+b(-v \cdot q)
\end{aligned}
$$

Thus, r is also linear combination of a and b $r \in S, r<t$ (Since t is the smallest element in S^{+})

We know that r is not positive.
Since $r \geq 0$ the only possibility is that $r=0$.

Day 3

Continue From Last Time

Proving Theorem 1.2 :
If $(a, b)=d$ then there exists $u, v \in \mathbb{Z}$ such that $a \cdot u+b \cdot v=d$
S^{+}must contain the smallest positive integer, which we will call t where t is the gcd of a and b.
Must check two things:
(i) $t \mid a$ and $t \mid b$
(ii) If $c \mid a$ and $c \mid b$ then $c \leq t$

Proving (i): Show that $t \mid a$ and $t \mid b$
By Division Algorithim, there are $q, r \in \mathbb{Z}$ such that $a=t q+r$ where $0 \leq r<t$

$$
\begin{aligned}
& r=a-t q=a-(a \cdot u+b \cdot v) q \\
& \quad \Rightarrow r=a-a \cdot u \cdot q-b \cdot v \cdot q \\
& \quad \Rightarrow r=a(1-u \cdot q)+b(-v \cdot q)
\end{aligned}
$$

Thus, $r=a(1-u \cdot q)+b(-v \cdot q) \in S$ when $u, q, v \in \mathbb{Z}$
Since $r<t$ and t is the smallest non-negative (positive) element in S and $r \geq 0$ we know that $r=0$

another way of saying the last point

Since $r<t$ and t is the smallest positive element in $S, r \in S$ and $r \leq 0$
When considering $0 \leq r<t$
We see that $r=0$
So, when $r=0$ in $a=t q+r \Rightarrow t \mid a$
There is a similar arguement for b.
We can show that $t \mid b$ in the same manner.
Proving (ii): If $c \mid a$ and $c \mid b$ then $c \leq t$
If $c \mid a$ and $c \mid b$ then $\exists k, s \in \mathbb{Z}$ such that $a=c k$ and $b=c s$
Again: t is the smallest positive integer of S.
$t=a \cdot u+b \cdot v=(c k) u+(c s) v=c(k u+s v)$
Where $k u+s v \in \mathbb{Z}$
This implies that $c \mid t$
Which implies that $c \leq|t|=t$

This Time

Theorem 1.3

Let $a, b \in \mathbb{Z}$ where $a, b \neq 0$ and $d, e \in \mathbb{Z}_{+}$
d is the gcd of $(a, b) \Longleftrightarrow$ (i) $d \mid a$ and $d \mid b$ and (ii) If $c \mid a$ and $c \mid b$ then $c \mid b$.
Example. Consider the number 30 and 12
Divisors: $1,2,3,4,5,6,10,10,15,30$
And 1, 2, 3, 4, 6, 12
The common divisors: $1,2,3,6$
So, $\operatorname{gcd}(30,12)=6$
Where $3,2,1$ are all factors of 6 and common factors of 30 and 12 .

Proving Theorem 1.3

So, for the "if and only if" statement (\Longleftrightarrow) we must prove both sides of the argument.

$$
\text { Proving } \Rightarrow
$$

1. $\operatorname{gcd}(a, b)=d \Rightarrow$ (i) $d \mid a$ and $d \mid b$ and (ii) If $c \mid a$ and $c \mid b$ then $c \mid b$
(i) By definition: If $d=\operatorname{gcd}(a, b)$ then $d \mid a$ and $d \mid b$
(ii) If $d=\operatorname{gcd}(a, b)$ then $d=a u+b v$ where $u, v \in \mathbb{Z}$ by Theorem 1.2

$$
\text { So, if } c \mid a \text { and } c \mid b \text { can we prove that } c \mid d \text { ? }
$$

Let $a=c k$ and $b=c s$ for some $k, s \in \mathbb{Z}$
Plug in to $d=a u+b v$
$d=(c k) u+(c s) v \Rightarrow c(k u+s v)$ where $k u+v s \in \mathbb{Z}$
Then by definition, $c \mid d$
Thus when $\operatorname{gcd}(a, b)=d \Rightarrow($ i) $d \mid a$ and $d \mid b$ and (ii) If $c \mid a$ and $c \mid b$ then $c \mid b$
Proving \Leftarrow
2. (i) $d \mid a$ and $d \mid b$ and (ii) If $c \mid a$ and $c \mid b$ then $c \mid b \Rightarrow \operatorname{gcd}(a, b)=d$

If d is a positive integer that satisfies (i) and (ii) then $\operatorname{gcd}(a, b)=d$
Proving (i)
This is trivial: by definition this is true.
Proving (ii)
If $c \mid a$ and $c \mid b$ then $c \mid d$
This implies that $c \leq|d|=d$
Thus $c \leq d$
Thus when $c \mid a$ and $c \mid b$ then $c \mid d \Rightarrow \operatorname{gcd}(a, b)=d$
Since both conditions imply the $\operatorname{gcd}(a, b)=d$ we know the statement is true.

Therefore, d is the gcd of $(a, b) \Longleftrightarrow$ (i) $d \mid a$ and $d \mid b$ and (ii) If $c \mid a$ and $c \mid b$ then $c \mid b$ is a true statement.

Asking The Class

If $a \mid b \cdot c$, then $a \mid b$ or $a \mid c$.
Is this true?
No
Example: $a=6, b=2, c=3$

However

There are sometimes where it does work.
If a, b are already prime and the $\operatorname{gcd}(a, b)=1$ then $a|b \cdot c \Rightarrow a| c$

Theorem 1.4

If $a \mid b \cdot c$ and $\operatorname{gcd}(a, b)=1$ then $a \mid c$

Proving Theorem 1.4

Since $(a, b)=1$ by Theorem $1.2 \exists u, v \in \mathbb{Z}$ such that $a u+b v=1$.

Professor's Way

Multiply by c

$$
\begin{gathered}
a u c+b v c=c \text { and see } a \mid b c \Rightarrow b c=a r \text { for some } r \in \mathbb{Z} \\
a u c+v(a r)=c \\
a(u c+v r)=c \\
\text { Thus, } a \mid c
\end{gathered}
$$

Student Idea

$$
b c=a m
$$

$$
\text { Side-note: } b v=1-a u
$$

$$
b=\frac{1-a u}{v}
$$

(back to the original thing)

$$
\begin{gathered}
\left(\frac{1-a u}{v}\right) c=a m \\
(1-a u) c=a m v \\
c-a u c=a m v \\
c=a m v+a u c \\
c=a(m v+u c)
\end{gathered}
$$

Thus by definition, $a \mid c$
Note: this way works, but it is different from what the text.

End of Week 1!

Class Notes; Week 2, 1/22/2016

Day 4

Hints for Homework 1

Example. 1
$75=3 \cdot 25$ This is not needed.
$7+5=12$ Since $3 \mid 12$ thus $3 \mid 75$
Example 2
96375
$9+6+3+7+5=30$ Since $3 \mid 30$ thus $3 \mid 96375$
Example 3
$375=3 \cdot 100+7 \cdot 10+5 \cdot 1$
$99+1=100$ Use this to see:
$10^{n} \equiv 1 \bmod 3$
Then you can simplify the argument from this.

