MTH310 QUIZ 2 SOLUTIONS

Problem 1

(1) Write down 8 axioms of rings. (3 points)

 $(A \times 1) a+b \in R$ for $a, b \in R$ (closure of addition)

 $(A \times 2) a+(b+c) = (a+b) + c$ for all $a,b,c \in R$ (associative addition)

 $(A \times 3) a+b = b+a$ for all $a, b \in \mathbb{R}$ (commutative addition)

(A x 4) There exists an element in R, denote by 0_R and called "zero R" such that $a=a+0_R$ and $a=0_R+a$ for all $a\in \mathbb{R}$ (additive identity)

(A x 5) for each $a \in \mathbb{R}$, there exists an element in \mathbb{R} , denote by -a and called "negative a", such that $a+(-a) = 0_R$ (additive inverse)

 $(A \times 6) ab \in R$, for all $a, b \in R$ (closure for multiplication)

 $(A \ge 7) a(bc) = (ab)c$ for all $a, b, c \in \mathbb{R}$ (associative multiplication)

 $(A \times 8) a(b+c) = ab + ac and (a+b)c = ac + bc for all a, b, c \in R$ (distributive laws)

(2) Check 8 axioms on the set $a + b\sqrt{2}|a, b \in \mathbb{Z}$ carefully and determine that it is a ring or not. (2 points)

Assume
$$S = a + b\sqrt{2}|a, b \in \mathbb{Z}$$
,
 $a_1 + b_1\sqrt{2}, a_2 + b_2\sqrt{2} \in S$,
I. $(a_1 + b_1\sqrt{2}) + (a_2 + b_2\sqrt{2}) = (a_1 + a_2) + (b_1 + b_2)\sqrt{2} \in S$
II. $(a_1 + b_1\sqrt{2}) * (a_2 + b_2\sqrt{2}) = (a_1a_2 + 2b_1b_2) + (a_1b_2 + a_2b_1)\sqrt{2} \in S$
III. $0 = 0 + 0^*\sqrt{2} \in S$

IV. The additive inverse $(-a_1) + (-b_1)\sqrt{2} \in S$

Thus, S is a subring of \mathbb{R}

Therefore, S is a ring.

Problem 2

How many elements in \mathbb{Z}_{12} are units? Explicitly write them down and find each one corresponding multiplication inverse.

4 elements are units. They are 1,5,7,11

The corresponding multiplication inverse of 1 is 1.

The corresponding multiplication inverse of 5 is 5.

The corresponding multiplication inverse of 7 is 7.

The corresponding multiplication inverse of 11 is 11.