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Persistent homology provides a new approach for the topological simplification of big data 
via measuring the life time of intrinsic topological features in a filtration process and 
has found its success in scientific and engineering applications. However, such a success 
is essentially limited to qualitative data classification and analysis. Indeed, persistent 
homology has rarely been employed for quantitative modeling and prediction. Additionally, 
the present persistent homology is a passive tool, rather than a proactive technique, 
for classification and analysis. In this work, we outline a general protocol to construct 
object-oriented persistent homology methods. By means of differential geometry theory 
of surfaces, we construct an objective functional, namely, a surface free energy defined 
on the data of interest. The minimization of the objective functional leads to a Laplace–
Beltrami operator which generates a multiscale representation of the initial data and 
offers an objective oriented filtration process. The resulting differential geometry based 
object-oriented persistent homology is able to preserve desirable geometric features in the 
evolutionary filtration and enhances the corresponding topological persistence. The cubical 
complex based homology algorithm is employed in the present work to be compatible with 
the Cartesian representation of the Laplace–Beltrami flow. The proposed Laplace–Beltrami 
flow based persistent homology method is extensively validated. The consistence between 
Laplace–Beltrami flow based filtration and Euclidean distance based filtration is confirmed 
on the Vietoris–Rips complex for a large amount of numerical tests. The convergence and 
reliability of the present Laplace–Beltrami flow based cubical complex filtration approach 
are analyzed over various spatial and temporal mesh sizes. The Laplace–Beltrami flow 
based persistent homology approach is utilized to study the intrinsic topology of proteins 
and fullerene molecules. Based on a quantitative model which correlates the topological 
persistence of fullerene central cavity with the total curvature energy of the fullerene 
structure, the proposed method is used for the prediction of fullerene isomer stability. The 
efficiency and robustness of the present method are verified by more than 500 fullerene 
molecules. It is shown that the proposed persistent homology based quantitative model 
offers good predictions of total curvature energies for ten types of fullerene isomers. The 
present work offers the first example to design object-oriented persistent homology to 
enhance or preserve desirable features in the original data during the filtration process and 
then automatically detect or extract the corresponding topological traits from the data.
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1. Introduction

In mathematical science, homology is a general procedure to associate a sequence of abelian groups or modules to a 
given topological space and/or manifold [26,39]. The idea of homology dates back to Euler and Riemann, although ho-
mology class was first rigorously defined by Henri Poincaré, who built the foundation of modern algebraic topology. The 
topological structure of a given manifold can be studied by defining the different dimensional homology groups on the man-
ifold such that the bases of the homology groups are isomorphic to the bases of the corresponding topological spaces. In 
computational perspective, a given manifold can be approximated by a triangulated simplicial complex, on which homology 
groups can be further defined. The triangulation of a manifold or a topological space can be realized through a number of 
methods, such as the Delaunay triangulation. There are many triangulation software packages, such as TetGen and CGAL. 
The Cartesian representation is one of the most important approaches in scientific computing. Consequently, cubical com-
plex based homology analysis has also become a popular research topic in the past decade. A systematic description of 
homology analysis in the cubical complex setting has been given by Kaczynski et al. [42].

Persistent homology creates a multiscale representation of topological structures via a scale parameter relevant to topo-
logical events [25,29,61,99]. In the past decade, persistent homology has been developed as an efficient computational 
tool for the characterization and analysis of topological features in large data sets [25,99,100]. Topological persistence over 
the filtration process can be captured continuously over a range of spatial scales in persistent homology analysis. Unlike 
commonly used computational homology which results in truly metric-free or coordinate-free representations, persistent 
homology is able to embed geometric information into topological invariants so that the “birth” and “death” of isolated 
components, circles, rings, loops, pockets, voids or cavities at all geometric scales can be monitored by topological measure-
ments. Compared with traditional computational topology [12,44,91] and/or computational homology, persistent homology 
inherently has an additional dimension, namely, the filtration parameter, which can be utilized to embed some crucial 
geometry or quantitative information into the topological invariants. Barcode representation has been proposed for the vi-
sualization of topological persistence [32], in which various horizontal line segments or bars are utilized to represent the 
persistence of the topological features. Efficient computational algorithms such as, the pairing algorithm [22,25], Smith nor-
mal form [26,99] and Morse reduction [37,38,72], have been proposed to track topological variations during the filtration 
process [7,22,23,26,50]. Some of these persistent homology algorithms have been implemented in many software packages, 
namely Perseus [50,52], JavaPlex [71] and Dionysus. In the past few years, persistent homology has been applied to im-
age analysis [5,9,58,67], image retrieval [30], chaotic dynamics verification [42,49], sensor networks [66], complex networks 
[40,45], data analysis [8,47,53,60,73], computer vision [67], shape recognition [24] and computational biology [21,31,43,86].

Nevertheless, the applications of persistent homology have been essentially limited to qualitative classification and analy-
sis. Indeed, there is little literature about the use of persistent homology as a quantitative tool, i.e., for mathematical 
modeling and physical prediction, to our best knowledge. Recently, we have introduced molecular topological fingerprints 
(MTFs) as a quantitative tool for revealing topology–function relationships in protein folding [86], modeling and prediction of 
the stability of proteins [86] and nano particles [85], and resolving ill-posed inverse problems in cryo-electron microscopic 
(cryo-EM) structure determination [88]. We have proposed resolution based persistent homology [89] and multidimensional 
persistence [87] for biomolecules.

In the past few decades, geometric analysis, which combines differential equations and differential geometry, has become 
a popular approach for data analysis, signal and image processing, surface generation and computer visualization [27,33,48,
56,64,65,69,93]. Geometric partial differential equations (PDEs) [83], i.e., the Laplace–Beltrami flows, are efficient apparatuses 
for data analysis and geometric processing in applied mathematics and computer science [11,20,68]. Osher and Sethian [55,
65] have devised level set as a computational tool for solving geometric PDEs. An alternative approach is to make use of the 
Euler–Lagrange variation to derive a desirable set of geometric PDEs from a functional, such as a Mumford–Shah functional 
[51], for image or surface analysis [6,10,46,57,62,63]. Wei introduced some of the first families of high-order geometric PDEs 
for image analysis in 1998 [77]. Mathematical analysis of high-order geometric PDEs was reported in the literature [34,35,
41,90]. Geometric PDE based high-pass filters was pioneered by Wei and Jia by coupling two nonlinear geometric PDEs [79]. 
Recently, this approach has been extended to a more general formalism, the PDE transform, for image and surface analysis 
[74–76,96].

Curvature-controlled PDEs was introduced by Wei and co-workers for the construction of biomolecular surfaces in 2005 
[80]. Based on differential geometry, the first variational solvent–solute interface: the minimal molecular surface (MMS), was 
proposed for molecular surface representation in 2006 [2–4]. Since the surface free energy is the product of surface tension 
and surface area, the minimization of the surface free energy leads to the Laplace–Beltrami operator. One then obtains the 
Laplace–Beltrami flow by adopting an artificial time. The Laplace–Beltrami flow approach has been used to calculate both 
solvation energies and electrostatics of proteins [1,4,18]. We have proposed potential-driven geometric flows, which admit 
non-curvature-driven terms, for biomolecular surface construction subject to potential interactions [1]. Our approaches were 
employed by many others [19,92,94,95] for biomolecular surface and electrostatics/solvation modeling.

The above idea was utilized to construct differential geometry based multiscale models [78]. The essential idea is to 
use the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain 
of the biomolecule from the microscopic domain of the solvent, and to dynamically couple the continuum treatment of 
the solvent from the discrete description of the biomolecule. In the past few years, differential geometry based multiscale 
models have been implemented for nonpolar solvation analysis [18], full solvation analysis [15–17], proton transport [13,14], 
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ion permeation across membrane channel proteins [59,81,82,97,98]. The performance of our methods has been extensively 
validated with experimental data, including solvation energies and current–voltage (I–V) curves.

