MTH 310

Homework 04

Exercise 3.2

19. Let R and S be rings with identity, What are the units in the ring RxS? Proof: Assume (r, s) is a unit in RxS(with r in R and s in S). We have (r, s)(u, v) = (1_R, 1_R), then ru = 1_R, sv = 1_s. So r is a unit in R and s is a unit in S. The unit is (r, s) in the ring RxS.

- 24. Let R be a ring and $a, b \in R$. Let m and n be positive integers.
- (a) Show that $a^m a^n = a^{m+n}$ and $(a^m)^n = a^{mn}$.

$$a^{m} = a * a * a * a * \dots * a \text{(m factors)}$$
$$a^{n} = a * a * a * a * \dots * a \text{(n factors)}$$

 $a^m a^n = (a \ast a \ast a \ast a \ast a \ast \ldots \ast a) (\text{m factors})^* (a \ast a \ast a \ast a \ast a \ast \ldots \ast a) (\text{n factors})$

(a * a * a * a * * a) = a(m+n)(m+n factors)

 $(a^m)^n = (a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * a * \dots * a)(m \text{ factors})^*(a * a * a * a * a * \dots * a)(m \text{ factors})^*(a$

factors)*.....*(a * a * a * a * * a)(m factors), and we have number n of m

factors.

Hence
$$(a^m)^n = a^{mn}$$

(b) $(ab)^n = ababab...ab(n \text{ factors})$, If R is a commutative ring and $a, b \in R$, then $(ab)^n = a * a * a * a * ... * a * b * b * b * b * ... * b = a^n b^n (n \text{ factors each})$

29. Let R be a commutative ring with identity. Prove that R is an integral domain if and only if cancellation holds in R.

Proof: \Rightarrow If R is an integral domain, then whenever $a, b \in R$ and $ab = 0_R$, then $a = 0_R$ or $b = 0_R$.

Assume R is an integral domain and $a \neq 0$, and ab = ac

$$ab = ac$$
$$(ab - ac) = 0_R$$
$$a(b - c) = 0_R$$
$$a = 0 \text{ or } b - c = 0$$
since $a \neq 0, b - c = o$ then $b = c$

Hence, the cancellation holds.

 \Leftarrow Assume the cancellation holds with the ring R be a commutative ting with identity. Also, we assume $a \neq 0$ and ab = 0.

Since

$$ab = 0$$
$$ab = a * 0$$
$$b = 0$$

Therefore, it has integral domain.

44.(a) Let a and b be nilpotent elements in a commutative ring R. Prove that a + b and ab are also nilpotent.

Since a and b be nilpotent element, then
$$a^n = 0_R$$
 and $b^n = 0_R$
 $(a+b)^n = a^n + \binom{n}{1}a^{(n-1)b} + \binom{n}{2}a^{(n-2)b^2} + \dots + \binom{n}{n-1}ab^{(n-1)} + b^n$
 $= a^n + \binom{n}{1}a^{-1}a^nb + \binom{n}{2}a^{-2}a^nb + \dots + \binom{n}{n-1}ab^{-1}b^n + b^n$
 $= 0 + 0 + 0 + \dots + 0$
 $= 0$

a+b is nilpotent, and since $a^n=0$, $b^n=0$, $(ab)^n=a^nb^n=0$, ab is niloptent.

(b) Let N be the set of all nilpotent elements of R. Show that N is a subring. Assume $a, b \in \mathbb{N}$. And we know $a^n = 0$ and $b^n = 0$.proved by definition that:

$$a^{n} + b^{n} = 0 + 0 = 0 \in \mathbb{N}$$
$$a^{n} * b^{n} = 0 * 0 = 0 \in \mathbb{N}$$
$$0_{R} \in \mathbb{N}$$
$$a + x = 0, \text{ then } x = -a \in \mathbb{N}$$

Then, N is a subring of R.

Exercise 3.3

4. If $\vec{0} \rightarrow 0, \vec{1} \rightarrow 2, \vec{2} \rightarrow 4, \vec{2} \rightarrow 6, \vec{4}to8$. Then, $\vec{3}x\vec{4} = \vec{2}$ which is 6x8 = 48 = 8but $\vec{2} \not\rightarrow 8$

Hence, \mathbb{Z}_5 to S is not an isomorphism.

9.If $f : \mathbb{Z} \to \mathbb{Z}$ is an isomorphism, prove that f is the identity map.

Since f is an isomorphism, then f(1) = 1, f(0) = 0, f(1+1) = f(1) + f(1) = 1 + 1 = 2. We claim that f(n) = n.

Prove by induction, for n = 0 it's true. Assume n = k, then $f(k) = k \rightarrow f(k+1) = f(k) + f(1) = k + 1$, then, it's true for n = k + 1.

For negative numbers -n (with n > 0), we have f(-n) = -f(n) = -n. Therefore, f must be the identity.