This Time

Section 1.3: Primes and Factorizations

Definition: Let $p \in \mathbb{Z} . p$ is said to be prime if $p \neq 0, \pm 1$ and the only divisors of p are ± 1 and $\pm p$.
Example. 2, 3, 5, 7, 11, 13, 17, 19, ...

Note

There are infinitely any primes.

Proving this

Prove by contradiction: Assume there exists a finite amount of primes
Represented by $p_{1}, p_{2}, \ldots p_{n}$
$M=p_{1} \cdot p_{2} \cdot \ldots p_{n}+1$ but $p_{1} \nmid M$
All primes cannot divide M implies M is prime.
This contradicts that you listed all possible primes.
Thus, the Note is true.
Master Prime Number
For context, primes can be written as $2^{n}-1$
Example. $2^{57883161}-1$ is the biggest prime number
This is not trivial because it has $17,425,170$ digits

Euler

A $16^{\text {th }}$ century mathematician
Used hand notation to show that $2^{31}-1$ is prime
[2, 147, 483, 647]

Frank, Nelson, and Cole

In 1876 Lucas proved that $2^{67}-1$ is not a prime number.
40 years later. in 1903 Frank showed that $2^{67}-1=761838257287 \cdot 193707921$.
This helped in having people recognize him as the greatest mathematician in the $21^{\text {st }}$ century.
[Just a little history about prime numbers]

Remark 1

p is prime $\Longleftrightarrow-p$ is prime.

Remark 2

If p, q are prime and $p \mid q$, then $p= \pm q$
Note: Since q is prime, p can only be ± 1 or $\pm q$
But by definition p is prime, $p \neq \pm 1$
So, $p= \pm q$

Theorem 1.5

Let $p \in \mathbb{Z}$ where $p \neq 0, \pm 1$
p is prime $\Longleftrightarrow p$ has the property: If $p \mid b \cdot c$ then $p \mid b$ or $p \mid c$.

Proving Theorem 1.5

Prove both sides

$$
\begin{gathered}
p \text { is prime } \Rightarrow p \text { has the property: If } p \mid b \cdot c \text { then } p \mid b \text { or } p \mid c \\
\text { If } p \text { is prime, then }(p, b)=1 \text { and }(p, c)=1 \\
p \text { and } b \text { relatively prime, } p \text { and } c \text { relatively prime. } \\
\text { By Theorem 1.4 we know } p \mid c \text { or } p \mid b \text { holds. } \\
\text { Thus, this is trivial. } \\
p \text { has the property: If } p \mid b \cdot c \text { then } p \mid b \text { or } p \mid c \Rightarrow p \text { is prime } \\
\text { (This is a homework problem) }
\end{gathered}
$$

Corsllary 1.6

If p is prime and $p \mid a_{1} \cdot a_{2} \cdot \ldots a_{n}$, then $p \mid a_{i}$ for some i

Proving Corrally 1.6

If $p\left|a_{1} \cdot a_{2} \cdot \ldots a_{n} \Longleftrightarrow p\right| a_{1} \cdot\left(a_{2} \cdot 3 \cdot \ldots a_{n}\right)$
By theorem $1.5 p \mid a$, or $p \mid a_{2} \cdot a_{3} \cdot \ldots a_{n}$
If $p \mid a_{1}$ we are done.
If not, $p \mid a_{2} \cdot a_{3} \cdot \ldots a_{n}$.
Continue this process and we see that after n steps, there exists i such that $p \mid a_{i}$.

Theorem 1.7

Every integer except $0, \pm 1$ is a product of primes.

Proving Theorem 1.7

Prove by contradiction.
Let S be the set of all integers greater than 1 that are not a product of primes.

Prove that $S=\emptyset$

So say that $S=\emptyset$, then by Well - Ordering Axiom S contains the smallest positive element m m is not prime, then there exists $a, b \in \mathbb{Z}$ such that $m=a \cdot b$

Know, this implies $a, b \notin S$
which means that they are a product of primes.
a be represented by $a=p_{1} \cdot p_{2} \cdot \ldots p_{r}$
b represented by $b=q_{1} \cdot q_{2} \cdot \ldots q_{s}$
Where all p_{1}, q_{i} are primes $\Rightarrow a \cdot b=p_{1} \cdot q_{1} \cdot p_{2} q_{2} \cdot \ldots p_{r} \cdot q_{s}$
Then, m is the product of primes.
This contradicts that m is an element of S which only holds the integers that are not products of primes.
Therefore, S must be the empty set.

State Theorems 1.8 and 1.10

Theorem 1.10

Let $n>1$ If n has no positive prime factors less than or equal to \sqrt{n} then n is prime.
Proving Theorem 1.10 If n is a composition number n can be represented $a \cdot b(n=a \cdot b)$ If $a>\sqrt{n}$ and $b>\sqrt{n} \Rightarrow n=a \cdot b>n$
This is not possible.
Example. $137=a \cdot b$
At least a or $b \leq \sqrt{137} \equiv 12$
Check all primes under $12(2,3,5,7,11)$

Theorem 1.8

The Fundamental Theorem of Arithmetic.
Every integer $n, n \neq 0, \pm 1$ is a product of primes.
Prime Factorization is unique in:

$$
n=p_{1} \cdot p_{2} \cdot \ldots p_{r} \text { and } n=q_{1} \cdot q_{2} \cdot \ldots q_{s}
$$

Then $r=s$ (The number of prime factors are equal).
After renaming and reordering: $p_{1}= \pm q_{1} \ldots p_{r}= \pm q_{r}$.
Day 5
Quiz Day
Turn in Homework

Going over assignment

Section 1.3 Problem 34

Prove or disprove: If $n \in \mathbb{Z}$ and $n>2$ then there exists a prime $p \in \mathbb{Z}$ such that $n<p<n$!
Let $n \in \mathbb{Z}$ where $n \geq 3$
Assume $m=n!-1$
This is less then n !
If m is prime, we are done.
If m is not prime, there exists p prime such that $p \mid m<n$!
Now, show $p>n$
Let $k \nmid n!-1$ if $k \in\{2,3,4, \ldots n\}$
So , $p>n$

Section 1.3 Problem 36 Prove that when $p, q \geq 5$ and prime, then $24 \mid p^{2}-q^{2}$

$$
\begin{gathered}
24\left|p^{2}-q^{2} \Rightarrow 3 \cdot 8\right| p^{2}-q^{2} \\
\text { Proving } 3 \mid p^{2}-q^{2} \\
p \text { prime } \Rightarrow p=3 k, 3 k+1,3 k+2 \\
\text { except not } 3 k \text { because it is prime and cannot have a factor besides } \pm p \text { or } \pm 1 . \\
p^{2}=9 k^{2}+6 k+1=1 \bmod (3) \text { or } p^{2}=9 k^{2}+12 k+4=1 \bmod (3) . \\
\text { Proving } 8 \mid p^{2}-q^{2} \\
\text { Similar reasoning. }
\end{gathered}
$$

This Time

Chapter 2

Congruence in \mathbb{Z} and Modular Arithmetic

Section 2.1

Definition: Let $a, b, n \in \mathbb{Z}$ where $n>0$
Then a is congruent to b modular n provided that $n \mid a-b$.
In symbols: $a \equiv b \bmod n$ or $a \equiv b(n)$
Example. 1
$17 \equiv 5 \bmod 6$
Example 2
$23 \equiv 17 \bmod 6 \Rightarrow 23 \equiv 5 \bmod 6$

This is a conditional and an \Longleftrightarrow statement.

