Section 1.1, #2. Use truth tables to show that

$$(a) \quad \neg(P \Rightarrow Q) \Leftrightarrow (P \land \neg Q)$$

(b)
$$((P \lor Q) \lor R) \Leftrightarrow (P \lor (Q \lor R))$$

(c)
$$((P \land Q) \lor R) \Leftrightarrow ((P \lor R) \land (Q \lor R))$$

$$(d) \quad ((P \vee Q) \wedge R) \Leftrightarrow ((P \wedge R) \vee (Q \wedge R))$$

In the following tables, "0" represents " \mathbf{F} " or "false", and "1" represents " \mathbf{T} " or "true".

(a) The columns in yellow are the end result of evaluating each side of the " \Leftrightarrow ":

P	Q	_	(P)	\Rightarrow	Q)	\Leftrightarrow	P	\wedge	$\neg Q)$
0	0	0	0	1	0		0	0	1
0	1	0	0	1	1		0	0	0
1	0	1	1	0	0		1	1	1
1	1	0	1	1	1		1	0	0

(b)

P	Q	R	((P	V	Q)	V	R)	\Leftrightarrow	(P	V	(Q	V	R))
0	0	0	0	0	0	0	0		0	0	0	0	0
0	0	1	0	0	0	1	1		0	1	0	1	1
0	1	0	0	1	1	1	0		0	1	1	1	0
0	1	1	0	1	1	1	1		0	1	1	1	1
1	0	0	1	1	0	1	0		1	1	0	0	0
1	0	1	1	1	0	1	1		1	1	0	1	1
1	1	0	1	1	1	1	0		1	1	1	1	0
1	1	1	1	1	1	1	1		1	1	1	1	1
$\overline{(c)}$													

(c)

P	\overline{Q}	R	((P	Λ	Q)	V	R)	\Leftrightarrow	((P	V	R)	\wedge	(Q	V	R))
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
0	0	1	0	0	0	1	1		0	1	1	1	0	1	1
0	1	0	0	0	1	0	0		0	0	0	0	1	1	0
0	1	1	0	0	1	1	1		0	1	1	1	1	1	1
1	0	0	1	0	0	0	0		1	1	0	0	0	0	0
1	0	1	1	0	0	1	1		1	1	1	1	0	1	1
1	1	0	1	1	1	1	0		1	1	0	1	1	1	0
1	1	1	1	1	1	1	1		1	1	1	1	1	1	1

(*d*)

P	\overline{Q}	R	(P	V	Q)	\wedge	R)	\Leftrightarrow	((P	\wedge	R)	V	(Q	\wedge	R))
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
0	0	1	0	0	0	0	1		0	0	1	0	0	0	1
0	1	0	0	1	1	0	0		0	0	0	0	1	0	0
0	1	1	0	1	1	1	1		0	0	1	1	1	1	1
1	0	0	1	1	0	0	0		1	0	0	0	0	0	0
1	0	1	1	1	0	1	1		1	1	1	1	0	0	1
1	1	0	1	1	1	0	0		1	0	0	0	1	0	0
1	1	1	1	1	1	1	1		1	1	1	1	1	1	1

Section 1.3, #4: Prove that the following functions are surjective:

(a) The function $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = x^3$. Just notice that for any $y \in \mathbb{R}$, we also have $\sqrt[3]{y} \in \mathbb{R}$, with the property that $f(\sqrt[3]{y}) = (\sqrt[3]{y})^3 = y$, and so f is surjective onto \mathbb{R} .

(b) The function $f: \mathbb{Z} \to \mathbb{Z}$ is given by f(x) = x - 4. Notice that for any $n \in \mathbb{Z}$, n + 4 is also in \mathbb{Z} , with the property that f(n+4) = (n+4) - 4 = n, so f is surjective onto \mathbb{Z} .

(c) The function $f: \mathbb{R} \to \mathbb{R}$ is given by f(x) = 5 - 3x. Notice that for any $y \in \mathbb{R}$, $\frac{5-y}{3}$ is also in \mathbb{R} , with the property that

$$f\left(\frac{5-y}{3}\right) = 5 - 3\left(\frac{5-y}{3}\right) = 5 - (5-y) = y,$$

so f is surjective onto \mathbb{R} .

(d) The function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Q}$ is given by

$$f(a,b) = \begin{cases} \frac{a}{b} & b \neq 0\\ 0 & b = 0 \end{cases}$$

Let $q \in \mathbb{Q}$. Any rational number can be written as $\frac{a}{b}$ for integers a, b, where $b \neq 0$, so choose such a and b so that $q = \frac{a}{b}$. Then f(a, b) = q, and so f is surjective onto \mathbb{Q} .

Section 1.4, #6. Let x be a real number greater than -1. Prove that for every positive integer n, $(1+x)^n \ge 1+nx$.

We will prove this by induction. First, we'll do the base case n = 1. In this case we actually have equality, since

$$(1+x)^n = (1+x)^1 = 1+x = 1+1 \cdot x = 1+nx$$

So in this case, we have that $(1+x)^n \ge 1 + nx$. Now, supposing that $(1+x)^n \ge 1 + nx$ for some positive integer n, we need to show that $(1+x)^{n+1} \ge 1 + (n+1)x$. So we will factor $(1+x)^{n+1}$ and use the induction assumption:

$$(1+x)^{n+1} = (1+x)^n (1+x)$$

$$\geq (1+nx)(1+x)$$
 (by induction)
$$= 1 + (n+1)x + nx^2$$

$$\geq 1 + (n+1)x$$
 (since $nx^2 \geq 0$)

We have showed the base case, and the inductive step, so by induction, $(1+x)^n \ge 1 + nx$ for all $n \ge 1$.