MTH310 QUIZ 1 SOLUTIONS

1. Use a truth table to verify the statements:
I. $-(\mathrm{p}$ or q$) \Longleftrightarrow-\mathrm{p}$ and -q

p	q	p or q	$-(\mathrm{p}$ or q$)$	-p	-q	$($ (p and -q$)$
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

II. $(\mathrm{p} \Longrightarrow \mathrm{q}$ and $\mathrm{q} \Longrightarrow \mathrm{r}) \Longrightarrow(\mathrm{p} \Longrightarrow \mathrm{r})$

p	q	r	$\mathrm{p} \Longrightarrow \mathrm{q}$	$\mathrm{q} \Longrightarrow \mathrm{r}$	$\mathrm{p} \Longrightarrow \mathrm{q}$ and $\mathrm{q} \Longrightarrow \mathrm{r}$	$\mathrm{p} \Longrightarrow \mathrm{r}$	$(\mathrm{p} \Longrightarrow \mathrm{q}$ and $\mathrm{q} \Longrightarrow \mathrm{r}) \Longrightarrow(\mathrm{p} \Longrightarrow \mathrm{r})$
T	T	T	T	T	T	T	T
T	F	F	F	T	F	F	T
T	T	F	T	F	F	F	T
T	F	T	F	T	F	T	T
F	T	T	T	T	T	T	T
F	F	F	T	T	T	T	T
F	T	F	T	F	F	T	T
F	F	T	T	T	T	T	T

2. Prove that 64 is a factor of $9^{n}-8 n-1$ for every nonnegative integer n.

Proof:
(1) 64 is a factor of $9^{n}-8 n-1$ for every nonnegative integer n.

Let $\mathrm{n}=0,9^{n}-8 \mathrm{n}-1=1-0-1=0=0^{*} 64$, then (1) is true at $\mathrm{n}=0$
Assume (1) is true at $\mathrm{n}=\mathrm{k}$, then we have $9^{k}-8 \mathrm{k}-1=64 \mathrm{~m}(m \in \mathbb{Z})$
for $\mathrm{n}=\mathrm{k}+1,9^{k+1}-8(\mathrm{k}+1)-1=9^{k *} 9-8 \mathrm{k}-9=9^{*}\left(9^{k}-1\right)-8 \mathrm{k}$
$=9^{*}(64 \mathrm{~m}+8 \mathrm{k})-8 \mathrm{k}=9^{*} 64 \mathrm{~m}+64 \mathrm{k}=64^{*}(9 \mathrm{~m}+\mathrm{k})$
Since $m \in \mathbb{Z}, k \in \mathbb{N}$, we have $9 m+k \in \mathbb{Z}$,
(1) is true at $n=k+1$

Thus, 64 is a factor of $9^{n}-8 n-1$ for every nonnegative integer n.