Modular System

Two non-trivial theorems:

1. If p prime and $p \nmid a$ then $a^{p-1} \equiv 1 \bmod p$

Fermat little theorem
2. If p prime then $(p-1)!\equiv-1 \bmod p$

Wilson theorem.

> Example. 1
> $2^{6} \equiv 1 \bmod 7$
> $3^{6} \equiv ? \bmod 7 \Rightarrow 3^{6} \equiv 1 \bmod 7$
> $4^{6} \equiv 1 \bmod 7$
> $5^{6} \equiv 1 \bmod 7$
> These are all true.

Example 2
$6!\equiv-1 \bmod 7$
Example 3
$7^{8} \equiv ? \bmod 7 \Rightarrow 7^{8} \equiv 1 \bmod 8$
$15^{6} \equiv 1 \bmod 7$
$17^{6} \equiv 1 \bmod 7$
These are trivial because it is reliant upon $p \nmid a$

Theorem 2.1

Equivalent classes

Let n be a positive integer.
For all $a, b, c \in \mathbb{Z}$

$$
\begin{gathered}
a \equiv a \bmod n \\
a \equiv b \bmod n \Rightarrow b \equiv a \bmod n \\
\mathbf{2} \\
a \equiv b \bmod n \text { and } b \equiv c \bmod n \Rightarrow a \equiv c \bmod n
\end{gathered}
$$

Proving Theorem 2.1

1 : Reflexive
Trivial.
2 : Symmetric
King of trivial, but a little more work.

3 : Transative

$a=q n+r$ then it is trivial.
See $n \mid a-b$ and $n|b-c \Rightarrow n| a-b+b-c=n \mid a-c$

This is an important foundation to prove theories.

End of Week 2!

Class Notes; Week 3, 1/29/2016

Day 6

Hints from the Grader

Tom Gannon
gannonth@msu.edu

Example. Expected Homework solution

Let $n \in \mathbb{Z}$ what are the values of $(n, n+2)$?
Let $d=\operatorname{gcd}(n, n+2)$ for some $n \in \mathbb{Z}$
then $d \mid n$ and $d \mid n+2$
There are $l, k \in \mathbb{Z}$ where $n=d \cdot k$ and $n+2=d \cdot l$ by definition of divisibility
Then $2=2+n-n=d \cdot l-d \cdot k \Rightarrow 2=d \cdot(l-k)$
Thus $d \mid 2$ and the only positive divisors of $2=1,2$
Therefore the only possible values are 1,2 .

Question 2 From Quiz

$p|b \cdot c \Rightarrow p| b$ or $p \mid c$, Prove this is prime
Assume $p=m \cdot n$ for some $m, n \in \mathbb{Z}$
Two conditions: (1) $p \left\lvert\, m \Rightarrow \frac{m}{p}=\frac{1}{n}\right.$
For $\frac{m}{p} \in \mathbb{Z} \Rightarrow \frac{1}{n} \in \mathbb{Z}$ only when $n= \pm 1$
Thus p is prime.
Similar reasoning for $p \mid n$
p has a factor $d, d \mid p \Rightarrow p=d \cdot t$ for some $t \in \mathbb{Z}$
this implies that $p \mid d$ or $p \mid t$
If $d \mid p$ and $p \mid d \Rightarrow p= \pm d$

This Time

Theorem 2.2

If $a \equiv b \bmod n$ and $c \equiv d \bmod n$ then $a+c \equiv b+n \bmod n$ and $a c \equiv b d \bmod n$
Example. $4 \equiv 1 \bmod 3$ and $5 \equiv 2 \bmod 3$
$4+5 \equiv 1+2 \bmod 3$ and $4 \cdot 5 \equiv 1 \cdot 2 \bmod 3$

Proving Theorem 2.2

If $a \equiv b \bmod n, c \equiv d \bmod n$ then $n \mid(a-b)$ and $n \mid(c-d)$.
(1) Since $n \mid(a-b)$ and $n \mid(c-d)$, then $n \mid(a-b)+(c-d)$

Then $n \mid(a+c)-(b+d) \Rightarrow a+c \equiv b+d \bmod n$
(2) Home work problem

Hint: $a=n \cdot k_{1}+r, b=n \cdot k_{2}+r, c=n \cdot k_{3}+r_{1}, d=n \cdot k_{4}+r_{1}$

Definition

Let $a, n \in \mathbb{Z}$ where $n>0$
The congruent class of a modulo n (denoted $[a]$) is the set of all the integers that are congruent to n :
$[a]=\{b \mid b \in \mathbb{Z}, b \equiv a \bmod n\}$
$[a]=\{b \mid b=a+k \cdot n$ some $k \in \mathbb{Z}\}=\{a+k \cdot n \mid k \in \mathbb{Z}\}$
Example. 1
In Congruence modulo 5 we have:
$[9]=\{9+5 k \mid k \in \mathbb{Z}\}=\{\cdots-6,-1,4,9,14,19 \ldots\}$
$[9]=[14]=[-6]$
Example. 2
In modulo 3 we see:

$$
[2]=\{\cdots-4,-1,2,5,8,11 \ldots\}
$$

Theorem 2.3

$a \equiv c \bmod n \Longleftrightarrow[a]=[c]$

Proving Theorem 2.3

$$
\begin{gathered}
\Rightarrow \text { If } a \equiv c \bmod n \Rightarrow[a] \subseteq[c] \text { and }[c] \subseteq[a] \\
\text { Let } b \in[a] \text { prove } b \in[c]
\end{gathered}
$$

By definition $b \equiv a \bmod n$
Since $a \equiv c \bmod n$ by transitivity $b \equiv c \bmod n$
Thus, $b \in[c]$ and $[a] \subseteq[c]$
Let $d \in[c]$ prove $d \in[a]$
By definition $d \equiv c \bmod n$
By reflexive property: $a \equiv c \bmod n \Rightarrow c \equiv a \bmod n$
Then by transitivity: $d \equiv a \bmod n$

> Thus, $d \in[a]$ and $[c] \subseteq[a]$
> Therefore $[a]=[c]$
> $\Leftarrow \operatorname{If}[a]=[c] \Rightarrow a \equiv c \bmod n$
> Let $a \in[a]$
> Then $a \equiv a \bmod n$
> $a \in[a] \Rightarrow a \in[c]$ then $a \equiv c \bmod n$

Corallary 2.4

Two congruence classes modulo n either disjoint or identical.
So. $[a]=[c]$ or $[a] \cap[c]=\emptyset$

Proving Cor. 2.4

If $[a]$ and $[c]$ are disjoint, then we are done.
If not, we have a bit more work.

$$
\begin{gathered}
{[a] \cap[c] \neq \emptyset \text { then }[a] \cap[c]=\{b\}} \\
b \in[a] \Rightarrow b \equiv a \bmod n \\
b \in[c] \Rightarrow b \equiv c \bmod n
\end{gathered}
$$

By reflexive, then transitive we see $a \equiv c \bmod n$
Then by theorem $2.3[a]=[c]$
Thus when the intersect is not the empty set, the classes are equal.

