[Hungerford] Section 4.2, \#2 If $f \in F[x]$ (for a field $F$ ), with $f=\sum_{i=0}^{n} c_{i} x^{i}$, and $c_{n} \neq 0$, what is the gcd of $f$ and 0 ?

Solution. Since anything is a divisor of $0, f$ itself is a common divisor of $f$ and 0 . But by definition, the gcd must be monic, so we just take the monic multiple of $f$, given by

$$
\frac{1}{c_{n}} f=\sum_{i=0}^{n} \frac{c_{i}}{c_{n}} x^{i}
$$

[Hungerford] Section 4.2, \#10 Find the gcd of $x+a+b$ and $x^{3}-3 a b x+a^{3}+b^{3}$ in $\mathbb{Q}[x]$.
Solution. For any $a$ and $b$, the linear polynomial $x+a+b$ actually divides $x^{3}-3 a b x+a^{3}+b^{3}$. Since $x+a+b$ is already monic, it is in fact the gcd.
[Hungerford] Section 4.2, \#13 Prove that if $F$ is a field, and $a, b, c \in F[x]$ such that $a \mid b c$, and $a$ coprime to $b$, then $a \mid c$.

Solution. Since $a$ and $b$ are coprime, then by Theorem 4.8 in the book, there are polynomials $u, v \in F[x]$ so that

$$
a u+b v=1
$$

Multiply both sides by the polynomial $c$ to get

$$
a u c+b v c=c
$$

Everything commutes, so we can re-write this as

$$
a(u c)+(b c) v=c
$$

We see that $a$ obviously divides the first term, and since we assume that $a$ divides $b c$, then $a$ divides the second term as well. So $a$ divides the entire left-hand side, and so it divides $c$.

