HW 8

[Hungerford] Section 4.5, \#5

Use Eisenstein's Criterion to show that each polynomial is irreducible in $\mathbb{Q}[x]$:
(a) $x^{5}-4 x+22$

Solution. Use $p=2$, since 2 divides 4 and 22, but 2 does not divide 1, and 2^{2} does not divide 22 .
(b) $10-15 x+25 x^{2}-7 x^{4}$

Solution. Use $p=5$, since 5 divides 10,15 , and 25 , but 5 does not divide 7 , and 5^{2} does not divide 10 .
(c) $5 x^{11}-6 x^{4}+12 x^{3}+36 x-6$

Solution. Use $p=3$, since 3 divides 6,12 , and 36 , but 3 does not divide 5 ,
and 3^{2} does not divide 6 . Alternatively, you could use $p=2$, since 2 divides 6,12 , and 36 , but 2 does not divide 5 and 2^{2} does not divide 6 .
[Hungerford] Section 4.5, \#11 Prove that $30 x^{n}-91$ has not roots in $\mathbb{Q}($ where $n>1)$.
Solution. We can factor 91 into $91=7 \cdot 13$. Since 30 is not divisible by either 7 or 13 , and since 91 is not divisible by either 7^{2} or 13^{2}, we can use Eisenstein's Criterion (with either $p=7$ or $p=13$) to argue that $30 x^{n}-91$ is irreducible in $\mathbb{Q}[x]$. Now, by Corollary $4.18,30 x^{n}-91$ has no roots in \mathbb{Q}.
[Hungerford] Section 4.5, \#13 Prove that $f(x)=x^{4}+4 x+1$ is irreducible in $\mathbb{Q}[x]$ by using Eisenstein's Criterion to show that $f(x+1)$ is irreducible and applying Exercise 12.

Solution. Substituting $x+1$ for x, we get that

$$
f(x+1)=(x+1)^{4}+4(x+1)+1=x^{4}+4 x^{3}+6 x^{2}+8 x+6
$$

Notice that all the coefficients but the leading one are even, so 2 divides them all. Furthermore, 2 does not divide the leading coefficient (since it is 1), and 2^{2} does not divide the constant term (which is 6). So by Eisenstein's Criterion, $f(x+1)$ is irreducible in $\mathbb{Q}[x]$. By the previous exercise (number 12), this means that f is also irreducible.