State Corallary 2.5

Let $n>1$ where $n \in \mathbb{Z}$ and consider congruence modulo n
(1) If $a \in \mathbb{Z}$ and r is the remainder $0 \leq r<n$

When a divided n then $[a]=[r]$
(2) Then, there are exactly n distinct congruent classes, namely:
$[0],[1],[2], \ldots[n-1]$ that are possible

Day 7

From Last Time

Proving Cor. 2.5

Let $n>1$ be an integer and consider congruence modulo n
(1) If $a \in \mathbb{Z}$ and r is the remainder $0 \leq r<n$

When a divided n then $[a]=[r]$
(2) Then, there are exactly n distinct congruent classes, namely:
$[0],[1],[2], \ldots[n-1]$ that are possible

$$
\begin{gather*}
a=n \cdot q+r \text { when } q \in \mathbb{Z}, 0 \leq r<n \tag{1}\\
a-r=n \cdot q \\
a \equiv r \bmod n \text { by theorem } 2.3[a]=[r]
\end{gather*}
$$

[Remember: $[a]$ holds all the integers such that their remainder is in the same set.]
(2)

We have [0], [1], [2], $\ldots[n-1]$ as a list on n congruent classes.
Need to show that these n classes are all distinct.
Proof by contradiction.
Assume s, t are distinct elements in the list such that $[s]=[t]$
By theorem $2.3[s]=[t] \Rightarrow s \equiv t \bmod n$
$\Rightarrow s-t=n \cdot k$ some $k \in \mathbb{Z}$
$\Rightarrow n \bmod s-t \Rightarrow-n<s-t<n$
Where the only case is $s=t$
This contradicts that s and t are distinct integers.
Thus, no two of $[0],[1],[2], \ldots[n-1]$ are congruent modulo n By theorem 2.3 [0], [1], [2], $\ldots[n-1]$ are all distinct.

Example. 3

$$
\begin{gathered}
N=\{\{3 \cdot k\},\{3 \cdot k+1\},\{3 \cdot k+2\}\} \\
N=\{\{2 \cdot k\},\{2 \cdot k+1\}\} \text { (even or odd cases) }
\end{gathered}
$$

This Time

Definition: The set of all congruent classes modulo n is denoted $\mathbb{Z}_{n}(\operatorname{read} " \mathbb{Z} \bmod n)$
Example. In real numbers this is true:
If $a \cdot b=o \Rightarrow a=0$ or $b=0$
But in \mathbb{Z}_{4} this is not true:
$[2] \cdot[2]=[0]$ in \mathbb{Z}_{4}

Section 2.2

Modular Arithmetic

$[a] \in \mathbb{Z}_{n}$ of $[0],[1],[2] \ldots[n-1]$ is the bracket a set containing infinitely many numbers
The sum of $[a]$ and $[c]$ is the class containing $a+c$
In symbols:
$[a]+[c]=[a+c]$
And for multiplication we see:
$[a] \cdot[c]=[a \cdot c]$
Example. 1
$N=\{\{3 \cdot k\},\{3 \cdot k+1\},\{3 \cdot k+2\}\}$
$[a]=[3 \cdot k+1],[c]=[3 \cdot k+2]$
$[a]+[c]=[3 \cdot k+1]+[3 \cdot k+2]=[3 \cdot k+3]=[3 \cdot k]$ which is the set of all integers divisible by 3
$[a+c]=[3 \cdot k+1+3 \cdot k+2]=[6 k+3]=[3 k]$ which is the set of all integers divisible by 3

Example. 2

\mathbb{Z}_{5}
$[3]+[4]=[3+4]=[7]=[2]$

$$
[3] \cdot[2]=[3 \cdot 2]=[6]=[1]
$$

Theorem 2.6

If $[a]=[b]$ and $[c]=[d]$ in \mathbb{Z}_{n} then $[a+c]=[b+d]$ and $[a c]=[b d]$
Confirm Not Prove
$[a]=[b] \Rightarrow a \equiv b \bmod n$
$[c]=[d] \Rightarrow c \equiv d \bmod n$
Say there is a very nice algebraic structure between them.
Definition:
Addition and Multiplication in \mathbb{Z}_{n} are defined:
(1) $[a]+[c]=[a+c]$
(2) $[a] \cdot[c]=[a \cdot c]$

Example. Addition and Multiplication Table in \mathbb{Z}_{3}

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

$*$	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

$[2]+[2]=[2] \cdot[2]$

Properties of Modulo arithmetic

(1)If $a, b \in \mathbb{Z}$ then $a+b \in \mathbb{Z}$ [Closure for addition]
(2) $a+(b+c)=(a+b)+c$ [Associative of addition]
(3) $a+b=b+a$ [Commutative addition]
(4) There exists an 0 such that $a+0=0+a=a$ [Addition identity]
(5) $a+x=0$ has a solution in \mathbb{Z}
(6) $a, b \in \mathbb{Z}$ then $a \cdot b \in \mathbb{Z}$ [Closure for multiplication]
(7) $a(b \cdot c)=(a \cdot b) c$ [Associative of multiplication]
(8) $a(b+c)=a b+b c$ and $(a+b) c=a c+b c$ [Distributive laws]
(9) $a \cdot b=b \cdot a$ [Commutative multiplication]
(10) $a \cdot 1=1 \cdot a=a$ [Multiplication identity]
(11) $a \cdot b=0$ then $a=0$ or $b=0$

True for $\left[\right.$ in \mathbb{Z}_{n}]
$(1),(2),(3),(4),(5),(6),(7),(8),(9)$,
(5) $[a]+[n-1]$

Not (11)
For \mathbb{Z}_{n} if n is not prime
$[a]^{k}=[a] \cdot[a] \cdot \ldots[a]$ for $k \in \mathbb{Z}(k$ factors $)$ exponent of \mathbb{Z}_{n}

Example. 1

$$
\begin{gathered}
\operatorname{in} \mathbb{Z}_{5} \\
{[3]^{2}=[4]} \\
{[3]^{4}=[1]}
\end{gathered}
$$

Example. 2
Solve $\left(x^{2}+[5]\right) \cdot x=[0]$ in \mathbb{Z}_{6}
$[0]=[0][3]=[0]$
$[1]=[0][4]=[0]$
$[2]=[0][5]=[0]$

Day 8

Quiz Day

Turn in Homework

Going over assignment

Section 2.1 Problem 21(b)

Every positive integer is congruent to the sum of its integers modulo 9 .

