[Hungerford] Section 4.1, \#4 In each part, give an example of polynomials $f, g \in \mathbb{Q}[x]$ that satisfy the given condition:
(a) The degree of $f+g$ is less than the maximum of the degrees of $f$ and $g$.

Solution. We just need the leading terms to cancel. For example, $f=x^{2}+1$ and $g=1-x^{2}$. In this case, $\operatorname{deg}(f)=\operatorname{deg}(g)=2$, but $\operatorname{deg}(f+g)=0$.
(b) The degree of $f+g$ is equal to the maximum of the degrees of $f$ and $g$.

Solution. Perhaps the easiest examples would be where $\operatorname{deg}(f) \neq \operatorname{deg}(g)$. For example, $f=x^{2}$ and $g=x^{3}$. Then $\operatorname{deg}(f)=2, \operatorname{deg}(g)=3$, and $\operatorname{deg}(f+g)=3$.
[Hungerford] Section 4.1, \#11 Show that $1+3 x$ is a unit in $\mathbb{Z}_{9}[x]$.
Solution. The multiplicative inverse of $1+3 x$ is $1-3 x=1+6 x$, since

$$
(1+3 x)(1-3 x)=1-9 x=1-0 x=1
$$

[Hungerford] Section 4.1, \#21 Let $h: R \rightarrow S$ be a ring homomorphism, and define $\bar{h}: R[x] \rightarrow S[x]$ by

$$
\bar{h}\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=\sum_{i=0}^{n} h\left(a_{i}\right) x^{i}
$$

(a) $\bar{h}$ is a ring homomorphism.

Proof. First, we'll see that $\bar{h}$ is additive. Take two polynomials $f$ and $g$ in $R[x]$, given by

$$
\begin{aligned}
& f=\sum_{i=0}^{n} a_{i} x^{i} \\
& g=\sum_{i=0}^{m} b_{i} x_{i}
\end{aligned}
$$

Assume (without loss of generality) that $n>m$, and that $b_{i}=0$ for $i>m$. Let's evaluate $\bar{h}$ on the sum $f+g$. By definition, we have

$$
\begin{aligned}
\bar{h}(f+g) & =\bar{h}\left(\sum_{i=0}^{n} a_{i} x^{i}+\sum_{i=0}^{m} b_{i} x^{i}\right) \\
& =\bar{h}\left(\sum_{i=0}^{n}\left(a_{i}+b_{i}\right) x^{i}\right) \\
& =\sum_{i=0}^{n} h\left(a_{i}+b_{i}\right) x^{i}
\end{aligned}
$$

Now, since $h$ is assumed to be a homomorphism from $R$ to $S$, we know $h$ is additive, and so it distributes over the addition $a_{i}+b_{i}$, and we get

$$
\begin{aligned}
\bar{h}(f+g) & =\sum_{i=0}^{n}\left(h\left(a_{i}\right)+h\left(b_{i}\right)\right) x^{i} \\
& =\sum_{i=0}^{n} h\left(a_{i}\right) x^{i}+\sum_{i=0}^{m} h\left(b_{i}\right) x^{i} \\
& =\bar{h}(f)+\bar{h}(g)
\end{aligned}
$$

Now let's check that $\bar{h}$ is multiplicative. Let $f$ and $g$ be as above. Then we have

$$
\begin{aligned}
\bar{h}(f \cdot g) & =\bar{h}\left(\left(\sum_{i=0}^{n} a_{i} x^{i}\right) \cdot\left(\sum_{j=0}^{m} b_{j} x^{j}\right)\right) \\
& =\bar{h}\left(\sum_{k=0}^{n+m} \sum_{i+j=k} a_{i} b_{j} x^{k}\right) \\
& =\sum_{k=0}^{n+m} h\left(\sum_{i+j=k} a_{i} b_{j}\right) x^{k}
\end{aligned}
$$

Now we use that $h$ is a homomorphism twice in a row. First we use that $h$ is additive to get that

$$
\bar{h}(f \cdot g)=\sum_{k=0}^{n+m} \sum_{i+j=k} h\left(a_{i} b_{j}\right) x^{k}
$$

