MTH310 QUIZ 3 SOLUTIONS

Problem 1

(1) What is the definition of a field?

A field is a commutative ring \(R \) with identity \(1_R \neq 0_R \) that satisfies this axiom:

For each \(a \neq 0_R \) in \(R \), the equation \(ax = 1_R \) has a solution in \(R \).

(2) What is the definition of an integral domain?

An integral domain is a commutative ring \(R \) with identity \(1_R \neq 0_R \) that satisfies this axiom:

Whenever \(a,b \in R \) and \(ab = 0_R \), then \(a = 0_R \) or \(b = 0_R \)

(3) Is an integral domain always a field? If yes, prove it. If no, give a counter example.

The ring \(\mathbb{Z} \) is an integral domain but not a field.

Problem 2

(1) What is the definition of zero divisors?

An element \(a \) in a ring \(R \) is a zero divisor provided that

i. \(a \neq 0_R \)

ii. There exists a nonzero element \(c \) in \(R \) such that \(ac = 0_R \) or \(ca = 0_R \).

(2) How many elements in \(\mathbb{Z}_{18} \) are zero divisors? Explicitly list them.

11 elements are zero divisors. They are \(\{2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16\} \).