In this work, the above ideas in variational geometric PDEs and computational topology are combined to develop object-
oriented persistent homology methods for proactively extracting desirable topological traits from biomolecular data. As a 
general procedure, we construct an objective functional to optimize desirable features in data. In our specific example, such 
an optimization is realized through a geometry-embedded filtration process and leads to an object-oriented persistent ho-
mology method. As a proof of principle, we utilize differential geometry theory of surfaces to minimize the surface free 
energy, which results in an object-oriented partial differential equation, i.e., the Laplace–Beltrami flow. The evolution of the 
Laplace–Beltrami flow creates a multiscale representation of a nano-bio object, which naturally constitutes a filtration and 
gives rise to a differential geometry based persistent homology method. The proposed differential geometry based persistent 
homology is utilized to analyze nano-bio data. The topological invariants of a given nano-bio object are extracted from the 
evolutionary profiles of the Laplace–Beltrami flow. Then topological persistence is analyzed to identify the intrinsic topolog-
ical signature of a given data. Such information is further utilized to unveil quantitative topology-function relationships. It is 
well known that geometric PDEs can be designed to preserve certain geometric features in the time evolution [77]. Specifi-
cally, Laplace–Beltrami flow minimizes the mean curvature or surface area [4]. As a result, topological invariants computed 
from the geometric PDE based filtration enhance the corresponding features. This idea is potentially useful and powerful for 
automatic feature detection and extraction from big data. In particular, the current framework can be utilized for analyz-
ing the topological structure of the cubical data, such as, cryo-EM density maps, which are of fundamental importance in 
structure biology.

The rest of this paper is organized as follows. In Section 2, we give a brief introduction to the theory of Laplace–Beltrami 
flows for nano-bio systems, such as proteins and carbon fullerene molecules. A computational protocol, including numerical 
implementation, for integrating the evolution of Laplace–Beltrami flow is described in detail. In Section 3, a brief review of 
homology and persistent homology theories is given in the cubical complex setting. The construction of object-oriented per-
sistent homology is discussed in Section 4. As a specific example of this new method, we propose the Laplace–Beltrami flow 
based persistent homology. The validity of the proposed method is carefully carried out in Section 5 using carbon fullerene 
data. The consistence with radius based filtration and the numerical convergence are verified. The proposed method is ap-
plied to the analysis of proteins and fullerene molecules in Section 6. We consider the topological persistence of a beta 
barrel, which has an intrinsic ring structure. We demonstrate that the specific intrinsic feature of the beta barrel, namely 
the inner ring structure, is enhanced during the time evolution. Whereas, some undesirable topological feature due to the 
Vietoris–Rips complex can be effectively suppressed in the present approach. We further apply this differential geometry 
based persistent homology to the quantitative prediction of fullerene isomer total curvature energies. This paper ends with 
a conclusion.

2. Laplace–Beltrami flows for nano-bio systems

In this section, we provide a brief summary of differential geometry based Laplace–Beltrami flows. To this end, we 
discuss differentiable manifolds and curvature, followed by the construction of Laplace–Beltrami operator using an objective 
functional. The implementation of the Laplace–Beltrami flow for biomolecular data is described in detail.

2.1. Differentiable manifolds and curvatures

Consider an immersion of an open set U ⊂ R3 to R4 via a differentiable hypersurface element f : U → R4. Here the 
hypersurface element is a vector-valued C2 function: f(u) = ( f1(u), f2(u), f3(u), f4(u)) and u = (u1, u2, u3) ∈ U .

Tangent vectors (or directional vectors) of f are Xi = ∂f
∂ui

. The Jacobi matrix of the mapping f is given by Df = (X1, X2, X3).

As a symmetric and positive definite metric tensor of f, the first fundamental form is I := (gij) = (Df)T · (Df), where 
matrix elements are gij =< Xi, X j >. Here <, > is the Euclidean inner product in R4, i, j = 1, 2, 3.

The Gauss map ν : U → S3 is defined by the unit normal vector ν(u)

ν(u1, u2, u3) := X1 × X2 × X3

‖X1 × X2 × X3‖ ∈ ⊥uf, (1)

where the cross product in R4 is a generalization of that in R3. Here ⊥uf is the normal space of f at point p = f(u). It is 
easy to verify that

< ν,ν >= 1.

Locally at p, the normal vector ν is perpendicular to the tangent hyperplane Tuf:

< ν,X >= 0.

Note that Tuf ⊕⊥uf = T f(u)R
3, which is the tangent space at point p. The second fundamental form is of crucial importance 

and can be defined by means of the normal vector ν and tangent vector Xi ,
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II(Xi,X j) = (hij) ≡
(〈

− ∂ν

∂ui
,X j

〉)
. (2)

The definition of the second fundamental form can be systematically generalized by using the Weingarten map, a shape 
operator of f:

L := −Dν ◦ (Df)−1.

Since L is a self-adjoint operator, we have

II(Xi,X j) = I(LXi,X j) = (hij) =
(〈

− ∂ν

∂ui
,X j

〉)
=

(〈
∂2f

∂ui∂u j
, ν

〉)
. (3)

The third and fourth fundamental forms are conveniently given in terms of the shape operator

III(Xi,X j) = I(L2Xi,X j) = (eij) =
(〈

∂ν

∂ui
,

∂ν

∂u j

〉)
(4)

IV(Xi,X j) = I(L3Xi,X j). (5)

The Laplace–Beltrami can be calculated by

H = 1

3
hij g ji, (6)

where we use the Einstein summation convention, and (gij) denotes the inverse matrix (gij) = (gij)
−1.

Principal curvatures κi (i = 1, 2, 3) are defined as the eigenvalues of Weingarten map L with eigenvectors being unit 
tangent vectors. Appropriate organization of the principal curvatures gives rise to the first three relations

K1 = 1

3
(κ1 + κ2 + κ3) (7)

K2 = 1

3
(κ1κ2 + κ1κ3 + κ2κ3) (8)

K3 = κ1κ2κ3 (9)

where K1 = H = 1
3 Tr(L) is the mean curvature and K3 = K = Det(L) is the Gauss–Kronecker curvature or Gauss curvature. 

The local property of the Gauss curvature is used to classify the point as elliptic, hyperbolic, parabolic, etc. The combination 
of Gauss and mean curvatures has been used to characterize protein surfaces and predict protein-ligand binding sites [28,
84]. It follows from the Cayley–Hamilton theorem that the first four fundamental forms satisfy: IV − 3HIII + 3K2II − K I = 0.

We discuss an iterative procedure to generate a family of hypersurfaces that have vanishing Laplace–Beltrami except at 
the boundary. Let U ⊂ R3 be an open set with a compact closure U and boundary ∂U . Consider a family of hypersurface 
elements fε : U → R4 (ε > 0) generated by deforming f in the normal direction with speed of the Laplace–Beltrami:

fε(x, y, z) := f(x, y, z) + εHν(x, y, z). (10)

Equation (10) is iterated until H = 0 in all of U , except at boundary ∂U , which can be a set of atomic surface constraints. 
This procedure leads to a minimal hypersurface [4].

As discussed above, the hypersurface element is a vector-valued function which is cumbersome in biophysical application. 
We therefore construct a scalar hypersurface function by setting f(u) = (x, y, z, S), where S(x, y, z) is a hypersurface function 
of interest. The first fundamental form can be explicitly computed

(gij) =
⎛⎝ 1 + S2

x Sx S y Sx Sz

Sx S y 1 + S2
y S y Sz

Sx Sz S y Sz 1 + S2
z

⎞⎠ . (11)

Matrix tensor (gij) has the inverse

(gij) = 1

g

⎛⎝ 1 + S2
y + S2

z −Sx S y −Sx Sz

−Sx S y 1 + S2
x + S2

z −S y Sz

−Sx Sz −S y Sz 1 + S2
x + S2

y

⎞⎠ , (12)

where g = Det(gij) = 1 + S2
x + S2

y + S2
x is the Gram determinant. From Eq. (1), the normal vector is given by

ν = (−Sx,−S y,−Sz,1)/
√

g. (13)

The second fundamental form, the Hessian matrix of S , is obtained as
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(hij) =
(

1√
g

Sxi x j

)
. (14)

Using Eq. (6), one can obtain the Laplace–Beltrami

H = 1

3
∇ ·

(∇ S√
g

)
. (15)

2.2. Laplace–Beltrami flow

2.2.1. Laplace–Beltrami equation
According to differential geometry theory of surfaces, a surface area is minimized if and only if the Laplace–Beltrami is 

zero everywhere on the surface except for a set of boundary points. Following Eq. (10), we construct a family of hypersur-
faces Sε as

Sε(x, y, z) = S(x, y, z) + ε

3
√

g
∇ ·

(∇ S√
g

)
. (16)

The iteration of the hypersurface function so that Sε(x, y, z) → S(x, y, z), i.e., ∇ ·
( ∇ S√

g

)
= 0, leads to the desired minimal 

hypersurface function S .
A more general procedure is to construct an objective functional, i.e., a surface free energy functional, for the molecular 

data of interest

E =
∫
∂�

γ d�, (17)

where ∂� is the boundary of the molecule, γ is the surface tension and d� = √
gdxdydz. Using the Euler Lagrange equation, 

we minimize the surface free energy density e = γ
√

g with respect to S

∂e

∂ S
− ∂

∂x

∂e

∂ Sx
− ∂

∂ y

∂e

∂ S y
− ∂

∂z

∂e

∂ Sz
= 0. (18)

Since γ = 0 in general, we arrive at the vanishing of the mean curvature operator ∇ ·
( ∇ S√

g

)
= 3H = 0 again.

