MTH 310

Homework 04

Exercise 3.2

19. Let R and S be rings with identity, What are the units in the ring $R \mathrm{x} S$?

Proof: Assume (r, s) is a unit in $R \mathrm{x} S$ (with r in R and s in S). We have $(r, s)(u, v)=\left(1_{R}, 1_{R}\right)$, then $r u=1_{R}, s v=1_{s}$. So r is a unit in R and s is a unit in S . The unit is (r, s) in the ring $R \mathrm{x} S$.
24. Let R be a ring and $a, b \in R$. Let m and n be positive integers.
(a) Show that $a^{m} a^{n}=a^{m+n}$ and $\left(a^{m}\right)^{n}=a^{m n}$.

$$
\begin{gathered}
a^{m}=a * a * a * a * \ldots \ldots * a(\mathrm{~m} \text { factors }) \\
a^{n}=a * a * a * a * \ldots \ldots * a(\mathrm{n} \text { factors })
\end{gathered}
$$

$a^{m} a^{n}=(a * a * a * a * \ldots . . * a)\left(\mathrm{m}\right.$ factors) ${ }^{*}(a * a * a * a * \ldots \ldots * a)$ (n factors)
$\left.(a * a * a * a * \ldots . . * a)=a^{(} m+n\right)(m+n$ factors $)$
$\left(a^{m}\right)^{n}=(a * a * a * a * \ldots \ldots * a)(\mathrm{m} \text { factors })^{*}(a * a * a * a * \ldots \ldots * a)(\mathrm{m}$
factors $)^{*} \ldots . .^{*}(a * a * a * a * \ldots \ldots * a)$ (m factors), and we have number n of m factors.

$$
\text { Hence }\left(a^{m}\right)^{n}=a^{m n}
$$

(b) $(a b)^{n}=a b a b a b \ldots a b$ (n factors), If R is a commutative ring and $a, b \in R$, then $(a b)^{n}=a * a * a * a * \ldots * a * b * b * b * b * \ldots * b=a^{n} b^{n}$ (n factors each)
29. Let R be a commutative ring with identity. Prove that R is an integral domain if and only if cancellation holds in R .

Proof: \Rightarrow If R is an integral domain, then whenever $a, b \in R$ and $a b=0_{R}$, then $a=0_{R}$ or $b=0_{R}$.

Assume R is an integral domain and $a \neq 0$, and $a b=a c$

$$
\begin{gathered}
a b=a c \\
(a b-a c)=0_{R} \\
a(b-c)=0_{R} \\
a=0 \text { or } b-c=0 \\
\text { since } a \neq 0, b-c=o \\
\text { then } b=c
\end{gathered}
$$

Hence, the cancellation holds.
\Leftarrow Assume the cancellation holds with the ring R be a commutative ting with identity. Also, we assume $a \neq 0$ and $a b=0$.

Since

$$
\begin{gathered}
a b=0 \\
a b=a * 0 \\
b=0
\end{gathered}
$$

Therefore, it has integral domain.
44.(a) Let a and b be nilpotent elements in a commutative ring R. Prove that $a+b$ and $a b$ are also nilpotent.

Since a and be nilpotent element, then $a^{n}=0_{R}$ and $b^{n}=0_{R}$

$$
\begin{aligned}
&\left.\left.\left.(a+b)^{n}=a^{n}+\binom{n}{1} a^{(} n-1\right) b+\binom{n}{2} a^{(} n-2\right) b^{2}+\ldots . .+\binom{n}{n-1} a b^{(} n-1\right)+b^{n} \\
&=a^{n}+\binom{n}{1} a^{-1} a^{n} b+\binom{n}{2} a^{-2} a^{n} b+\ldots+\binom{n}{n-1} a b^{-1} b^{n}+b^{n} \\
&=0+0+0+\ldots+0 \\
&=0 \\
& a+b \text { is nilpotent, and since } a^{n}=0, b^{n}=0,(a b)^{n}=a^{n} b^{n}=0, a b \text { is }
\end{aligned}
$$ niloptent.

(b) Let N be the set of all nilpotent elements of R . Show that N is a subring.

Assume $a, b \in \mathrm{~N}$. And we know $a^{n}=0$ and $b^{n}=0$.proved by definition that:

$$
\begin{gathered}
a^{n}+b^{n}=0+0=0 \in \mathrm{~N} \\
a^{n} * b^{n}=0 * 0=0 \in \mathrm{~N} \\
0_{R} \in \mathrm{~N} \\
a+x=0, \text { then } x=-a \in \mathrm{~N}
\end{gathered}
$$

Then, N is a subring of R .

Exercise 3.3

4. If $\overrightarrow{0} \rightarrow 0, \overrightarrow{1} \rightarrow 2, \overrightarrow{2} \rightarrow 4, \overrightarrow{2} \rightarrow 6, \overrightarrow{4} t o 8$.

Then, $\overrightarrow{3} \times \overrightarrow{4}=\overrightarrow{2}$ which is $6 \times 8=48=8$
but $\overrightarrow{2} \nrightarrow 8$
Hence, \mathbb{Z}_{5} to S is not an isomorphism.
9.If $\mathrm{f}: \mathbb{Z} \rightarrow \mathbb{Z}$ is an isomorphism, prove that f is the identity map.

Since f is an isomorphism, then $f(1)=1, f(0)=0, f(1+1)=f(1)+f(1)=$ $1+1=2$. We claim that $f(n)=n$.

Prove by induction, for $n=0$ it's true. Assume $n=k$, then $f(k)=k \rightarrow$ $f(k+1)=f(k)+f(1)=k+1$, then, it's true for $n=k+1$.

For negative numbers -n (with $n>0$), we have $f(-n)=-f(n)=-n$.
Therefore, f must be the identity.

