4.1 Polynomial Arithmetic and the Division Algorithm

A. Polynomial Arithmetic

*Polynomial Rings

If R is a ring, then there exists a ring T containing an element x that is not in R and the set R[x] of all elements of T such that

\[a_0 + a_1x + a_2x^2 + ... + a_nx^n \] (where \(n \geq 0 \) and \(a_i \in R \)) is a subring of T containing R.

*Polynomial addition, multiplication and contribution law.

*Definition: Let \(f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n \) be a polynomial in \(R[x] \) with \(a_n \neq 0_R \). Then \(a_n \) is called the leading coefficient of \(f(x) \). The degree of \(f(x) \) is the integer \(n \); it is denoted ”deg \(f(x) \)” . In other words, deg \(f(x) \) is the largest exponent of \(x \) that appears with a nonzero coefficient, and this coefficient is the leading coefficient.

Example: \(f(x) = 3 + 2x + 7x^2 + 8x^3 \)

\(\text{deg } f(x) = 3 \)

leading coefficient = 8

*Thm 4.2 If \(R \) is an integral domain and \(f(x), g(x) \) are nonzero polynomials in \(R[x] \). Then \(\text{deg } (f(x)g(x)) = \text{deg } f + \text{deg } g \).

*Cor: If \(R \) is an integral domain, then so is \(R[x] \).

*Cor 4.4: Let \(R \) be a ring. If \(f(x), g(x) \), and \(f(x)g(x) \) are nonzero in \(R[x] \), then \(\text{deg } (f(x)g(x)) \leq \text{deg } f(x) + \text{deg } g(x) \)

*Cor 4.5: Let \(R \) be an integral domain and \(f(x) \in R[x] \). Then \(f(x) \) is a unit in \(R[x] \) if and only if \(f(x) \) is a constant polynomial that is a unit in \(R \).
In particular, if F is a field, the units in $F[x]$ are the nonzero constants in F.

Example 8: $5x+1$ is a unit in $\mathbb{Z}_{25}[x]$ that is not a constant.

proof: $(5x+1)(20x+1) = 100x^2 + 20x + 5x + 1 = 100x^2 + 25x + 1 = 1$ in $\mathbb{Z}_{25}[x]$

B. The Division Algorithm in $F[x]$

*Thm 4.6

Let F be a field and $f(x), g(x) \in F[x]$ with $g(x) \neq 0_F$. Then there exist unique polynomials $q(x)$ and $r(x)$ such that $f(x) = g(x)q(x) + r(x)$ and either $r(x) = 0_F$ or $\deg r(x) < \deg g(x)$

Example 9: Divide $f(x) = 3x^5 + 2x^4 + 2x^3 + 4x^2 + x - 2$ by $g(x) = 2x^3 + 1$.

$f(x) = g(x) \left(\frac{3}{2}x^2 + x + 1 \right) + \left(\frac{5}{2}x^2 - 3 \right)$

4.2 Divisibility in $F[x]$

*Definition: Let F be a field and $a(x), b(x) \in F[x]$ with $b(x) \neq 0_F$, we say that $b(x)$ divides $a(x)$ [or that $b(x)$ is a factor of $a(x)$] and write $b(x) | a(x)$ if $a(x) = b(x)h(x)$ for some $h(x) \in F[x]$.

Ex: $(2x + 1) | (6x^2 - x - 2)$ in $\mathbb{Q}[x]$ because $6x^2 - x - 2 = (2x+1)(3x-2)$.

*Thm 4.7

Let F be a field and $a(x), b(x) \in F[x]$ with $b(x) \neq 0_F$

(1) If $b(x)$ divides $a(x)$, then $cb(x)$ divides $a(x)$ for each nonzero $c \in F$;

(2) Every divisor of $a(x)$ has degree less than or equal to $\deg a(x)$.

Proof: see textbook

*Definition: Let F be a field and $a(x), b(x) \in F[x]$, not both zero. The greatest common divisor (gcd) of $a(x)$ and $b(x)$ is the monic polynomial of highest degree that divides both $a(x)$ and $b(x)$. In other words, $d(x)$ is the gcd of $a(x)$ and $b(x)$ provided that $d(x)$ is monic and

(1) $d(x) | a(x)$ and $d(x) | b(x)$

(2) if $c(x) | a(x)$ and $c(x) | b(x)$, then $\deg c(x) < \deg d(x)$

Example 2, 3 in 4.2

*Thm 4.8:
Let F be a field, $f(x), g(x) \in F[x]$, not both zero. Then there is a unique gcd $d(x)$ of $f(x)$ and $g(x)$. Furthermore, there exist (not necessarily unique) polynomials $u(x)$ and $v(x)$ such that $d(x) = f(x)u(x) + g(x)v(x)$.