From the computational point of view, the iteration process can be efficiently achieved by introducing an artificial time 
variable t so as to change the elliptic PDE into a parabolic one. Specifically, instead of iterating Eq. (16), we set the hyper-
surface function S to be S(x, y, z, t) in the computational perspective and construct the following Laplace–Beltrami equation

∂ S

∂t
= √

g∇ ·
(∇ S√

g

)
. (19)

A similar approach is to set 
√

g as |∇ S|, leading to another popular form of the Laplace–Beltrami equation [4]

∂ S

∂t
= |∇ S|∇ ·

( ∇ S

|∇ S|
)

. (20)

These equations were employed to construct minimal molecular surfaces of proteins and other biomolecules [1,4,15,84].

2.2.2. Initial value and boundary condition for nano-bio Laplace–Beltrami flows
In the present work, we generate a family of hypersurface functions indexed by the artificial time t by using Laplace–

Beltrami equation (19). We call this family of hypersurface functions the profiles of Laplace–Beltrami flows. Note that we 
do not seek the minimal molecular surfaces described in our earlier work [1,4,15,84]. Instead, we look for a geometric PDE 
or Laplace–Beltrami flow representation of nano-bio molecules. To apply this approach to proteins and nano-molecules, we 
start with a given set of N atomic coordinates {ri}, (i = 1, 2, · · · , N), which can be obtained from the Protein Data Bank 
(PDB). We define a set by RN = ∪N

i=1 Bε(ri), where Bε(ri, ri) is the ball centered at ri of radius ri = εrvdW . Here ε > 0 is a 
parameter and rvdW is the van der Waals radius of the ith atom.

The initial value of the hypersurface S can be chosen in a number of ways. One choice is

S(r,0) =
{

1 if r ∈ RN ,

0 otherwise.
(21)

Remark 1. The initial radii of an atom εri in a molecule can be adjusted by parameter ε. For different applications, one can 
choose different initial radii. In our earlier work, ε > 1 was used [1,4,15,84]. In the present work, we set ε = 1 .
2
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Alternatively, another choice is a Heaviside function θ

S(r,0) = θ(μ(r) − μ0), (22)

where μ0 is a cutoff value and μ(r) is a rigidity function [54]

μ(r) =
N∑
i

wi
(|r − ri|;ηi). (23)

Here wi is a weight associated with the atomic type of the ith atom and is set to 1 in the present work. Additionally, 
correlation functions 
(|r − ri |; ηi) are monotonically decreasing radial basis functions, such as generalized exponential 
functions or generalized Lorentz functions [54]. The scaling function ηi can be set to ηi ∝ rvdW and should be systematically 
adjusted for different choices of 
.

Obviously, the other choice of the initial value is to directly use the rigidity function

S(r,0) = μ(r). (24)

The initial values given by Eq. (22) are smoother than those given by Eq. (21). However, Eq. (24) provides the smoothest 
initial values. The results reported in this work are based on Eq. (21). However, our tests indicate that other two types of 
initial values work well.

Both the Dirichlet boundary (S(r, t) = 0 ∀r ∈ ∂U ) or the Neumann boundary ( ∂ S
∂r = 0 ∀r ∈ ∂U ) can be employed. The 

solution of Eq. (19) gives a family of hypersurface functions S(x, y, z, t). We extract desirable nano-bio information from S
by using two different procedures. One is to take an iso-surface for a given iso-value, i.e., S = c, which can be extracted 
by the level set method. For our applications, the iso-value of the hypersurface for carbon fullerene molecules is set to 
be c = 0.1, and that for protein molecules is set c = 0.01. The other approach is to evaluate the structural information 
contained in S(x, y, z, T ) at a given time T >> 0. We typically set T to be a quite large value so the hypersurface profile is 
well developed. However, to avoid boundary effect, T should not be too large.

3. Cubical complex based homology and persistent homology

In this section, a brief review of the homology and persistent homology in the cubical complex setting is provided. The 
reader is referred to the literature [42,70] for more comprehensive discussion and treatment.

3.1. Geometric building blocks

The cubes are the basic geometric building blocks of the homology and persistent homology theory in the cubical com-
plex setting. First of all, we need to introduce a few basic concepts about cubes.

• An elementary non-degenerate interval is a closed interval I ⊂ R of the form I = [m, m + 1] (or I = [m] for simplicity) 
for some integer m. An elementary degenerate interval is a point I = [m, m].

• An elementary cube Q or d cube is a d-product of elementary intervals, i.e.,

Q = I1 × I2 × . . . × Id ⊂ Rd,

where each Ii, i = 1, 2, . . . , d is an elementary interval of non-degenerate or degenerate type, and d is called the em-
bedding number of Q , denoted as emb Q = d. The dimension of Q , denoted by dim Q , is defined to be the number of 
non-degenerate components in Q , and Kk denotes the set of all k dimensional elementary cubes. Let K := ⋃∞

d=1 Kd be 
the set of all elementary cubes, and Kd be the set of all elementary cubes in Rd .

• The set of k-dim cubes with embedding number d is Kd
k := Kk

⋂
Kd . Obviously, if Q ∈ Kd

k and P ∈ Kd′
k′ , then Q × P ∈

Kd+d′
k+k′ .

With the above building blocks, we say that set X ⊂ Rd is cubical if X can be written as a finite union of elementary 
cubes.

For a given cubical set X ⊂ Rd , we define the following cubical set K(X) and k-cube set Kk(X) of X :

K(X) = {Q ∈ K|Q ⊂ X},

Kk(X) := {Q ∈ K(X)|dim Q = k}.
The elements of Kk(X) are called the k-cubes of X .
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3.2. Algebraic building blocks

With the above geometric building blocks, we define the algebraic operations on the building blocks, following the line 
of Kaczynski et al. [42]

First, each elementary k-cube Q ∈ Kd
k is associated with an algebraic object Q̂ which is called an elementary k-chain 

of Rd . The set of all elementary k-chains of Rd is

K̂d
k := {Q̂ |Q ∈ Kd

k},
and the set of all elementary chains of Rd is

K̂d :=
∞⋃

k=0

K̂d
k .

Second, addition operation and boundary operator are defined for the further algebraic treatment of the cubical complex.

3.2.1. Addition operation
To define the addition operation on elementary chains, first, the following k-chains, i.e., a linear combination of k-chain,

c = a1 Q̂ 1 + a2 Q̂ 2 + · · ·am Q̂ m, ai ∈ Z, i = 1,2, . . . ,m,

is allowed for any given finite collection {Q̂ 1, ̂Q 2, . . . , ̂Q m}, and, if all the ai = 0, then we set c = 0.
The set of all the above k-chains is denoted by Cd

k . The addition of two k-chains is defined by:∑
ai Q̂ i +

∑
bi Q̂ i =

∑
(ai + bi)Q̂ i .

It is easy to check for ∀ k-chains c = ∑m
i=1 ai Q̂ i , there is an inverse element −c = ∑m

i=1 −ai Q̂ i with the property c +
(−c) = 0, note the addition operation is commutable, thus Cd

k is an abelian group.

3.2.2. Boundary operator
Before we define the boundary operator, the scalar product and cubical product operation on the k-chain group Cd

k need 
to be defined.

Definition 3.1. Let c1, c2 ∈ Cd
k , where c1 = ∑m

i=1 ai Q̂ i and c2 = ∑m
i=1 bi Q̂ i . The scalar product of chains c1 and c2 is defined 

as [42]:

< c1, c2 >:=
m∑

i=1

aibi .

Definition 3.2. For all elementary cubes P ∈Kd
k and Q ∈Kd′

k′ , the cubical product between P , Q is defined to be [42]:

P̂ ∗ Q̂ := P̂ × Q .

