HW 9

[Hungerford] Section 4.5, \#21

For a prime $p, f(x)=x^{p-1}+x^{p-2}+\cdots+x^{2}+x+1$ is irreducible in $\mathbb{Q}[x]$.
Proof. Notice that multiplying $f(x)$ by $x-1$, and distributing, most of the terms cancel, and you get

$$
\begin{aligned}
(x-1) \cdot f(x) & =x^{p}-x^{p-1}+x^{p-1}-x^{p-2}+x^{p-2}+\cdots-x^{2}+x^{2}-x+x-1 \\
& =x^{p}-1
\end{aligned}
$$

Making the substitution $x \mapsto x+1$, this becomes

$$
\begin{equation*}
x \cdot f(x+1)=(x+1)^{p}-1 \tag{*}
\end{equation*}
$$

We can expand $(x+1)^{p}$ using the binomial formula:

$$
\begin{aligned}
(x+1)^{p} & =\sum_{k=0}^{p}\binom{p}{k} x^{p} \\
& =1+p x+\binom{p}{2} x^{2}+\cdots+\binom{p}{k} x^{k}+\cdots+\binom{p}{p-2} x^{p-2}+p x^{p-1}+x^{p}
\end{aligned}
$$

Looking back at equation $(*)$, we need to subtract 1 from this, which just removes the constant term from the right-hand side. We can thus cancel a factor of x from both sides of equation $(*)$, and obtain

$$
f(x+1)=p+\binom{p}{2} x+\cdots+\binom{p}{k} x^{k-1}+\cdots+\binom{p}{p-2} x^{p-3}+p x^{p-2}+x^{p-1}
$$

The formula for $\binom{p}{k}$ is given by

$$
\binom{p}{k}=\frac{p!}{k!(p-k)!}
$$

So p divides $\binom{p}{k}$ except when $k=0$ or $k=p$, in which case it is 1 . Therefore p divides all the coefficients of $f(x+1)$ except the leading coefficient. Furthermore, the constant term is p, and so p^{2} does not divide the constant term. By Eisenstein's Criterion, $f(x+1)$ is irreducible. By Exercise 12 from last homework, this means that the original $f(x)$ was also irreducible.

[Hungerford] Section 4.6, \#6

Let $f(x)=a x^{2}+b x+c \in \mathbb{R}[x]$ with $a \neq 0$. Then the roots of $f(x)$ in \mathbb{C} are

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Proof. We wish to solve the equation

$$
a x^{2}+b x+c=0
$$

Assuming $a \neq 0$, we can divide by a to get

$$
x^{2}+\frac{b}{a} x+\frac{c}{a}=0
$$

Moving the constant term to the other side, and completing the square, we get

$$
\begin{aligned}
x^{2}+\frac{b}{a} x & =-\frac{c}{a} \\
x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2} & =-\frac{c}{a} \\
\left(x+\frac{b}{2 a}\right)^{2} & =\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a} \\
\left(x+\frac{b}{2 a}\right)^{2} & =\frac{b^{2}-4 a c}{4 a^{2}} \\
x+\frac{b}{2 a} & = \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \\
x & =-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

[Hungerford] Section 5.1, \#13 Suppose $f, g \in \mathbb{R}[x]$ with $f \equiv g(\bmod x)$. What can be said about the graphs of $f(x)$ and $g(x)$?

Solution. Since f and g are congruent mod x, this means they differ by (polynomial) multiple of x. In other words, they have the same constant term. This means that the graphs have the same y-intercept.

