Section 1.1, \#2. Use truth tables to show that
(a) $\neg(P \Rightarrow Q) \Leftrightarrow(P \wedge \neg Q)$
(b) $\quad((P \vee Q) \vee R) \Leftrightarrow(P \vee(Q \vee R))$
(c) $\quad((P \wedge Q) \vee R) \Leftrightarrow((P \vee R) \wedge(Q \vee R))$
(d) $\quad((P \vee Q) \wedge R) \Leftrightarrow((P \wedge R) \vee(Q \wedge R))$

In the following tables, "0" represents "F" or "false", and " 1 " represents " \mathbf{T} " or "true".
(a) The columns in yellow are the end result of evaluating each side of the " \Leftrightarrow ":

P	Q	\neg	$(P$	\Rightarrow	$Q)$	\Leftrightarrow	$(P$	\wedge	$\neg Q)$
0	0	0	0	1	0		0	0	1
0	1	0	0	1	1		0	0	0
1	0	1	1	0	0		1	1	1
1	1	0	1	1	1		1	0	0

(b)

P	Q	R	$((P$	\vee	$Q)$	\vee	$R)$	\Leftrightarrow	$(P$	\vee	$(Q$	\vee	$R))$
0	0	0	0	0	0	0	0		0	0	0	0	0
0	0	1	0	0	0	1	1		0	1	0	1	1
0	1	0	0	1	1	1	0		0	1	1	1	0
0	1	1	0	1	1	1	1		0	1	1	1	1
1	0	0	1	1	0	1	0		1	1	0	0	0
1	0	1	1	1	0	1	1		1	1	0	1	1
1	1	0	1	1	1	1	0		1	1	1	1	0
1	1	1	1	1	1	1	1		1	1	1	1	1

(c)

P	Q	R	$((P$	\wedge	$Q)$	\vee	$R)$	\Leftrightarrow	$((P$	\vee	$R)$	\wedge	$(Q$	\vee	$R))$
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
0	0	1	0	0	0	1	1		0	1	1	1	0	1	1
0	1	0	0	0	1	0	0		0	0	0	0	1	1	0
0	1	1	0	0	1	1	1		0	1	1	1	1	1	1
1	0	0	1	0	0	0	0		1	1	0	0	0	0	0
1	0	1	1	0	0	1	1		1	1	1	1	0	1	1
1	1	0	1	1	1	1	0		1	1	0	1	1	1	0
1	1	1	1	1	1	1	1		1	1	1	1	1	1	1

(d)

P	Q	R	$((P$	\vee	$Q)$	\wedge	$R)$	\Leftrightarrow	$((P$	\wedge	$R)$	\vee	$(Q$	\wedge	$R))$
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
0	0	1	0	0	0	0	1		0	0	1	0	0	0	1
0	1	0	0	1	1	0	0		0	0	0	0	1	0	0
0	1	1	0	1	1	1	1		0	0	1	1	1	1	1
1	0	0	1	1	0	0	0		1	0	0	0	0	0	0
1	0	1	1	1	0	1	1		1	1	1	1	0	0	1
1	1	0	1	1	1	0	0		1	0	0	0	1	0	0
1	1	1	1	1	1	1	1		1	1	1	1	1	1	1

Section 1.3, \#4: Prove that the following functions are surjective:
(a) The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is given by $f(x)=x^{3}$. Just notice that for any $y \in \mathbb{R}$, we also have $\sqrt[3]{y} \in \mathbb{R}$, with the property that $f(\sqrt[3]{y})=(\sqrt[3]{y})^{3}=y$, and so f is surjective onto \mathbb{R}.
(b) The function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is given by $f(x)=x-4$. Notice that for any $n \in \mathbb{Z}, n+4$ is also in \mathbb{Z}, with the property that $f(n+4)=(n+4)-4=n$, so f is surjective onto \mathbb{Z}.
(c) The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is given by $f(x)=5-3 x$. Notice that for any $y \in \mathbb{R}, \frac{5-y}{3}$ is also in \mathbb{R}, with the property that

$$
f\left(\frac{5-y}{3}\right)=5-3\left(\frac{5-y}{3}\right)=5-(5-y)=y
$$

so f is surjective onto \mathbb{R}.
(d) The function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Q}$ is given by

$$
f(a, b)= \begin{cases}\frac{a}{b} & b \neq 0 \\ 0 & b=0\end{cases}
$$

Let $q \in \mathbb{Q}$. Any rational number can be written as $\frac{a}{b}$ for integers a, b, where $b \neq 0$, so choose such a and b so that $q=\frac{a}{b}$. Then $f(a, b)=q$, and so f is surjective onto \mathbb{Q}.

Section 1.4, \#6. Let x be a real number greater than -1 . Prove that for every positive integer n, $(1+x)^{n} \geq 1+n x$.

We will prove this by induction. First, we'll do the base case $n=1$. In this case we actually have equality, since

$$
(1+x)^{n}=(1+x)^{1}=1+x=1+1 \cdot x=1+n x
$$

So in this case, we have that $(1+x)^{n} \geq 1+n x$. Now, supposing that $(1+x)^{n} \geq 1+n x$ for some positive integer n, we need to show that $(1+x)^{n+1} \geq 1+(n+1) x$. So we will factor $(1+x)^{n+1}$ and use the induction assumption:

$$
\begin{aligned}
(1+x)^{n+1} & =(1+x)^{n}(1+x) & & \\
& \geq(1+n x)(1+x) & & (\text { by induction }) \\
& =1+(n+1) x+n x^{2} & & \\
& \geq 1+(n+1) x & & \left(\text { since } n x^{2} \geq 0\right)
\end{aligned}
$$

We have showed the base case, and the inductive step, so by induction, $(1+x)^{n} \geq 1+n x$ for all $n \geq 1$.

