[Hungerford] Section 3.1, \#15. Define a new multiplication on \mathbb{Z} by the rule $a b=1$ for all $a, b \in \mathbb{Z}$. With ordinary addition and this new multiplication, is \mathbb{Z} a ring?

The answer is no, this is not a ring. The reason is the distributive law fails. By definition of our new multiplication, for any $a, b, c \in \mathbb{Z}$, we have

$$
a(b+c)=1
$$

On the other hand, we have

$$
a b+a c=1+1=2
$$

[Hungerford] 3.1, \#17. Show that the subset $S=\{0,2,4,6,8\} \subset \mathbb{Z}_{10}$ is a subring. Does S have an identity?

By the Subring Theorem, we only need to check 4 conditions:

1. [Closure Under Addition] These are all the even numbers in \mathbb{Z}_{10}. The sum of two even numbers is even, and when we take its remainder mod 10, we still get an even number (since 10 is even), and so S is closed under addition.
2. [Zero Element] Zero is in S by definition.
3. [Existence of Negatives] $-2 \equiv 8,-4 \equiv 6,-6 \equiv 4$, and $-8 \equiv 2$, so S is closed under negatives.
4. [Closure Under Multiplication] The product of two even numbers is even, and when we reduce $\bmod 10$, it will still be even, so S is closed under multiplication.

This verifies that S is a subring of \mathbb{Z}_{10}. It does have an identity element, which is 6 :

$$
\begin{gathered}
6 \cdot 0=0 \\
6 \cdot 2=12 \equiv 2 \\
6 \cdot 4=24 \equiv 4 \\
6 \cdot 6=36 \equiv 6 \\
6 \cdot 8=48 \equiv 8
\end{gathered}
$$

[Hungerford] Section 3.1, \#18. Define a new addition \oplus and multiplication \odot on \mathbb{Z} by

$$
\begin{gathered}
a \oplus b=a+b-1 \\
a \odot b=a+b-a b
\end{gathered}
$$

where the operations on the right-hand sides are ordinary addition, subtraction, and multiplication. Prove that, with the new operations \oplus and \odot, \mathbb{Z} is an integral domain.
First, we must show that \mathbb{Z} is, in fact, a ring with these operations. Let's check all the axioms:

1. [Closure Under Addition] Obviously if $a, b \in \mathbb{Z}$, then $a+b-1 \in \mathbb{Z}$ since \mathbb{Z} is a ring with respect to regular addition.
2. [Associativity of Addition] $(a \oplus b) \oplus c=(a+b-1)+c-1=a+b+c-2=a+(b+c-1)-1=a \oplus(b \oplus c)$
3. [Commutativity of Addition] $a \oplus b=a+b-1=b+a-1=b \oplus a$
4. [Zero Element] It turns out that 1 is the additive identity, since for any $a \in \mathbb{Z}$, we have

$$
a \oplus 1=a+1-1=a=1+a-1=1 \oplus a
$$

5. [Existence of Negatives] For any $a \in \mathbb{Z}$ its additive inverse is $2-a$ (with the usual subtraction), since

$$
a \oplus(2-a)=a+2-a-1=1
$$

6. [Closure Under Multiplication] Again, this follows from the fact that \mathbb{Z} is a ring under the regular operations, since $a \odot b=a+b-a b$ is an integer if a and b are.
7. [Associativity of Muliplication] For any $a, b, c \in \mathbb{Z}$, we have

$$
\begin{aligned}
a \odot(b \odot c) & =a+(b \odot c)-a(b \odot c) \\
& =a+(b+c-b c)-a(b+c-b c) \\
& =a+b+c-(a b+b c+a c)-a b c \\
& =(a+b-a b)+c-(a+b-a b) c \\
& =(a \odot b)+c-(a \odot b) c \\
& =(a \odot b) \odot c
\end{aligned}
$$

8. [Distributivity] For any $a, b, c \in \mathbb{Z}$, we have

$$
\begin{aligned}
a \odot(b \oplus c) & =a+(b \oplus c)-a(b \oplus c) \\
& =a+(b+c-1)-a(b+c-1) \\
& =a+b+c-a b-a c+a-1 \\
& =2 a+b+c-a(b+c)-1
\end{aligned}
$$

On the other hand:

$$
\begin{aligned}
(a \odot b) \oplus(a \odot c) & =(a \odot b)+(a \odot c)-1 \\
& =a+b-a b+a+c-a c-1 \\
& =2 a+b+c-a(b+c)-1
\end{aligned}
$$

This verifies left-distributivity. Now, to check right-distributivity:

$$
\begin{aligned}
(a \oplus b) \odot c & =(a \oplus b)+c-(a \oplus b) c \\
& =(a+b-1)+c-(a+b-1) c \\
& =a+b+c-1-a c-b c+c \\
& =a+b+2 c-(a+b) c-1
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
(a \odot c) \oplus(b \odot c) & =(a \odot c)+(b \odot c)-1 \\
& =(a+c-a c)+(b+c-b c)-1 \\
& =a+b+2 c-(a+b) c-1
\end{aligned}
$$

All of the axioms have been verified, so we conclude that \mathbb{Z} is a ring with these operations. To show that it is an integral domain, we must also show that it is commutative, has a multiplicative identity, and has no zero divisors. First, multiplication is commutative, since

$$
a \odot b=a+b-a b=b+a-b a=b \odot a
$$

The mulitplicative identity element is 0 , since

$$
a \odot 0=a+0-a \cdot 0=a=0+a-0 \cdot a=0 \odot a
$$

Suppose that $a \odot b=1$ (the additive identity/zero element). Then this means that

$$
\begin{array}{r}
a \odot b=1 \\
a+b-a b=1
\end{array}
$$

From this you can derivat that $a(1-b)=1-b$ and that $b(1-a)=1-a$. From these two equations, you can see that either a or b must be equal to 1 (which is the zero element).