*Cor 4.9
Let F be a field and $a(x), b(x) \in F[x]$, not both zero. A monic polynomial $d(x) \in F[x]$ is greatest common divisor of $a(x)$ and $b(x)$ if and only if $d(x)$ satisfies these conditions:
1. $d(x) | a(x)$ and $d(x) | b(x)$
2. If $c(x) | a(x)$ and $c(x) | b(x)$, then $c(x) | d(x)$

*Thm 4.10
Let F be a field and $a(x), b(x), c(x) \in F[x]$. If $a(x) | b(x)c(x)$ and $a(x)$ and $b(x)$ are relatively prime, then $a(x) | c(x)$.

4.3 Irreducible and Unique Factorization

*f(x) is an associate of g(x) in $F[x]$ if and only if $f(x) = cg(x)$ for some nonzero $c \in F$.

Ex: $x^2 + 1$ is an associate of $2x^2 + 2$ in $\mathbb{R}[x]$.

* Definition:
Let F be a field. A nonconstant polynomial $p(x) \in F(x)$ is said to be irreducible if its only divisors are its associate and the nonzero constant polynomials (units). A nonconstant polynomial that is not irreducible is said to be reducible.

Ex: Every polynomial of degree 1 in $F[x]$ is irreducible in $F[x]$.

*Thm 4.11
Let F be a field. A nonzero polynomial $f(x)$ is reducible in $F[x]$ if and only if $f(x)$ can be written as the product of two polynomials of lower degree.

Ex: $x^2 + 1$ is irreducible in $\mathbb{R}[x]$ but it is reducible in $\mathbb{C}[x]$ since $x^2 + 1 = (x-i)(x+i)$

*Thm 4.12
Let F be a field and $p(x)$ a nonconstant polynomial in $F[x]$. Then the following conditions are equivalent:
1. $p(x)$ is irreducible.
2. If $b(x)$ and $c(x)$ are any polynomials such that $p(x) | b(x)c(x)$, then $p(x) | b(x)$ or $p(x) | c(x)$.
3. If $r(x)$ and $s(x)$ are any polynomials such that $p(x) = r(x)s(x)$, then $r(x)$ or $s(x)$ is a nonzero constant polynomials.
Let F be a field and $p(x)$ is an irreducible polynomial in $F[x]$. If $p(x)|a_1(x)a_2(x)...a_n(x)$, then $p(x)$ divides at least one of the $a_i(x)$ for some i.

*Thm 4.14
Let F be a field. Every nonconstant polynomial $f(x)$ in $F[x]$ is a product of irreducible polynomials in $F[x]$. This factorization is unique in the following sense: If $f(x) = p_1(x)p_2(x)...p_r(x)$ and $f(x) = q_1(x)q_2(x)...q_s(X)$ with each $p_i(x)$ and $q_j(x)$ irreducible, then $r=s$ (that is, the number of irreducible factors is the same). After the $q_j(x)$ are reordered and relabeled, if necessary $p_i(x)$ is an associate of $q_i(x)$. ($i=1, 2, 3, ... , r$).

4.4 Polynomial Functions, Roots, and Reducibility

*Roots of Polynomials
Definition:
Let R be a commutative ring and $f(x) \in R[x]$. An element a of R is said to be a root (or zero) of the polynomial $f(x)$ if $f(a)=0_R$, that is, if the induced function $f: R \to R$ maps a to 0_R.

*Example 3, 4.

*Thm 4.15 The Remainder Theorem
Let F be a field, $f(X) \in F[x]$ and $a \in F$. The remainder when $f(x)$ is divided by the polynomial $x-a$ is $f(a)$.

Proof of Thm 4.15: By the Division Algorithm.

Ex: Find the remainder when $f(x) = x^{79} + 3x^{24} + 5$ is divided by $x-1$.

$$f(1) = 1+3+5 = 9$$

is the remainder.

