[Hungerford] Section 4.1, #4 In each part, give an example of polynomials f, g € Q[x] that satisfy the
given condition:

(a) The degree of f + g is less than the maximum of the degrees of f and g.

Solution. We just need the leading terms to cancel. For example, f = 2?2 + 1 and g = 1 — 2%
In this case, deg(f) = deg(g) = 2, but deg(f + g) = 0.

(b) The degree of f + g is equal to the maximum of the degrees of f and g.

Solution. Perhaps the easiest examples would be where deg(f) # deg(g). For example, f = 2

and g = 2%. Then deg(f) = 2, deg(g) = 3, and deg(f + g) = 3.

[Hungerford] Section 4.1, #11 Show that 1 4 3z is a unit in Zg[x].

Solution. The multiplicative inverse of 1+ 3z is 1 — 32 = 1 + 6z, since

(1+32)(1-32)=1-92=1-0x=1

[Hungerford] Section 4.1, #21 Let h: R — S be a ring homomorphism, and define h: R[z] — S[x] by

h (Z aixi> = Z h(a;)x’
i=0 i=0

(a) h is a ring homomorphism.



Proof. First, we'll see that h is additive. Take two polynomials f and g in R[], given by

m
9= Z bix;
=0

Assume (without loss of generality) that n > m, and that b; = 0 for i > m. Let’s evaluate h on the sum
f + g. By definition, we have

hf+g)=h (Z a;z’ + Zbﬂ:’)
=0

=0

Now, since h is assumed to be a homomorphism from R to S, we know h is additive, and so it distributes
over the addition a; + b;, and we get

B(f+g) = (h(a:) + h(b)) '
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Now let’s check that h is multiplicative. Let f and g be as above. Then we have

h(f-g)=h (i az'l"i> ' ibjxj
i=0 i=0

n+m

E Z Z aibjxk

k=0 i+j=k

n+m

= Z h Z aibj .Tk
k=0

itj=k
Now we use that h is a homomorphism twice in a row. First we use that h is additive to get that

n+m

B(f-g)=> Y hladj)z*

k=0 i+j=k



Then we use that h is multiplicative to get that

n+m
M(f-g)=2 > hla)h(b)*
k=0 it+j=k
Finally, we factor this polynomial to get that
. n+m n ) m . . .
W(f-g)=_ > hlaq)h(b)a* = (Z h(aﬂx’) | D_h(b)a? | =h(f)-h(g)
k=0 i+j=k i=0 j=0
This proves that h is multiplicative, and so it is a homomorphism. O]

(b) h is injective if and only if h is injective.

Proof. “<=": Suppose first that h is injective, and suppose that h(f) = h(g) for some polynomials f,g €
R[z]. We want to show that f = g. Let’s generically write them as in part (a):

Assume that n > m. We are assuming that h(f) = h(g) in S[z], which means that all of their coefficients
are equal. This gives us that h(a;) = h(b;) for all i < n. But since h is injective, this tells us that a; = b; for
all 7. Thus the coefficients of f and g are all equal, and so f = g. This proves that h is injective.

“==": Now suppose that h is injective, and that h(a) = h(b) for some a and b in R. Although a and
b are constants in R, we can think of them as constant polynomials in R[z]. For constant polynomials, h
and h are essentially the same. So h(a) = h(b) means that h(a) = h(b) if we consider a and b as constant
polynomials. But since we assumed that h is injective, this tells us that a and b are equal as polynomials.
But this also tells us that a and b are equal as elements of R. This proves that h is injective. O

(¢) h is surjective if and only if h is surjective.

Proof. “<=": Suppose that h is surjective, and let f € S[z] be given by

n
F=Yau
1=0

for constants a; € S. Since h is surjective, there is some a; € R for each a; € S so that h(a;) = a;. If we let
g € R[x] be given by g = 3" a;z*, then h(g) = f. This shows that h is surjective.

“==": Suppose now that h is surjective, and let a € S. As in part (b), we can think of o € S as a



constant polynomial in S[z]. Then since h is surjective, there is some polynomial f € R[z] so that h(f) = a.
We can see that f must, in fact, also be a constant polynomial, corresponding to some constant ¢ € R. Then
h(a) = «, and so h is also surjective. O

(d) If R= S, then R[z] = S[x].

Proof. If we have some isomorphism ¢: R — S, then ¢ is both injective and surjective. By parts (b) and
(¢), we know that % is also injective and surjective, and so % is an isomorphism between R[z] and S[z]. O