Then we use that $h$ is multiplicative to get that

$$
\bar{h}(f \cdot g)=\sum_{k=0}^{n+m} \sum_{i+j=k} h\left(a_{i}\right) h\left(b_{j}\right) x^{k}
$$

Finally, we factor this polynomial to get that

$$
\bar{h}(f \cdot g)=\sum_{k=0}^{n+m} \sum_{i+j=k} h\left(a_{i}\right) h\left(b_{j}\right) x^{k}=\left(\sum_{i=0}^{n} h\left(a_{i}\right) x^{i}\right) \cdot\left(\sum_{j=0}^{m} h\left(b_{j}\right) x^{j}\right)=\bar{h}(f) \cdot \bar{h}(g)
$$

This proves that $\bar{h}$ is multiplicative, and so it is a homomorphism.
(b) $\bar{h}$ is injective if and only if $h$ is injective.

Proof. " $\Longleftarrow$ ": Suppose first that $h$ is injective, and suppose that $\bar{h}(f)=\bar{h}(g)$ for some polynomials $f, g \in$ $R[x]$. We want to show that $f=g$. Let's generically write them as in part $(a)$ :

$$
\begin{aligned}
& f=\sum_{i=0}^{n} a_{i} x^{i} \\
& g=\sum_{i=0}^{m} b_{i} x^{i}
\end{aligned}
$$

Assume that $n \geq m$. We are assuming that $\bar{h}(f)=\bar{h}(g)$ in $S[x]$, which means that all of their coefficients are equal. This gives us that $h\left(a_{i}\right)=h\left(b_{i}\right)$ for all $i \leq n$. But since $h$ is injective, this tells us that $a_{i}=b_{i}$ for all $i$. Thus the coefficients of $f$ and $g$ are all equal, and so $f=g$. This proves that $\bar{h}$ is injective.
" $\Longrightarrow$ ": Now suppose that $\bar{h}$ is injective, and that $h(a)=h(b)$ for some $a$ and $b$ in $R$. Although $a$ and $b$ are constants in $R$, we can think of them as constant polynomials in $R[x]$. For constant polynomials, $h$ and $\bar{h}$ are essentially the same. So $h(a)=h(b)$ means that $\bar{h}(a)=\bar{h}(b)$ if we consider $a$ and $b$ as constant polynomials. But since we assumed that $\bar{h}$ is injective, this tells us that $a$ and $b$ are equal as polynomials. But this also tells us that $a$ and $b$ are equal as elements of $R$. This proves that $h$ is injective.
(c) $\bar{h}$ is surjective if and only if $h$ is surjective.

Proof. " $\Longleftarrow$ ": Suppose that $h$ is surjective, and let $f \in S[x]$ be given by

$$
f=\sum_{i=0}^{n} \alpha_{i} x^{i}
$$

for constants $\alpha_{i} \in S$. Since $h$ is surjective, there is some $a_{i} \in R$ for each $\alpha_{i} \in S$ so that $h\left(a_{i}\right)=\alpha_{i}$. If we let $g \in R[x]$ be given by $g=\sum a_{i} x^{i}$, then $\bar{h}(g)=f$. This shows that $\bar{h}$ is surjective.
" $\Longrightarrow$ ": Suppose now that $\bar{h}$ is surjective, and let $\alpha \in S$. As in part (b), we can think of $\alpha \in S$ as a
constant polynomial in $S[x]$. Then since $\bar{h}$ is surjective, there is some polynomial $f \in R[x]$ so that $\bar{h}(f)=\alpha$. We can see that $f$ must, in fact, also be a constant polynomial, corresponding to some constant $a \in R$. Then $h(a)=\alpha$, and so $h$ is also surjective.
(d) If $R \cong S$, then $R[x] \cong S[x]$.

Proof. If we have some isomorphism $\varphi: R \rightarrow S$, then $\varphi$ is both injective and surjective. By parts (b) and $(c)$, we know that $\bar{\varphi}$ is also injective and surjective, and so $\bar{\varphi}$ is an isomorphism between $R[x]$ and $S[x]$.