$$
\begin{gathered}
38 \equiv 2 \bmod 9 \\
11235 \equiv 3 \bmod 9 \\
10^{n} \equiv 1 \bmod 9 \text { for all } n \Rightarrow(9+1)^{n} \\
378=3 \cdot 10^{2}+7 \cdot 10+8 \\
a_{n} \cdot a_{n-1} \cdot a_{n-2} \ldots a_{1}=a_{n} \cdot 10^{n-1}+a_{n-1} \cdot 10^{n-2}+\ldots a_{1} \cdot 10^{0} \\
\Rightarrow a_{1}+a_{2} \ldots a_{n} \bmod 9
\end{gathered}
$$

This Time

Congruence in \mathbb{Z} and Modular Arithmetic
Section 2.3

The structure of \mathbb{Z}_{p} (p is prime) and \mathbb{Z}_{n}
New notation: $\mathbb{Z}_{n}[0],[1],[2] \ldots[n-1]$
If making no confusion, we write:
$0,1,2 \ldots n-1]$ in \mathbb{Z}_{n}

Example. 1

In \mathbb{Z}_{6} :
$2 \cdot 3=0$ instead of $[2] \cdot[3]=[0]$
We use 2 in \mathbb{Z}_{n} instead of [2] in \mathbb{Z}_{n}

Example 2

Addition Table of \mathbb{Z}_{3}

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

Example. 3 In \mathbb{Z}_{6} solution for $2 \cdot x=1$?
No solution

Question

For what kind $n, 2 \cdot x=1$ with solutions?
n and $a, a \cdot x=1$

Theorem 2.8

If $p>1$ where $p \in \mathbb{Z}$ then the conditions are equivalent when:
(1) p is prime
(2) For any $a \neq 0$ in \mathbb{Z}_{p} then $a \cdot x+1$ has a solution in \mathbb{Z}_{p}
(3) Whenever $b \cdot c=0$ in \mathbb{Z}_{p} then $b=0$ or $c=0$

Proving Theorem 2.8
$(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(1)$

If p is prime and $a \neq 0$ in \mathbb{Z}_{p}
$a \not \equiv 0 \bmod p$
$\operatorname{gcd}(a, p)=1 \Rightarrow a u+p v=1$ some $u, v \in \mathbb{Z}$
$\Rightarrow a u \equiv 1 \bmod p$
$(2) \Rightarrow(3)$
If $a \cdot b=0$ in \mathbb{Z}_{p}
$a \neq 0$ in $\mathbb{Z}_{p} \Rightarrow$ by (2) $a \cdot u=1$
Thus $1 \cdot b=0$ in \mathbb{Z}_{p}
$\Rightarrow b=0$ in \mathbb{Z}_{p}
$0=u \cdot 0=u \cdot a \cdot b=a \cdot u \cdot b=1 \cdot b=b$
$(3) \Rightarrow(1)$
If $b \cdot c=0$ in $\mathbb{Z}_{p} \Rightarrow b=0$ or $c=0$
$\Rightarrow p|b \cdot c \Rightarrow p| b$ or $p \mid c$
$(? \Rightarrow p$ is prime - this is from Quiz 1)
Assume factor d of p
Prove $d= \pm p$

End of Week 3!

Class Notes; Week 4, 2/5/2016

Day 9

Going Over Quiz

Quiz: Question 1 part b
If p is prime \Rightarrow If $p|a b \Rightarrow p| b$ or $p \mid a$
If p is prime and if $p \mid a b$ prove $p \mid a$ pr $p \mid b$

> If $p \mid b$ then we are done
> If not, i.e. $p \nmid b$ try to prove $p \mid a$
> $\operatorname{gcd}(p, b)=1$
> $\quad($ way 1$)$
> $\operatorname{gcd}(p, b)=1$ and $p \mid a b$ then $p \mid a$
> $($ way 2$)$

There exists $u, v \in \mathbb{Z}$ such that $p u+b v=1$

$$
\Rightarrow b v=1-p u
$$

Regard $p k=a b \Rightarrow p k v=a-a p u$
$\Rightarrow p(k v+a u)=a$
Thus $p \mid a$

This Time Cor. 2.9
Let $a, b, n \in \mathbb{Z}$ where $n>1$ and $\operatorname{gcd}(a, n)=1$
Then $a x=b$ has a unique solution in \mathbb{Z}_{n}

MEMORIZE next thing

Previosuly Proved:

If $p>1$ where $p \in \mathbb{Z}$ then the conditions are equivalent when:
(1) p is prime
(2) For any $a \neq 0$ in \mathbb{Z}_{p} then $a \cdot x+1$ has a solution in \mathbb{Z}_{p}
(3) Whenever $b \cdot c=0$ in \mathbb{Z}_{p} then $b=0$ or $c=0$

Proving Cor. 2.9
If $\operatorname{gcd}(a, n)=1 \Rightarrow a u+n v=1$ some $u, v \in \mathbb{Z}$
$\Rightarrow a u=1$ in $\mathbb{Z}_{n} \Rightarrow a u b=b$
So, $u b$ is a solution of $a x=b$

Prove the it is unique:
If w is another solution for $a x=b \Rightarrow a w=b$
$a w=b$ and $a u b=b \Rightarrow a w-a u b=b-b=0$
$\Rightarrow a(w-u b)=0 \Rightarrow a u(w-u b)=u 0=0$
$\Rightarrow(w-u b)=0 \Rightarrow w-u b=0 \Rightarrow w=u b$
Thus $w=u b$ and the solution is unique.

> Example. $\mathbf{1}$
> p is not prime:
> \mathbb{Z}_{4} breaks for the $3^{r d}$ condition
> Example. $\mathbf{2}$
> $24 x=5$ in \mathbb{Z}_{95}
> Unique solution or not?
> $(95,24)=1$
> $5 x=5$ in \mathbb{Z}_{5} then $x=1$
> $5 x=5$ in \mathbb{Z}_{95} then $x=1,20,39 \ldots$

Chapter 3

Rings

Section 3.1

We like to keep our basic properties of \mathbb{Z} and \mathbb{Z}_{n}

Definition

A ring is a non-empty set R equipped with two operations (usually written as addition and multiplication) that satisfies the following axioms:

For all $a, b, c \in \mathbb{R}$
(1) Closure under addition

If $a \in R, b \in R$ then $a+b \in R$
(2) Association under addition

$$
a+(b+c)=(a+b)+c
$$

(3) Commutative under addition

$$
a+b=b+a
$$

(4) Addition Identity

There exists 0_{r} in R where $a+0_{R}=0_{R}+a=a$ for all $a \in R$
(5) Inverse of addition

For all $a \in R, a+x=0_{R}$ has a solution in R
(6) Closure under multiplication

If $a \in R, b \in R$ then $a b \in R$
(7) Association of multiplication

$$
a(b c)=(a b) c
$$

(8) Distributive Laws
$a(b+c)=a b+a c$ and $(a+b) c=a c+b c$

Example. 1
$\mathbb{Z}, \mathbb{Z}_{n}, \mathbb{R}, \mathbb{C}, \mathbb{I}$ are all rings
Example. 2
Even numbers is a ring
Odd numbers is not: Violates the $1^{\text {st }}$ axiom $M_{2}(\mathbb{K})=\{$ matrix below $\mid a, b, c, d \in \mathbb{R}\}$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Not: fails commutative of multiplication axiom