*Thm 4.16 The Factor Theorem
Let F be a field, $f(x) \in F[x]$ and $a \in F$. Then a is a root of the polynomial $f(x)$ if and only if $x-a$ is a factor of $f(x)$ in $F[x]$.
(Proof see textbook)

Ex: Show $f(x) = x^7 - x^5 + 2x^4 - 3x^2 -x +2$ is reducible in $\mathbb{Q}[x]$

$$f(1) = 1 - 1 + 2 - 3 -1 + 2 = 0$$
then $x-1$ is a factor of $f(x)$.
* Cor 4.17
Let F be a field and $f(x)$ a nonzero polynomial of degree n in $F[x]$. Then $f(x)$ has at most n roots in F.

* Cor 4.18
Let F be a field and $f(x) \in F[x]$ with $\deg f(x) \geq 2$. If $f(x)$ is irreducible in $F[x]$ then $f(x)$ has no roots in F.

The converse of Cor 4.18 is false in general.

* Cor 4.19
Let F be a field and let $f(x) \in F[x]$ be a polynomial of degree 2 or 3. Then $f(x)$ is irreducible in $F[x]$ if and only if $f(x)$ has no roots in F.

* Cor 4.20
Let F be an infinite field and $f(x), g(x) \in F[x]$. Then $f(x)$ and $g(x)$ induce the same function from F to F if and only if $f(x) = g(x)$ in $F[x]$.

4.4 2-11,15,17,27,29 suggested problems

4.5 Irreducibility in $\mathbb{Q}[x]$

* Thm 4.21 Rational Root Test
Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$ be a polynomial with integer coefficient. If $r \neq 0$ and the rational number r/s (in lowest terms) is a root of $f(x)$, then $r|a_0$ and $s|a_n$.

Ex 1 in textbook.

* Lemma 4.22

Let $f(x), g(x), h(x) \in \mathbb{Z}[x]$ with $f(x) = g(x) h(x)$. If p is a prime that divides every coefficient of $f(x)$, then either p divides every coefficient of $g(x)$ or p divides every coefficient of $h(x)$.

Proof: if $f(x)$ is a constant polynomial
if $c = ab$
$p|c$ implies $p|a$ or $p|b$ (Thm 1.5)
if $\deg f = 1$, $f(x) = px + 2p = p(x + 2) = g(x)h(x)$
at least one is a constant

* Thm 4.23
Let $f(x)$ be a polynomial with integer coefficients. Then $f(x)$ factors as a product of polynomials of degree m and n in $\mathbb{Q}[x]$ if and only if $f(x)$ factors as a product of polynomials of degree m and n in $\mathbb{Z}[x]$.

Ex: $f(x) = x^4 - 5x^2 + 1$, prove $f(x)$ is irreducible in $\mathbb{Q}[x]$.

$x + 1$ or $x - 1$ are only possible rational factors.

If $f(1) \neq 0$, $f(-1) \neq 0 \Rightarrow f(x)$ doesn’t have rational factors.

* Only possible way to factor $f(x)$ is two products of degree 2 polynomials.

$f(x) = (x^2 + ax + b)(x^2 + cx + d) = x^4 - 5x^2 + 1$

Then we have:
1. $a = -c$
2. $5 = c^2 - b - d$
3. $bd = 1$

Then we have $c^2 = 7$ or $c^2 = 3$ but $c \notin \mathbb{Q}[x]$

Therefore, we conclude that f is irreducible.

* Thm 4.24 Eisenstein’s Criterion

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$ be a nonconstant polynomial with integer coefficients. If there is a prime p such that p divides each $a_0, a_1, \ldots, a_{n-1}$, but p does not divide a_n and p^2 does not divide a_0, then $f(x)$ is irreducible in $\mathbb{Q}[x]$.

Ex: $f(x) = x^{17} + 6x^{13} - 15x^4 + 3x^2 - 9x + 12$

prove $f(x)$ is irreducible in $\mathbb{Q}[x]$

$p = 3$ divides $a_{n-1}, a_{n-2}, \ldots, a_0$

but p does not divide 1 and p^2 does not divide 12

Therefore, we say $f(x)$ is irreducible.

Ex: $x^9 + 5$ is irreducible or reducible in $\mathbb{Q}[x]$

$p = 5$

p^2 does not divide 5

so $x^9 + 5$ is irreducible.