And for all chains c1 ∈ Cd
k and c2 ∈ Cd′

k′ , the cubical product is:

c1 ∗ c2 =
∑

P∈Kk,Q ∈Kk′
< c1, P̂ >< c2, Q̂ > P̂ × Q ,

and c1 ∗ c2 ∈ Cd+d′
k+k′ .

For the cubical product, the following important factorization property holds [42]:

Lemma 3.1. For ∀Q̂ ∈ K̂d with d > 1. There exists unique elementary cubical chains ̂I and ̂P with emb I = 1 and emb P = d − 1, 
such that Q̂ = Î ∗ P̂ .

With the above preparation, the boundary operation can be defined inductively in the following way [42].

Definition 3.3. For k ∈ Z, the cubical boundary operator

∂k : Cn
k → Cn

k−1

is a homomorphism of abelian groups, defined for an elementary chain Q̂ ∈ K̂n
k by induction on the embedding number n

as follows:
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• For n = 1, Q is an elementary interval, i.e., Q = [m] or Q = [m, m + 1] for some m ∈ Z, and one defines:

∂k Q̂ =
{

0 if Q = [m]
̂[m + 1] − [̂m] if Q = [m,m + 1].

• For n > 1, let I = I1(Q ) and P = I2(Q ) × · · · × In(Q ) so that Q̂ = Î ∗ P̂ , then one defines:

∂k Q̂ = ∂dim Î I ∗ P̂ + (−1)dim I Î ∗ ∂dim P P̂ .

By linearity this can be extended to chains, i.e., if c = ∑p
i=1 ai Q̂ i , then:

∂kc =
p∑

i=1

ai∂k Q̂ i .

Theorem 3.1. The boundary operator satisfies:

∂k ◦ ∂k−1 = 0, ∀k > 1,

which is consistent with the simplicial complex setting.

Now, for a given cubical set X ⊂ Rd , let {K̂k(X) := Q̂ |Q ∈Kk(X)} and let Ck(X) be the subgroup of Cd
k generated by the 

elements of K̂k(X), which is called the set of k-chains of X . The boundary operator maps Ck(X) to a subset of Ck−1(X), thus 
one can restrict the boundary operator to the cubical set X .

Definition 3.4. The boundary operator for the cubical set X is defined to be:

∂ X
k : Ck(X) → Ck−1(X),

obtained by restricting ∂k : Cd
k → Cd

k−1 to Ck(X).

Definition 3.5. The cubical chain complex for the cubical set X ⊂ Rd is

C(X) := {Ck(X), ∂ X
k }k∈Z,

where Ck(X) are the groups of cubical k-chains generated by Kk(X) and ∂ X
k is the cubical boundary operator restricted 

to X .

3.3. Homology of cubical sets

As discussed above, one has the corresponding k-chains group Ck(X), for a given cubical set X , now one can define two 
subgroups of Ck(X).

• k-cycle group Zk(X) := ker ∂ X
k = Ck(X) 

⋂
ker ∂k ⊂ Ck(X).

• k-boundary group Bk(X) := im ∂ X
k+1 = ∂k+1(Ck+1(X)) ⊂ Ck(X).

Following from ∂k ◦ ∂k−1 = 0 ∀k > 1, one has Bk(X) ⊂ Zk(X). Therefore, one has the following homology group [42].

Definition 3.6. The kth homology group of the cubical set X is the quotient group:

Hk(X) := Zk(X)/Bk(X).

The kth Betti number is defined as the rank of the kth homology group,

βk = rank Hk.

From the topological point of view, Hk(X) describes k-dimensional holes of X , e.g., H0(X) measures connected compo-
nents, H1(X) measures loops and H2(X) measures voids. In other words, β0 is the number of connected components, β1 is 
the number of loops, β2 is the number of voids, and so on. We are particularly interested in behavior of β0, β1 and β2 for 
proteins and fullerenes.
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Fig. 1. A flow chart for the construction of object-oriented persistent homology.

3.4. Persistent homology of cubical complex

Homology gives a characterization of a manifold, while it does not distinguish different holes in the same dimension. 
To measure these topological features, the concept of persistent homology was proposed based on the simplicial complex. 
Persistence measures the birth, death and the lifetime of the topological attributes during the filtration process.

To define the persistent homology, first we need a filtration, i.e., a complex K together with a nested sequence of 
sub-complexes {K i}0≤i≤n , such that

∅ = K 0 ⊂ K 1 ⊂ · · · ⊂ K n = K .

Each sub-complex K i in the filtration has an associated chain group C i
k , cycle group Z i

k and boundary group Bi
k ∀i ≥ 1, and 

thus one has the following definition [70].

Definition 3.7. The p-persistent kth homology group of K i is:

Hi,p
k = Z i

k/
(

Bi+p
k

⋂
Z i

k

)
.

Here Hi,p
k captures the topological features of the filtrated complex that persists for at least p steps in the filtration.

4. Object-oriented persistent homology

In this section, we propose a general procedure for constructing object-oriented persistent homology. We start with an 
objective functional for the data of interest. By the optimization of the objective functional, we arrive at one or a set of 
object-oriented operators, or object-oriented PDEs. The number of operators depends on how the objective functional is 
parametrized. The action of the objective operators leads to a series of objective-embedded representations of the original 
data. We then utilize such objective-embedded representations for the filtration of original data to construct object-oriented 
persistent homology. We illustrate this procedure by a flow chart in Fig. 1.

As discussed in Section 2.2, the minimization of the surface free energy functional gives rise to the mean curvature 
operator for the biomolecular data. We formulate the Laplace–Beltrami flow to computationally minimize the surface free 
energy. The integration of the Laplace–Beltrami flow leads to a family of minimal surface representations of the original 
data. In this part, we construct a filtration {KT }T ≥1 of the data of interest based on the Laplace–Beltrami flow. Here, T =
0, 1, 2, · · · , are the time steps. For a given initial structure, we embed it in an enlarged bounding box, which defines the 
whole computational domain. Then a uniform Cartesian mesh is employed for our computation:

{(i, j,k)|1 ≤ i ≤ nx,1 ≤ j ≤ ny,1 ≤ k ≤ nz}.
The initial values of the grid points that are inside the initial geometric object is set to be 1, and 0 for grid points outside 

the object.
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Under the geometric flow action, the following vertex set can be constructed at each evolution time:

V 0 := ∅,

Vt := {(i, j,k)|S(i, j,k, t) ≥ S0,1 ≤ i ≤ nx,1 ≤ j ≤ ny,1 ≤ k ≤ nz}, ∀t > 0,

where S0 is the threshold value for extracting the iso-surface.
Furthermore, let Ṽ T := ⋃

0≤t≤T Vt , which is the set of vertices that have value greater than the threshold value at time T .
The T th component of the filtration is set to be:

KT := {cubes whose vertices set is a subset of Ṽ T }.
Based on the above construction, it is obvious that K T ⊂ KT +1, ∀ T ≥ 0.

4.1. Computing Laplace–Beltrami flow based persistent homology

Remark 2. Neumann boundary condition is utilized to make the Laplace–Beltrami flow computationally well posed. Since 
the Laplace–Beltrami flow is dispersive, when the evolution time is large enough, the value of S will be less than a given 
S0 for all the grid points. Therefore the evolutionary flow based filtration is upper bounded.

The object-oriented persistent homology on the cubical complex can be computed by existing software packages. In the 
present work, we utilize Perseus [50] for persistent homology calculation. The sparse grid data structure is utilized as the 
input data format for the Perseus software in the present work.

Remark 3. Since the Laplace–Beltrami flow minimizes the surface area of the surface defined on the initial data, the per-
sistence of topological features associated with minimal surfaces is enhanced in the Laplace–Beltrami flow based persistent 
homology approach.

5. Validation

5.1. Topological invariant analysis

In this subsection, we examine accuracy and reliability of the proposed geometric flow based persistent homology 
method. To this end, we consider a fullerene molecule, C60, which has distinct topological loops, namely pentagon and 
hexagon loops. The structural data of fullerene molecules and isomer total curvature energies [36] used in our tests are 
downloaded from the webpage: fullerene-isomers. In these structural data sets, coordinates of fullerene carbon atoms 
and isomer total curvature energies are given. The atoms of all these molecules form only two types of polygons, namely, 
pentagons and hexagons. For the fullerene cage composed only of pentagons and hexagons, according to Euler Characteris-
tics, the number of pentagons must be 12 and that of hexagons is N

2 − 10, where N is the number of atoms of the fullerene 
molecule.