Day 10

From Last Time

Definition of Rings

Even numbers are a ring without identity

This Time

Units and Zero Divisors

Units

An element in \mathbb{Z}_{n} is called a unit if the equation $a x=1$ has a solution.
There exists $b \in \mathbb{Z}_{n}$ such that $a b=1$
Say b is the inverse of a

Zero Divisor

A non-zero element in \mathbb{Z}_{n} is called a zero divisor if the equation $a x=0$ has non-zero solutions There exists $c \in \mathbb{Z}_{n}$ such that $a c=0$

Example. 1

in \mathbb{Z}_{4}
$0,1,2,3$
Neither, unit, zero-divisor, unit
Example. 2
in \mathbb{Z}_{8}
(Homework problem)
Units: $1,3,5,7$
Zero Divisors: 2, 4, 6

Definition

An integral Domain is n commutative ring R with identity $1_{R} \neq 0_{R}$ that satisfies this axiom: (11) whenever $a, b \in \mathbb{R}$ and $a b=0_{R}$ then $a=0_{R}$ or $b=0_{R}$

Example. 1
in \mathbb{Z}_{7}
(if p is prime $p|b a \Rightarrow p| a$ or $p \mid b$
an integral domain
NOTE every non-zero element in \mathbb{Z}_{7} is a unit not a zero divisor
Example. 2
in \mathbb{Z}_{6}
$2 \cdot 3=0_{R}$ but $2 \neq 0_{R}$ and $3 \neq 0_{R}$
So if p is prime \mathbb{Z}_{p} is an integral domain, if not \mathbb{Z}_{p} is not an integral domain

Definition

A field is a computative ring with identity $1_{R} \neq 0_{R}$ that satisfies this axiom:
(12) for any $a \neq 0 \in R$ the equation $a x=1_{R}$ has a solution in R [every non-zero element has multiplication inverse \rightarrow a unit]

Example. in \mathbb{Z}_{7}
yes: so, \mathbb{Z}_{p} is a field such that p is prime.

Question?

Is every field an integral domain?
Yes: if $a b=0$
when $a=0$ we are done
when $a \neq 0$ there exists u such that $a u=1$
$u(a b)=0 \Rightarrow(u a) b=0 \Rightarrow b=0$
Thus a field is integral domain.

Question?

Is every integral domain a field?
Things that work: $\mathbb{R}, \mathbb{C}, \mathbb{Q}$
Things that do not \mathbb{Z}
Thus, no. Not every integral domain is a field.
a finite integral domain \Rightarrow a field
Example. 1
Check \mathbb{C} (Complex) is a field:
(1) $a+b i \in \mathbb{C}$ and $c+d i \in \mathbb{C}$ $a+b i+c+c i=(a+c)+(b+d) i \in \mathbb{C}$

Addition closure holds
(2) associative addition

Commutative:
$(\mathrm{a}+\mathrm{bi})(\mathrm{c}+\mathrm{di})=(\mathrm{c}+\mathrm{di})(\mathrm{a}+\mathrm{bi})$
(10) for all $a+b i \in \mathbb{C} \neq 0$
$\frac{1}{a+b i} \in \mathbb{C} ? ? ?$
$\frac{a-b i}{a^{2}+b i^{2}}=\frac{a}{a^{2}+b i^{2}}+\frac{-b}{a^{2}+b i^{2}} i \in \mathbb{C}$
Therefore, this satisfies all the conditions/
Example. 2
Take the set of all $2 X 2$ matrices of the form

Where $a, b \in \mathbb{R}$
$[\mathbb{R}$ is real : R is a ring]
Claim k is a field.

Proof : sketch

1. $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \in K+\left(\begin{array}{cc}c & d \\ -d & c\end{array}\right) \in K=\left(\begin{array}{cc}a+c & b+d \\ -b-d & a+c\end{array}\right) \in K$

Holds.
2. Show for everything
6. $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \in K \cdot\left(\begin{array}{cc}c & d \\ -d & c\end{array}\right) \in K=\left(\begin{array}{ll}a c+b d & a d-b c \\ b c-a d & b d+a c\end{array}\right) \in K$

Day 11
Quiz Day
Turn in Homework
Going over assignment
Problem 5
$\left(\begin{array}{ll}0 & r \\ 0 & 0\end{array}\right)$ with $r \in \mathbb{Q}$
$\left(\begin{array}{ll}0 & r \\ 0 & 0\end{array}\right) \cdot\left(\begin{array}{ll}0 & r_{1} \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
If $\left(\begin{array}{ll}0 & r \\ 0 & 0\end{array}\right) \cdot\left(\begin{array}{ll}0 & r_{1} \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & r \\ 0 & 0\end{array}\right)$ Then $\left(\begin{array}{cc}0 & r_{1} \\ 0 & 0\end{array}\right)$ is the multiplication identity.
(d.)
$\left(\begin{array}{ll}a & 0 \\ a & 0\end{array}\right)$
$\left(\begin{array}{ll}a & 0 \\ a & 0\end{array}\right) \cdot\left(\begin{array}{ll}b & 0 \\ b & 0\end{array}\right)=\left(\begin{array}{cc}a b & 0 \\ a b & 0\end{array}\right)$
If $\left(\begin{array}{ll}a & 0 \\ a & 0\end{array}\right) \cdot\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}a & 0 \\ a & 0\end{array}\right)$ Then $\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$ is the multiplication identity.

Problem 14

Let $a, b, n \in \mathbb{Z}$ where $n>1 d=(a, n) d \mid b a x=b$ has d distinct solution in \mathbb{Z}_{n}.
a.) $2 x=2$ in $\mathbb{Z}_{4} 1,3$
$3 x=3$ in $\mathbb{Z}_{6} 1,3,5$
$\left[u b_{1}\right],\left[u b_{1}+n_{1}\right],\left[u b_{1}+2 n_{1}\right] \cdot\left[u b_{1}+(d-1) n_{1}\right]$
$n_{1} \Rightarrow n \mid d \Rightarrow n=n_{1} d$ from problem 13
$a u+n v=d \Rightarrow a=d a_{1}, b=d b_{1}, n=d n_{1}$
$\mathbb{Z}_{n}-n=d n_{1}$
$a_{1} x=b_{1}$ in \mathbb{Z}_{n}

THIS WON'T BE GRADED IN THE HOMEWORK

This Time

$$
\begin{gathered}
\text { Example. } K=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \text { prove that } K \text { is a field. } \\
\left.\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)+\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)\right)+\left(\begin{array}{cc}
\text { Associative addition } \\
e & f \\
-f & e
\end{array}\right) ?=?\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)+\left(\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)+\left(\begin{array}{cc}
e & f \\
-f & e
\end{array}\right)\right) \\
\text { Only check the non-trivial properties] } \\
\text { Closure under multiplication } \\
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \cdot\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)=\left(\begin{array}{cc}
a c-b d & a d+b c \\
-b c-a d & a c-b d
\end{array}\right) \\
\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right) \cdot\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)=\left(\begin{array}{cc}
a c-b d & a d+b c \\
-b c-a d & a c-b d
\end{array}\right) \\
\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) ? \in K ? \text { Yes }
\end{gathered}
$$

What defines a field over a ring?

