[Hungerford] Section 3.1, #15. Define a new multiplication on \(\mathbb{Z} \) by the rule \(ab = 1 \) for all \(a, b \in \mathbb{Z} \).

With ordinary addition and this new multiplication, is \(\mathbb{Z} \) a ring?

The answer is no, this is not a ring. The reason is the distributive law fails. By definition of our new multiplication, for any \(a, b, c \in \mathbb{Z} \), we have

\[
a(b + c) = 1
\]

On the other hand, we have

\[
ab + ac = 1 + 1 = 2
\]

[Hungerford] 3.1, #17. Show that the subset \(S = \{0, 2, 4, 6, 8\} \subset \mathbb{Z}_{10} \) is a subring. Does \(S \) have an identity?

By the Subring Theorem, we only need to check 4 conditions:

1. **[Closure Under Addition]** These are all the even numbers in \(\mathbb{Z}_{10} \). The sum of two even numbers is even, and when we take its remainder mod 10, we still get an even number (since 10 is even), and so \(S \) is closed under addition.

4. **[Zero Element]** Zero is in \(S \) by definition.

5. **[Existence of Negatives]** \(-2 \equiv 8, -4 \equiv 6, -6 \equiv 4, \) and \(-8 \equiv 2\), so \(S \) is closed under negatives.

6. **[Closure Under Multiplication]** The product of two even numbers is even, and when we reduce mod 10, it will still be even, so \(S \) is closed under multiplication.

This verifies that \(S \) is a subring of \(\mathbb{Z}_{10} \). It does have an identity element, which is 6:

\[
6 \cdot 0 = 0
\]

\[
6 \cdot 2 = 12 \equiv 2
\]

\[
6 \cdot 4 = 24 \equiv 4
\]

\[
6 \cdot 6 = 36 \equiv 6
\]

\[
6 \cdot 8 = 48 \equiv 8
\]
[Hungerford] Section 3.1, #18. Define a new addition \oplus and multiplication \odot on \mathbb{Z} by

\[
a \oplus b = a + b - 1 \\
a \odot b = a + b - ab
\]

where the operations on the right-hand sides are ordinary addition, subtraction, and multiplication. Prove that, with the new operations \oplus and \odot, \mathbb{Z} is an integral domain.

First, we must show that \mathbb{Z} is, in fact, a ring with these operations. Let’s check all the axioms:

1. [Closure Under Addition] Obviously if $a, b \in \mathbb{Z}$, then $a + b - 1 \in \mathbb{Z}$ since \mathbb{Z} is a ring with respect to regular addition.

2. [Associativity of Addition] $(a \oplus b) \oplus c = (a + b - 1) + c - 1 = a + b + c - 2 = a + (b + c - 1) - 1 = a \oplus (b \oplus c)$

3. [Commutativity of Addition] $a \oplus b = a + b - 1 = b + a - 1 = b \oplus a$

4. [Zero Element] It turns out that 1 is the additive identity, since for any $a \in \mathbb{Z}$, we have

\[
a \oplus 1 = a + 1 - 1 = a = 1 + a - 1 = 1 \oplus a
\]

5. [Existence of Negatives] For any $a \in \mathbb{Z}$ its additive inverse is $2 - a$ (with the usual subtraction), since

\[
a \oplus (2 - a) = a + 2 - a - 1 = 1
\]

6. [Closure Under Multiplication] Again, this follows from the fact that \mathbb{Z} is a ring under the regular operations, since $a \odot b = a + b - ab$ is an integer if a and b are.

7. [Associativity of Multiplication] For any $a, b, c \in \mathbb{Z}$, we have

\[
a \odot (b \odot c) = a + (b \odot c) - a(b \odot c) \\
= a + (b + c - bc) - a(b + c - bc) \\
= a + b + c - (ab + bc + ac) - abc \\
= (a + b - ab) + c - (a + b - ab)c \\
= (a \odot b) + c - (a \odot b)c \\
= (a \odot b) \odot c
\]

8. [Distributivity] For any $a, b, c \in \mathbb{Z}$, we have

\[
a \odot (b \oplus c) = a + (b \oplus c) - a(b \oplus c) \\
= a + (b + c - 1) - a(b + c - 1) \\
= a + b + c - ab - ac + a - 1 \\
= 2a + b + c - a(b + c) - 1
\]
On the other hand:

\[(a \odot b) \oplus (a \odot c) = (a \odot b) + (a \odot c) - 1 \]
\[= a + b - ab + a + c - ac - 1 \]
\[= 2a + b + c - a(b + c) - 1 \]

This verifies left-distributivity. Now, to check right-distributivity:

\[(a \oplus b) \odot c = (a \oplus b) + c - (a \oplus b)c \]
\[= (a + b - 1) + c - (a + b - 1)c \]
\[= a + b + c - 1 - ac - bc + c \]
\[= a + b + 2c - (a + b)c - 1 \]

On the other hand, we have

\[(a \odot c) \oplus (b \odot c) = (a \odot c) + (b \odot c) - 1 \]
\[= (a + c - ac) + (b + c - bc) - 1 \]
\[= a + b + 2c - (a + b)c - 1 \]

All of the axioms have been verified, so we conclude that \(Z \) is a ring with these operations. To show that it is an integral domain, we must also show that it is commutative, has a multiplicative identity, and has no zero divisors. First, multiplication is commutative, since

\[a \odot b = a + b - ab = b + a - ba = b \odot a \]

The multiplicative identity element is 0, since

\[a \odot 0 = a + 0 - a \cdot 0 = a = 0 + a - 0 \cdot a = 0 \odot a \]

Suppose that \(a \odot b = 1 \) (the additive identity/zero element). Then this means that

\[a \odot b = 1 \]
\[a + b - ab = 1 \]

From this you can derivat that \(a(1 - b) = 1 - b \) and that \(b(1 - a) = 1 - a \). From these two equations, you can see that either \(a \) or \(b \) must be equal to 1 (which is the zero element).