Fig. 2 depicts six frames extracted from the solution of the Laplace–Beltrami equation for C60 fullerene molecule. Note 
that the initial setting is a set of balls with half van der Waals radii as described in Eq. (21). It is seen that during the time 
evolution, many pentagonal rings disappear followed by the disappearance of hexagonal rings. Table 1 gives a summary of 
topological invariants in these six frames. From this table we notice that pentagons persist in the time interval [0, 0.15] and 
the hexagon persist in the time interval [0, 0.67]. The difference of the last two frames is that the second last frame has a 
cavity, whereas the last frame has no cavity.

The evolution of the topological features of carbon fullerene C60 under the geometric flow is demonstrated in Fig. 3. 
As a comparison, we also plot the result generated by using the Rips complex. In β0 panels, one sees a long-lasting bar 
from the present method, while a reduction from 60 bars to one bar in the Rips complex representation. This behavior 
is expected because the starting point of the present method is a set of connected balls as described above, while Rips 
complex filtration starts from the zero radius. In the β1 panels, there is a good consistency between two approaches. One 
sees 12 short-lived bars, which correspond to 12 pentagonal rings. However, there are only 19 relatively long bars for 20 
hexagonal rings because one of H1 element can be expressed as the combination of other H1 basis elements. Finally, in β2
panels, the present method provides a single relatively long-lived bar for the inner cavity, while the Rips complex filtration 
gives rise to additional 20 short-lived bars for 20 hexagons. The disappearance of the short-lived β2 bars in the present 
approach is due to the cubical complex used in our calculation. Short-lived bars are often regarded as topological noise 
in the literature, while used in our models for physical modeling [86]. However, in the present work, we only need the 
long-lasting β2 bar for our quantitative modeling as discussed in Section 6.2.
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Fig. 2. Selected frames of fullerene C60 generated from the time evolution of the Laplace–Beltrami flow. Charts from left to right and from top to bottom 
are frames 1 to 6, respectively. According to Table 1, the second last frame has a central cavity while the last frame has no void.

Table 1
The evolution of the topological features of C60 molecule under the time evolution of the Laplace–Beltrami flow.

Frame Time β0 β1 β2

1 0.01 1 31 0
2 0.07 1 30 0
3 0.15 1 19 0
4 0.57 1 18 0
5 0.67 1 0 1
6 2.31 1 0 0

Remark 4. The persistent homology derived from the Laplace–Beltrami flow results in nonlinear modification of certain 
topological features. Because the geometric PDE is able to preserve certain geometric features [77], the persistence of the 
corresponding intrinsic topology can be amplified. This feature is a fundamental property of the object-oriented persistent 
homology constructed in this work. It is possible to design object-oriented PDEs to selectively enhance and/or extract other 
desirable topological features from big data.

5.2. Convergence analysis

Figs. 4 and 5 demonstrate the numerical convergence of proposed Laplace–Beltrami flow approach for computing the 
persistence of β1 invariants. We present the time evolution of the persistence of β1 invariants collected over a sufficiently 
long period at different grid sizes. It can be seen that the persistent pattern at grid size 0.25 Å is essentially the same as 
that at grid size 0.125 Å, which shows the convergence with respect to grid spacing variations.

As another validation of the proposed Laplace–Beltrami flow based persistent homology method, we examine the nu-
merical convergence of the proposed method. Additionally, we demonstrate that topological invariants computed from our 
Laplace–Beltrami flow method converge to the right ones, where we regard the β1 barcodes obtained via the conventional 
Rips complex filtration based on the growth of the radius of the point cloud data as the benchmark. To this end, we con-
sider the persistent homology of the two approaches for two fullerene structures, namely, C36 and C100. The coordinates of 
these fullerene structures are downloaded from Web fullerene-isomers and are saved. For isomers, the first structure 
in the isomer family is used. These fullerene molecules contain pentagon and hexagon loops, which give rise to appropriate 
β1 bars.

It remains to show that our persistent homology results converge to the right ones. As shown in Figs. 4 and 5, there 
are a total of 12 pentagon β1 bars. The numbers of hexagon bars are 7 and 39, respectively for C36 and C100, as expected. 
Therefore, the proposed geometric flow based filtration captures the intrinsic topological features of fullerenes. Additionally, 
the Rips complex based filtration is employed as a reference with a fine atomic radius growth rate of 0.001 Å per step. 
The comparison of topological invariants computed from the proposed method and that obtained from the Rips complex 
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Fig. 3. Comparison of the topological evolution and persistence of the C60 molecule. Top row: Barcodes obtained from the proposed Laplace–Beltrami flow 
based filtration; Bottom row: Barcodes obtained from the Rips complex filtration.

Fig. 4. Comparison of the persistence of β1 barcodes obtained from the growth of atomic radius filtration and from the geometric flow based filtration for 
fullerene C36. Top left: Atomic radius filtration; Top right: Geometric flow filtration, h = 0.5 Å; Bottom left: Geometric flow filtration, h = 0.25 Å; Bottom 
right: Geometric flow filtration, h = 0.125 Å.

Fig. 5. Comparison of the persistence of β1 barcodes obtained from the growth of atomic radius filtration and from the geometric flow based filtration for 
fullerene C100. Top left: Atomic radius filtration; Top right: Geometric flow filtration, h = 0.5 Å; Bottom left: Geometric flow filtration, h = 0.25 Å; Bottom 
right: Geometric flow filtration, h = 0.125 Å.
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Fig. 6. The initial structure of protein 2GR8. Left chart: Secondary structure representation; Right chart: atomic representation. Colors indicate different 
types of atoms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

is given in Figs. 4–5. Clearly, persistent patterns obtained by Laplace–Beltrami flow based method capture all topological 
features generated from the Rips complex, which indicates the reliability of the proposed method.

In fact, we have carried out similar tests for many other fullerenes, including C38, C40, C44, C52, C84, C86, C90 and C92. 
Although these results are omitted for simplicity, our findings are the same.

The above validations verify that the Laplace–Beltrami flow based filtration in conjugation with the cubical complex 
setting is convergent and accurate. The resulting topological invariants are consistent with those obtained with the Rips 
complex using radius based filtration. On the other hand, our results also indicate that the Laplace–Beltrami flow based 
method is very sensitive to grid resolution. Some topological features barely show up at the grid size of 0.5 Å. Therefore, 
the grid resolution better than 0.25 Å is recommended for nano-bio data.

6. Application

Having verified the reliability, accuracy and efficiency of the present Laplace–Beltrami flow based persistent homology 
analysis, we utilize it for the study of proteins and nano-material in this section.

6.1. Protein structure analysis

6.1.1. Protein 2GR8
In this subsection, we explore the topological structures and their persistence of the protein molecules using the Laplace–

Beltrami flow based persistent homology. We consider a beta-barrel protein (PDB ID: 2GR8).
Fig. 6 shows the initial structure of protein 2GR8 in both secondary structure and atomic representations. Clearly, it is a 

beta barrel with 12 twisted beta strands coiled together in an antiparallel fashion to form a cylindrical structure in which 
the first strand is hydrogen bonded to the last. However, inside the beta barrel, there are also three alpha helices as shown 
in the left chart of Fig. 6. The topological structure is complicated due to the presence of these alpha helices.

We first consider the geometric evolution of protein 2GR8 under the Laplace–Beltrami flow and then compute its ho-
mology evolution. Fig. 7 depicts some frames generated from the time evolution process of the Laplace–Beltrami flow. The 
first two frames exhibit much atomic detail. As time progress, the atomic features disappear while beta strands are clearly 
demonstrated in frames 3–6. In fact, beta strand features diminish at the last two frames and the global cylindrical feature 
dominates. Therefore, the Laplace–Beltrami flow generates a multiscale representation of the protein as illustrated in our 
earlier work [80,84].

Table 2 gives the corresponding time evolution of topological invariants of the six frames for protein 2GR8. One sees a 
large number of β1 rings in the first frame. However, there is just one ring, in the second frame. The number of cavities 
reaches the highest values in the second frame (among six frames) and gradually reduces to zero. From Table 2, we note that 
there is a ring in Frames 2–5. However, we cannot determine whether it is the same ring or not from the classical homology 
theory. There may be a different ring generated at each of Frame 2–5. Persistent homology is designed to reserve this issue. 
The persistence of the topological invariants during the time evolution process is illustrated in Fig. 8. It is confirmed that 
the ring initially exists and is not generated in intermediate steps of the evolution. However, this ring is not a global one 
because it lasts for a relatively short period during the time evolution.
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Fig. 7. Geometric evolution of protein 2GR8 under the Laplace–Beltrami flow. Charts from left to right and from top to bottom are frames 1 to 6, respectively.