For any $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \in K$ there is an inverse
$x=\left(\begin{array}{cc}\frac{a}{a^{2}+b^{2}} & \frac{-b}{a^{2}+b^{2}} \\ \frac{a^{2}+b^{2}}{a^{2}} & \frac{a}{a^{2}+b^{2}}\end{array}\right) ? \in ? K$ yes.
$X \cdot\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ true.
End of Week 4!

Class Notes; Week 5, 2/12/2016

Day 12

Going Over Quiz

Integral Domain:
A commutative ring with 1_{R} such that if $a \cdot b=0 \Rightarrow a=0$ or $b=0$.

Example. \mathbb{Z}

Some put $2 \mathbb{Z}$ or $3 \mathbb{Z}$
is $3 \mathbb{Z}$ a field? No
It is not a commutative ring with 1_{R}

$$
\{0,3,6,9,12 \ldots\} 3 x=1
$$

$2 \mathbb{Z}$ is an integral domain but not a field.

This Time

Continue with 3.1

Let $a, b, n \in \mathbb{Z}$ where $n>1$ and $\operatorname{gcd}(a, n)=1$
Then $a x=b$ has a unique solution in \mathbb{Z}_{n}

Example. Cartesian Product of $\mathbb{Z}_{6} X \mathbb{Z}=\left\{(a, z) \mid a \in \mathbb{Z}_{6}, z \in \mathbb{Z}\right\}$

$$
\begin{aligned}
(a, z)+\left(a_{1}, z_{1}\right) & =\left(a+a_{1}, z+z_{1}\right) \\
(a, z) \cdot\left(a_{1}, z_{1}\right) & =\left(a \cdot a_{1}, z \cdot z_{1}\right)
\end{aligned}
$$

Theorem 3.1

Let R and S be rings.
Definition: Addition and Multiplication
$R X S$ by :
$(r, s)+\left(r_{1}, s_{1}\right)=\left(r+r_{1}, s+s_{1}\right)$
$(r, s) \cdot\left(r_{1}, s_{1}\right)=\left(r \cdot r_{1}, s \cdot s_{1}\right)$
Then $R X S$ is a ring.

Note:

If R and S are both commutative then so is $R X S$.
If R and S are both identity then so is $R X S$.
$2 \mathbb{Z} X M_{2}(\mathbb{R})$
$M_{2}(\mathbb{R})$ is not commutative, thus $2 \mathbb{Z} X M_{2}(\mathbb{R})$ is not.
$2 \mathbb{Z}$ is not an identity, thus $2 \mathbb{Z} X M_{2}(\mathbb{R})$ is not.
Subring
When a subset S of ring $R(S \subset R)$ is a ring under addition and multiplication in R then S is a subring.

Subfield

When a subset S of ring $R(S \subset R)$ is a field under addition and multiplication in R then S is a subfield.

```
Example. 1
\(\mathbb{Z}\) be a subring of \(\mathbb{Q}\) (rationals)
Example. 2
\(\mathbb{Q}\) a subfield of \(\mathbb{R}\) (reals)
\(\mathbb{Z}\) is not a subfield of \(\mathbb{R}\) because \(\mathbb{Z}\) is not a field (no multiplication identity)
```


Theorem 3.2

Suppose R is a ring and S is a subset of $R(S \subset R)$ such that:
(1) S is closed under addition

- if $a, b \in S$ then $a+b \in S$
(2) S closed under multiplication
- $a, b \in S$ then $a b \in S$
(3) addition identity $\in S$
(4) $a \in S$ then $a+x=0$ has a solution in S

Then S is a subring of R .
Prove why this is enough:

> Axioms $(\mathbf{1}-\mathbf{8})$ of a ring
> Closure under addition
> (1) S is closed under addition \Longleftrightarrow (1)
(2) S closed under multiplication $\Longleftrightarrow(6)$
(3) addition identity $\in S \Longleftrightarrow$ (4)
(4) $a \in S$ then $a+x=0$ has a solution in $S \Longleftrightarrow$ (5)

Leaving: (2) associative addition, (3) commutative addition, (7) associative multiplication , (8) distribution laws.
instance (3)
for all $a, b \in R a+b=b+a$
$a, b \in S \subset R a+b=b+a$ for any two elements in S
similar (2), (7), (8)
for all $a, b, c \in R(a+b)+c=a+(b+c)$ $a, b, c \in S \subset R$

Example. 1
$2 \mathbb{Z}$ subring \mathbb{Z}
$a \in 2 \mathbb{Z}, b \in 2 \mathbb{Z} a+b \in 2 \mathbb{Z}$ yes and $a b \in 2 \mathbb{Z}$ yes.
$0 \in \mathbb{Z}$ yes
$a+x=0 a \in 2 \mathbb{Z}$ then $-a \in 2 \mathbb{Z}$ yes.
Example. 2

$$
\begin{gathered}
s \subset M_{2}(\mathbb{R}) \text { by }\left(\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right) \\
\left(\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right)+\left(\begin{array}{ll}
a_{1} & 0 \\
b_{1} & c_{1}
\end{array}\right)=\left(\begin{array}{cc}
a+a_{1} & 0 \\
b+b_{1} & c+c_{1}
\end{array}\right) \\
\left(\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right) \cdot\left(\begin{array}{ll}
a_{1} & 0 \\
b_{1} & c_{1}
\end{array}\right)=\left(\begin{array}{cc}
a a_{1} & 0 \\
b a_{1}+c b_{1} & c c_{1}
\end{array}\right) \\
\left(\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right) \text { for the zero matrix } \\
\left(\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right)+\left(\begin{array}{cc}
-a & 0 \\
-b & -c
\end{array}\right)=\left(\begin{array}{cc}
a+a_{1} & 0 \\
b+b_{1} & c+c_{1}
\end{array}\right)
\end{gathered}
$$

Example. 3

$$
\mathbb{Z}\{\sqrt{2}\}=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}
$$

check a subring in \mathbb{R}

Day 13

Hints towards Homework:

Section 3.1 problem 25
on $\mathbb{Q} a \oplus b=a+b+1$
$a \odot b=a b+a+b$
Prove it is a commutative ring with identity? and integral domain?
there exists $0_{R} a \oplus 0_{R}=a$
$a \oplus b=a \Rightarrow a+b+1=a \Rightarrow b=-1=0_{R}$
there exists $1_{R} a \odot b=a \Rightarrow a b+a+b=a \Rightarrow a(b+1)+b=0 \Rightarrow b=0=1_{R}$ if $a b=0_{R}=-1 \Rightarrow a=0_{R}$ or $b=0_{R}$

This Time

Section 3.2

Basic properties of rings

Theorem 3.3

For any element a in a ring R the equation $a+x=0_{R}$ has a unique solution.

