MTH310 QUIZ 2 SOLUTIONS

Problem 1

(1) Write down 8 axioms of rings. (3 points)
(A $x 1$) $a+b \in R$ for $a, b \in R$ (closure of addition)
$(\mathrm{A} \times 2) \mathrm{a}+(\mathrm{b}+\mathrm{c})=(\mathrm{a}+\mathrm{b})+\mathrm{c}$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$ (associative addition)
$(\mathrm{A} \times 3) \mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ (commutative addition)
(A x 4) There exists an element in R , denote by 0_{R} and called "zero R " such that $\mathrm{a}=$ $\mathrm{a}+0_{R}$ and $\mathrm{a}=0_{R}+\mathrm{a}$ for all $\mathrm{a} \in \mathrm{R}$ (additive identity)
(A x 5) for each $\mathrm{a} \in \mathrm{R}$, there exists an element in R , denote by -a and called" negative a ", such that $\mathrm{a}+(-\mathrm{a})=0_{R}$ (additive inverse)
(A $\times 6$) $\mathrm{ab} \in \mathrm{R}$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ (closure for multiplication)
$(\mathrm{A} \times 7) \mathrm{a}(\mathrm{bc})=(\mathrm{ab}) \mathrm{c}$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$ (associative multiplication)
$(\mathrm{A} \times 8) \mathrm{a}(\mathrm{b}+\mathrm{c})=\mathrm{ab}+\mathrm{ac}$ and $(\mathrm{a}+\mathrm{b}) \mathrm{c}=\mathrm{ac}+\mathrm{bc}$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$ (distributive laws)
(2) Check 8 axioms on the set $a+b \sqrt{2} \mid a, b \in \mathbb{Z}$ carefully and determine that it is a ring or not. (2 points)

Assume $\mathrm{S}=a+b \sqrt{2} \mid a, b \in \mathbb{Z}$,
$a_{1}+b_{1} \sqrt{2}, a_{2}+b_{2} \sqrt{2} \in \mathrm{~S}$,
I. $\left(a_{1}+b_{1} \sqrt{2}\right)+\left(a_{2}+b_{2} \sqrt{2}\right)=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) \sqrt{2} \in \mathrm{~S}$
II. $\left(a_{1}+b_{1} \sqrt{2}\right) *\left(a_{2}+b_{2} \sqrt{2}\right)=\left(a_{1} a_{2}+2 b_{1} b_{2}\right)+\left(a_{1} b_{2}+a_{2} b_{1}\right) \sqrt{2} \in \mathrm{~S}$
III. $0=0+0^{*} \sqrt{2} \in \mathrm{~S}$
IV. The additive inverse $\left(-a_{1}\right)+\left(-b_{1}\right) \sqrt{2} \in \mathrm{~S}$

Thus, S is a subring of \mathbb{R}
Therefore, S is a ring.

Problem 2

How many elements in \mathbb{Z}_{12} are units? Explicitly write them down and find each one corresponding multiplication inverse.

4 elements are units. They are $1,5,7,11$
The corresponding multiplication inverse of 1 is 1 .
The corresponding multiplication inverse of 5 is 5 .
The corresponding multiplication inverse of 7 is 7 .
The corresponding multiplication inverse of 11 is 11 .