Table 2
The time evolution of the topological invariants of protein 2GR8 under the Laplace–Beltrami flow.

Frame Time β0 β1 β2

1 0.10 1 263 12
2 0.50 1 1 21
3 1.00 1 1 9
4 1.50 1 1 2
5 1.70 1 1 1
6 1.80 1 0 0

Fig. 8. The time evolution of the topological invariants of protein 2GR8 under the Laplace–Beltrami flow.

6.1.2. A beta barrel
We next create a pure beta barrel by removing three alpha helices from protein 2GR8, which enables us to observe the 

beta barrel ring geometry and topology clearly. The initial structure of the beta barrel is shown in Fig. 9. The time evolution 
of the beta barrel is illustrated in Fig. 10. Again, one sees atomic details in the first few frames and global features in later 
frames. Obviously, there is a large ring structure in the beta barrel.

Table 3 lists the corresponding topological invariants of six frames for the beta barrel. Although the number of β2 varies 
dramatically, that of β1 does not change over a long time period, indicating the global ring structure of the beta barrel.

The persistence of the topological invariants over time evolution process for the beta barrel is illustrated in Fig. 11. 
The β1 panel has a long-lasting bar. A comparison with the time scale in the β1 panel of Fig. 8 confirms that the present 
long-lasting bar corresponds to the intrinsic global structure of the beta barrel.

The above results demonstrate that the proposed Laplace–Beltrami flow based persistent homology is an efficient tool 
for analyzing the topological structures of protein molecules.
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Fig. 9. The initial structure of a beta barrel. Left chart: Secondary structure representation; Right chart: atomic representation. Colors indicate different types 
of atoms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. The geometric evolution of a beta barrel under the Laplace–Beltrami flow. Charts from left to right and from top to bottom are frames 1 to 6, 
respectively.

Table 3
The evolution the topological invariants of the beta barrel under the geometric flow.

Frame Time β0 β1 β2

1 0.01 1 137 0
2 0.10 1 62 4
3 0.15 1 23 2
4 1.00 1 4 0
5 2.00 1 1 0
6 29.0 1 0 0

6.2. Fullerene total curvature energy prediction

Having demonstrated the utility of the proposed Laplace–Beltrami flow based persistent homology method for protein 
characterization, we are interested in the further application of this topological tool for quantitative analysis of carbon 
fullerene molecules. In particular, we explore the application of the present persistent homology method to the prediction 
of the total curvature energies of the carbon fullerene isomers. Fullerene molecules admit a large number of isomers, 
especially when the number of atoms is large. Different isomers with the same chemical formula have different geometric 
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Fig. 11. The evolution of the topological invariants of the beta barrel under the Laplace–Beltrami flow.

Fig. 12. The comparison of fullerene isomer total curvature energies and persistent homology theory predictions.

structures which leads to the variations in their total curvature energies. The stability of each given fullerene isomer is 
determined by its total curvature energy. In general, the higher energy isomer is less stable.

We assume that different isomers of a fullerene molecule have the same surface area. This assumption is reasonable 
because all isomers share the same set of atoms and bonds. However, these isomers may have different enclosed volumes 
as some isomers are more spherical than others. Those isomers that deviate from the spherical shape must have high 
curvature energies. The more deviation from the sphericity in the structure, the higher curvature energy an isomer has. 
Additionally, by the iso-perimetric inequality we know that for a class of isomers of a given surface area, the volume is 
maximized when the isomer is a perfect sphere. For fullerene isomers, more deviation from the sphericity in the structure, 
the earlier in the time evolution the β2 bar dies, which leads to a shorter β2 bar length. Therefore, we can establish a 
relationship between the persistence of β2 invariant and the total curvature energy of a fullerene isomer.

In this work, the persistence or bar length of Betti 2, which essentially measures the size of the central cavity, is em-
ployed to predict the total curvature energy of carbon fullerene isomers. The Laplace–Beltrami flow is discretized with time 
stepping size 0.001 and grid spacing size 0.25. To quantitatively verify our prediction, the least squares method is employed 
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Fig. 13. The comparison of fullerene isomer total curvature energies and persistent homology theory predictions (cont’d).

Table 4
The correlation coefficients and standard deviations of the predicted values with respect to total 
curvature energy data.

Fullerene molecule Correlation coefficient Standard deviation

C36 0.9668 0.4345
C38 0.9280 0.5263
C40 0.9665 0.4394
C44 0.9485 0.6211
C52 0.9477 0.5721
C84 0.9389 0.1932
C86 0.9737 0.0998
C90 0.8956 0.2469
C92 0.9326 0.2253
C100 0.9253 0.2364

to fit our predictions of the total curvature energies with the values provided in the web mentioned above. The accuracy of 
our prediction is evaluated by the correlation coefficient (cc)

cc =
∑N

i=1(Li − L̄)(Ei − Ē)

[∑N
i=1(Li − L̄)2(Ei − Ē)2]1/2

, (25)

where Li represents the bar length of β2 generated by the Laplace–Beltrami flow based persistent homology method for the 
ith fullerene isomer of a given carbon fullerene family, L̄ is the average of the bar length of β2 over all the isomers of the 
fullerene, Ei is the total curvature energy of the ith fullerene isomer, Ē is the average of the total curvature energy over all 
the isomers of the fullerene. Note that we only count the β2 bar that is due to the central cavity.

We consider a total of ten different fullerene families with more than 500 fullerene isomers in this study, where the data 
are chosen from the following rules:

• For a specific carbon fullerene family, if it has less than or equal to 100 isomers, all the data are utilized.
• For a given carbon fullerene family, if there are more than 100 isomers, the first 100 isomer molecules listed in the 

web are utilized.

The predicted results and the corresponding total curvature energies are illustrated in Figs. 12 and 13. Table 4 gives the 
correlation coefficients and standard deviations of the predicted total curvature energies based on the proposed persistent 
homology theory and the total curvature energy data. Our results for ten different fullerene molecules show good predictions 
of our differential geometry based persistent homology model.
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Table 5
Total curvature energies of C36 isomers vs lengths of the β2 bar (L(β2)) obtained with different time stepping sizes.

Total curvature energy (eV) L(β2) (t = 0.0001) L(β2) (t = 0.0002) L(β2) (t = 0.0004) L(β2) (t = 0.0008)

22.493 6.435 6.436 6.436 6.440
22.688 6.464 6.464 6.464 6.464
22.965 6.601 6.602 6.600 6.608
23.027 6.422 6.422 6.424 6.432
23.469 6.159 6.560 6.164 6.160
24.025 6.240 6.240 6.240 6.248
24.031 6.122 6.124 6.124 6.128
24.152 6.044 6.044 6.048 6.056
24.335 6.122 6.124 6.124 6.128
24.620 6.292 6.292 6.296 6.304
24.938 5.928 5.930 5.928 5.936
25.514 5.852 5.852 5.856 5.856
25.937 5.608 5.606 5.608 5.608
26.013 5.760 5.760 5.760 5.760
29.424 4.901 4.902 4.904 4.904

Correlation coefficient 0.9668 0.9643 0.9669 0.9659
Standard deviation 0.4345 0.4499 0.4339 0.4401

Table 6
Total curvature energies of C36 isomers vs lengths of the β2 bar (L(β2)) obtained with different spatial spacing sizes.