Proving

By axiom 5 of a ring:
$a+x=0_{R}$ has a solution
let u be a solution $\rightarrow a+u=0_{R}$
and v be a solution $\rightarrow a+v=0_{R}$
$v=v+0_{R}=v+(a+u)$ by associative
$\Rightarrow(v+a)+u$ by commutative
$\Rightarrow 0_{R}+u=u$ by definition

Comment

Denote the unique solution by " $-a$ ".
Say $-a$ is the unique element in R where $a+(-a)=0=-a+a$
Example. 1
in \mathbb{Z}_{6}
the solution $2+x=0$ is 4
Example. 2
in \mathbb{Z}_{14}
the solution $5+x=0$ is 9

Theorem 3.4

If $a+b=a+c$ in a ring R, then $b=c$
Sidenote: in ring R is it true that if $a b=a c$ then $b=c$? No. $2 \cdot 0=2 \cdot 3$ in \mathbb{Z}_{6} but $0 \neq 3$
Proof
if $a+b=a+c$
$a+(-a)+b=a+(-a)+c$
$0_{R}+b=0_{R}+c \Rightarrow b=c$

Theorem 3.5

For any elements $a, b \in R$ (ring)
(1) $a \cdot 0_{R}=0_{R}=0_{R} \cdot a$
(2) $a(-b)=-a b$ and $(-a) b=-a b$
(3) $-(-a)=a$
(4) $-(a+b)=(-a)+(-b)$
(5) $-(a-b)=(-a)+b$
(6) $(-a)(-b)=a b$
(7) If R has an identity then $\left(-1_{R}\right) a=-a$

Proof:

(1) $a \cdot 0_{R}=0_{R}=0_{R} \cdot a$
$a \cdot 0_{R} ?=? 0_{R}$
$0_{R}+0_{R}=0_{R} \Rightarrow a\left(0_{R}+0_{R}\right)=a \cdot 0_{R}$
$\Rightarrow a \cdot 0_{R}+a \cdot 0_{R}=a \cdot 0_{R}$ by distributive laws
$\Rightarrow 0_{R}+a \cdot 0_{R}=a \cdot 0_{R}+a \cdot 0_{R} \Rightarrow 0_{R}=a \cdot 0_{R}$ by theorem 3.4
(2) $a(-b)=-a b$ and $(-a) b=-a b$

By definition $-a b$ unique solution of $a b+x=0_{R}$ So any other solution of $a b+x=0_{R}$ must be $-a b$
We want to show $a(-b)$ is a solution $a b+x=0_{R}$
$a b+(a(-b))=0_{R}$
$a(b+(-b))=0_{R} \Rightarrow a \cdot 0_{R}=0_{R}$
Similar for $(-a) b=-a b$
(3) $-(-a)=a$

By definition the solution of $-a+x=0_{R}$ will be $-(-a)$
Prove a is a solution of $-a+x=0_{R}$
$-a+a=0_{R} \Rightarrow a=-(-a)$
(4) $-(a+b)=(-a)+(-b)$

By definition $-(a+b)$ is a solution $(a+b)+x=0_{R}$
Prove $(-a)+(-b)$ is a solution of $(a+b)+x=0_{R}$
$(a+b)+(-a)+(-b)=0_{R} \Rightarrow$ by commutative $0_{R}=0_{R} \Rightarrow(-a)+(-b)=-(a+b)$
(5) $-(a-b)=(-a)+b$

Some reasoning to solve this.
Similar for (6) and (7).

Definition

For all $a \in R$
$a^{n}=a \cdot a \cdot a \ldots$ with n factors
$a^{m+n}=a^{m} \cdot a^{n}$
$\left(a^{m}\right)^{n}=a^{n m}$
Example. Let R be a ring $a, b \in R$ then $(a+b)^{2}=(a+b)(a+b)=a^{2}+a b+b a+b^{2}$ $a b, b a$ not required to be the same.

In homework

If $x^{2}=x$ for any $x \in R R$ is commutative
$x+y=(x+y)^{2}=x^{2}+x y+y x=y^{2}$
$x+y=x+x y+y x+y$ So $0=x y+y x$
Must prove $x y=y x$
$\left(x+x^{2}\right)=(2 x)^{2}=2 x$ So $4 x^{2}=2 x \Rightarrow 2 x=0$
So $x y+y x-2 y x=0$
Day 14

Quiz Day

Turn in Homework

Going over assignment

Problem 42

Prove that a finite ring with 1_{R} has characteristic n.
$n 1_{R}=0 n a=0$ for all $a \in R$
$\Rightarrow n 1_{R} a=a \cdot 0=0$
$a_{1}, a_{2}, \cdot a_{n} \in R$
Assume $a_{i}+a_{i}+\cdot a_{i}=n a_{i} \in R$
Show distinct : $n_{1} a_{i}=n_{2} a_{i} \Rightarrow\left(n_{2}-n_{1}\right) a_{i}=0$
$n_{1} a_{i} \neq n_{2} a_{i}$ if $n_{1} \neq n_{2}$
Since R finite, there must be an n where $n a_{i}=0$ and closure under addition.

Student way

$1_{R}+1_{R} \in R ; 1_{R}+1_{R} \ldots 1_{R}=n \cdot 1_{R}$
There exists $n \cdot 1_{K}=n_{2} \cdot 1_{R}$ and there exists $n_{1} \neq n_{2}$ if not infinitely many.

This Time

Theorem 3.6

Let S be a nonempty subset of a ring such that:
(1) S is closed under subtraction: $a, b \in S \rightarrow a-b \in S$
(2) S is closed under multiplication: $a, b \in S \Rightarrow a b \in S$

Then S is a subring of R
where $a-b=a+(b)$ as the unique solution of $b+x=0$

Proof

By subring theorem (3 2 ?) check:
(1) close under addition
(2) close under multiplication
(3) 0 exists
(4) $a+x=0$ has a solution
why this is true
by (1) : $a, b \in S \Rightarrow a-b \in S$
So $a-a \in S \Rightarrow 0 \in S$ (3)
If $0 \in S, a \in S \Rightarrow a-0 \in S$ (4)
$b \in S,-a \in S \Rightarrow b-(-a) \in S \Rightarrow b+a \in S$ (1)

Units and Zero Divisors:

Definition:

An element $a \in R$ (ring) with 1_{R} called a unit if there exists $u \in R$ where $a u=1_{R}=u a$ [in this case] u is a multiplication inverse of a and is denoted a^{-1}

Example. 1
units in \mathbb{Z} are?
1 and -1
Example. 2
Units in \mathbb{Z}_{15} are?
$1,2,4,7,8,11,13,14$
If a is a unit in $\mathbb{Z}_{15} \Longleftrightarrow(a, n)=1$
All others are the zero elements

Definition

An element in ring R is a zero divisor if:
(1) $a \neq 0_{R}$
(2) there exists a non zero $c \in R$ where $a c=0$ or $c a=0$

Example. 1
in \mathbb{Z}_{15} :
$3,5,6,9,10,12$ are zero divisors
Example. 2
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M(\mathbb{R})$
If $a d-b c \neq 0$ unit
otherwise a 0 divisor.

End of Week 5!