Total curvature energy (eV) L(β2) (h = 0.15) L(β2) (h = 0.20) L(β2) (h = 0.25) L(β2) (h = 0.30)

22.493 6.837 6.704 6.435 6.178
22.688 6.845 6.729 6.464 6.410
22.965 6.771 6.621 6.601 6.149
23.027 6.728 6.541 6.422 6.283
23.469 6.638 6.441 6.159 6.002
24.025 6.564 6.440 6.240 5.986
24.031 6.363 6.039 6.122 5.751
24.152 6.359 6.345 6.044 5.762
24.335 6.363 6.309 6.122 5.751
24.620 6.621 6.459 6.292 5.926
24.938 6.291 6.067 5.928 5.723
25.514 6.260 6.048 5.852 5.740
25.937 6.042 5.936 5.608 5.515
26.013 6.087 5.822 5.760 5.626
29.424 5.385 5.186 4.901 4.918

Correlation coefficient 0.9715 0.9804 0.9668 0.9501
Standard deviation 0.4030 0.3349 0.4345 0.5300

To test the reliability and robustness of our method in the isomer total curvature energy prediction, we have carried out 
our analysis with different grid spacing sizes and time stepping sizes for 15 C36 isomers. Table 5 lists the lengths of β2 bars 
obtained with different time stepping sizes (t) and the total curvature energies of C36 isomers. A uniform spatial spacing 
size of h = 0.25 is used in this test. Similarly, Table 6 gives the lengths of β2 bars computed with different grid spacing sizes 
h and the total curvature energies of C36 isomers. A given time stepping size of t = 0.0001 is adopted in this validation. 
Again, we see good consistency among our results.

Based on the above spatial and temporal convergent analysis, it is clear that our results are robust and reliable. Therefore, 
the persistence of Betti 2 has a strong correlation with the total curvature energies of fullerene isomers. These results 
demonstrate that the persistence of Betti 2 is indeed inversely proportional to the total curvature energies of fullerene 
isomers. Additionally, the proposed Laplace–Beltrami flow based persistent homology approach performs extremely well in 
quantitative prediction of topology–function relationship for fullerene isomers.

7. Conclusion

It is well known that topology typically does not distinguish a doughnut and a mug, which implies there is too much 
reduction in the geometric information. Indeed, topology is seldom used for quantitative description and modeling. In con-
trast, geometry gives rise to very detailed models for the physical world. At nano scale and/or atomic scale, geometry based 
models often involve too many degrees of freedom such that their simulations become intractable for many real world 
problems. Persistent homology is a new branch of algebraic topology that has recently become quite popular for topological 
simplifications in scientific and engineering applications. Its essential idea is to embed topological invariants in a minimal 
amount of geometric variation, i.e., a filtration parameter. As a result, persistent homology bridges the traditional topology 
and geometry.
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In the past, most successful applications of persistent homology have been limited to classification and analysis in the 
literature. Indeed, persistent homology has been rarely employed for quantitative prediction. In our recent work [86], we 
have introduced molecular topological fingerprints, which treat all barcodes in an equal footing for data classification and 
analysis. We have also proposed topology–function relationships, which utilize persistent homology as an efficient tool for 
the physical modeling and quantitative prediction of biomoelcular systems.

In this work, a general procedure is introduced to construct object-oriented persistent homology approaches for the de-
tection, extraction and/or enhancement of desirable topological traits in data. Our essential idea is to define an objective 
functional to optimize desirable properties. The optimization leads to a set of operators whose actions enforce the objective 
functional and give rise to a multiscale representation of the original data. When such a multiscale representation is utilized 
for filtration, the resulting object-oriented persistent homology automatically detects, extracts and/or amplifies the corre-
sponding topological persistence of the data. As a proof of principle, we use the differential geometry theory of surfaces 
to construct a surface energy functional. The optimization of this functional leads to the Laplace–Beltrami operator, which 
is able to provide a geometry-embedded filtration of the data of interest. The resulting persistent homology enhances the 
corresponding geometric structure in topological persistence. The proposed method is intensively validated using benchmark 
tests and structures with known topological properties.

The application of the proposed geometric flow based topological method is considered to both the qualitative analysis 
and quantitative modeling of proteins and carbon fullerene molecules. We first employ the present method for the analysis 
of a beta barrel protein. The structure of the beta barrel has a large ring. Topologically, it is interesting to observe a long-lived 
Betti-1 bar during the time evolution of the Laplace–Beltrami flow.

Another application of the proposed method is the total curvature energy prediction of fullerene isomers. We propose 
a model to correlate isomer total curvature energy and its structural sphericity. The latter is measured by the length of 
the Betti 2 bar of the isomer central cavity. Essentially, a more distorted isomer has a higher total curvature energy and 
a shorter period of persistence of the central cavity Betti 2 bar. In our quantitative energy prediction, we have utilized a 
total of ten sets of fullerene isomers. Our results indicate that both the proposed Laplace–Beltrami flow based persistent 
homology method and the present quantitative model work extremely well. All the correlation coefficients are very high.

The present differential geometry based persistent homology opens a new approach for the topological simplification of 
big data. We expect that other objective functionals can be designed and corresponding object-oriented persistent homology 
methods can be developed for specific purposes in data sciences. This approach will also lead to the construction of new 
object-oriented partial differential equations (PDEs), geometric PDEs and topological PDEs in the future.
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Appendix

As stated above, all fullerene data are downloaded from a web page: fullerene-isomers. However, it is well known 
that a web page may not exist after certain time. We therefore present fullerene isomers and their total curvature energies 
used in the present work in Tables 7–16. The corresponding structure data are available up on request.

Table 7
Fullerene C36 isomers and total curvature energies.

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C36(C2)1 25.937 C36(D2)2 29.424 C36(C1)3 24.938 C36(Cs)4 25.524
C36(D2)5 26.013 C36(D2d)6 24.335 C36(C1)7 24.031 C36(Cs)8 24.025
C36(C2v)9 22.965 C36(C2)10 24.152 C36(C2)11 23.469 C36(C2)12 23.027
C36(D3h)13 24.620 C36(D2d)14 22.493 C36(D6h)15 22.688

Table 8
Fullerene C38 isomers and total curvature energies.

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C38(C2)1 26.613 C38(D3h)2 27.745 C38(C1)3 25.120 C38(C1)4 26.564
C38(C1)5 24.288 C38(C2)6 25.564 C38(C1)7 25.520 C38(C1)8 24.184
C38(D3)9 25.843 C38(C2)10 23.853 C38(C1)11 24.185 C38(C2v)12 24.665
C38(C2)13 23.440 C38(C1)14 23.111 C38(C2v)15 24.069 C38(C3v)16 22.610
C38(C2)17 22.603
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Table 9
Fullerene C40 isomers and total curvature energies.

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C40(D5d)1 30.194 C40(C2)2 27.771 C40(D2)3 29.686 C40(C1)4 26.838
C40(Cs)5 26.233 C40(C1)6 27.587 C40(C1)7 27.587 C40(C2v)8 26.421
C40(C2)9 24.856 C40(C1)10 24.933 C40(C2)11 27.092 C40(C1)12 25.038
C40(Cs)13 24.830 C40(Cs)14 24.165 C40(Cs)15 24.343 C40(C2)16 25.035
C40(C1)17 24.549 C40(C2)18 26.062 C40(C2)19 25.165 C40(C3v)20 24.271
C40(C2)21 24.356 C40(C1)22 24.031 C40(C2)23 25.232 C40(Cs)24 23.522
C40(C2)25 24.377 C40(C1)26 23.301 C40(C2)27 23.805 C40(Cs)28 24.700
C40(C2)29 23.416 C40(C3)30 24.163 C40(Cs)31 23.205 C40(D2)32 25.212
C40(D2h)33 26.042 C40(C1)34 23.946 C40(C2)35 23.560 C40(C2)36 22.994
C40(C2v)37 23.015 C40(D2)38 22.522 C40(D5d)39 23.206 C40(Td)40 23.300

Table 10
Fullerene C44 isomers and total curvature energies.

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C44(C2)1 29.456 C44(D2)2 32.322 C44(D3d)3 31.727 C44(C2)4 28.076
C44(C2)5 27.881 C44(C2)6 28.085 C44(C1)7 27.359 C44(C1)8 26.901
C44(C1)9 28.635 C44(C1)10 27.949 C44(Cs)11 27.882 C44(C2)12 27.618
C44(C2v)13 26.848 C44(C2)14 27.270 C44(C1)15 26.036 C44(C1)16 26.020
C44(C1)17 27.492 C44(C1)18 25.806 C44(C1)19 25.968 C44(C2)20 26.256
C44(C1)21 26.389 C44(C1)22 24.685 C44(C1)23 25.012 C44(D2)24 25.872
C44(C1)25 25.218 C44(C1)26 25.950 C44(C1)27 25.505 C44(Cs)28 24.845
C44(C1)29 24.164 C44(C1)30 24.487 C44(C1)31 25.802 C44(C2)32 24.446
C44(Cs)33 25.314 C44(C2)34 27.070 C44(D3)35 31.214 C44(C2)36 24.669
C44(D3h)37 25.905 C44(D3d)38 25.964 C44(C2v)39 24.944 C44(C1)40 24.708
C44(C1)41 25.793 C44(C1)42 24.935 C44(C1)43 25.754 C44(C2)44 25.488
C44(C2)45 25.834 C44(C2)46 26.079 C44(C1)47 24.285 C44(C1)48 25.210
C44(C2)49 24.380 C44(C1)50 24.960 C44(C1)51 24.174 C44(C1)52 23.454
C44(Cs)53 25.790 C44(Cs)54 24.117 C44(C2v)55 23.983 C44(C1)56 24.320
C44(C1)57 23.831 C44(C1)58 24.991 C44(C1)59 23.427 C44(C1)60 24.054
C44(C2)61 24.844 C44(C1)62 24.170 C44(C1)63 24.061 C44(C1)64 24.537
C44(C1)65 24.804 C44(C2)66 26.402 C44(C1)67 23.276 C44(C2)68 23.218
C44(C1)69 22.958 C44(Cs)70 23.619 C44(Cs)71 24.168 C44(D3h)72 22.846
C44(T)73 24.076 C44(C2)74 23.621 C44(D2)75 22.582 C44(C2)76 23.848
C44(C1)77 22.900 C44(C1)78 23.065 C44(C2)79 23.463 C44(D3)80 23.159
C44(C2)81 24.389 C44(S4)82 23.258 C44(D2)83 23.903 C44(Cs)84 24.040
C44(D2)85 25.617 C44(D3d)86 28.214 C44(C2)87 23.220 C44(C1)88 23.049
C44(D2)89 22.513

Table 11
Fullerene C52 isomers and total curvature energies.

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C52(C2)1 32.862 C52(D2)2 35.990 C52(Cs)3 30.452 C52(C1)4 30.393
C52(C2)5 30.646 C52(Cs)6 29.299 C52(C1)7 29.177 C52(C1)8 28.759
C52(C1)9 30.445 C52(C1)10 29.177 C52(C1)11 28.855 C52(C1)12 29.210
C52(C1)13 30.490 C52(C1)14 30.907 C52(C2)15 31.612 C52(C1)16 29.602
C52(C1)17 31.948 C52(C1)18 29.269 C52(C1)19 28.916 C52(C1)20 29.258
C52(C2)21 29.903 C52(C2)22 28.553 C52(C1)23 27.864 C52(C1)24 27.635
C52(C1)25 28.527 C52(C1)26 28.045 C52(C1)27 28.271 C52(C1)28 28.514
C52(C2)29 28.955 C52(C1)30 28.527 C52(C2)31 30.073 C52(C1)32 30.317
C52(C1)33 28.577 C52(C1)34 27.383 C52(C1)35 26.944 C52(C1)36 29.248
C52(C1)37 27.645 C52(Cs)38 29.592 C52(C1)39 27.276 C52(Cs)40 26.724
C52(C1)41 27.721 C52(C1)42 27.676 C52(C2)43 26.717 C52(Cs)44 27.455
C52(C1)45 30.622 C52(C1)46 27.524 C52(C1)47 28.032 C52(C1)48 27.408
C52(C1)49 27.529 C52(C2)50 28.618 C52(C1)51 27.005 C52(C1)52 27.127
C52(C1)53 26.929 C52(C1)54 26.754 C52(C1)55 26.705 C52(C1)56 26.846
C52(C1)57 26.919 C52(D2)58 32.111 C52(C1)59 28.477 C52(C1)60 23.375
C52(C1)61 29.172 C52(C1)62 25.762 C52(C1)63 26.041 C52(C1)64 27.762
C52(C1)65 26.077 C52(Cs)66 25.729 C52(Cs)67 27.443 C52(C1)68 26.383
C52(C1)69 27.389 C52(C1)70 25.753 C52(C1)71 27.405 C52(C1)72 26.846
C52(C1)73 26.857 C52(C1)74 25.468 C52(C1)75 26.336 C52(C1)76 27.267
C52(C1)77 29.103 C52(C1)78 25.652 C52(C1)79 27.349 C52(C1)80 25.765
C52(C1)81 26.857 C52(C2)82 26.813 C52(C2)83 28.263 C52(C2)84 25.361
C52(C1)85 27.436 C52(C1)86 25.508 C52(C1)87 27.288 C52(C2)88 27.449
C52(C1)89 25.532 C52(C1)90 26.098 C52(C1)91 26.693 C52(Cs)92 25.805
C52(C1)93 26.103 C52(D2d)94 26.864 C52(Cs)95 25.937 C52(C1)96 26.124
C52(C1)97 26.130 C52(C1)98 25.646 C52(C2)99 27.367 C52(C1)100 26.255
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Table 12
Fullerene C84 isomers and total curvature energies.

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C84(D2)1 24.281 C84(C2)2 23.593 C84(Cs)3 22.389 C84(D2d)4 22.607
C84(D2)5 22.910 C84(C2v)6 22.408 C84(C2v)7 22.270 C84(C2)8 22.167
C84(C2)9 22.124 C84(Cs)10 22.043 C84(C2)11 22.088 C84(C1)12 22.011
C84(C2)13 22.109 C84(Cs)14 22.250 C84(Cs)15 22.012 C84(Cs)16 22.019
C84(C2v)17 22.124 C84(C2v)18 22.159 C84(D3d)19 22.090 C84(Td)20 22.453
C84(D2)21 21.950 C84(D2)22 21.854 C84(D2d)23 21.829 C84(D6h)24 21.990

Table 13
Fullerene C86 isomers and total curvature energies.

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C86(C1)1 23.258 C86(C2)2 23.553 C86(C2)3 23.473 C86(C2)4 22.862
C86(c1)5 22.576 C86(C2)6 22.933 C86(C1)7 22.528 C86(Cs)8 22.562
C86(C2v)9 22.556 C86(C2v)10 22.285 C86(C1)11 22.242 C86(C1)12 22.256
C86(C1)13 22.169 C86(C2)14 22.292 C86(Cs)15 22.178 C86(Cs)16 22.348
C86(C2)17 22.211 C86(C3)18 22.320 C86(D3)19 22.123

Table 14
Fullerene C90 isomers and total curvature energies.

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C90(D5h)1 25.081 C90(C2v)2 24.092 C90(C1)3 23.808 C90(C2)4 23.846
C90(Cs)5 23.521 C90(C2)6 23.080 C90(C1)7 22.894 C90(C2)8 23.407
C90(C1)9 22.716 C90(Cs)10 22.612 C90(C1)11 23.094 C90(C2)12 23.120
C90(C2v)13 23.672 C90(C1)14 23.195 C90(C1)15 23.180 C90(C2v)16 23.355
C90(Cs)17 23.147 C90(C2)18 23.023 C90(C2)19 22.687 C90(C1)20 22.625
C90(C1)21 22.561 C90(C1)22 22.695 C90(C2)23 22.569 C90(C1)24 23.020
C90(C2v)25 23.096 C90(C1)26 22.621 C90(C1)27 22.700 C90(C2)28 22.715
C90(C1)29 22.960 C90(C1)30 22.565 C90(C2)31 22.989 C90(C1)32 22.559
C90(Cs)33 23.060 C90(Cs)34 22.737 C90(Cs)35 22.497 C90(C2v)36 22.939
C90(C2)37 22.748 C90(C1)38 22.614 C90(C2v)39 22.742 C90(C2)40 22.227
C90(C2)41 22.190 C90(C2)42 22.222 C90(C2)43 22.177 C90(C2)44 22.443
C90(C2)45 22.174 C90(C2v)46 22.225

Table 15
Fullerene C92 isomers and total curvature energies.

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C92(D2)1 25.193 C92(C1)2 23.825 C92(C2)3 24.330 C92(C2)4 23.995
C92(Cs)5 23.695 C92(Cs)6 23.638 C92(C2)7 23.316 C92(C1)8 23.051
C92(C2)9 23.351 C92(C1)10 22.769 C92(C1)11 22.837 C92(C1)12 22.888
C92(C1)13 23.188 C92(Cs)14 22.969 C92(Cs)15 22.675 C92(Cs)16 22.913
C92(C2)17 23.831 C92(C1)18 23.325 C92(C2)19 23.336 C92(C1)20 23.448
C92(C2)21 24.031 C92(C2v)22 24.207 C92(C2)23 23.276 C92(Cs)24 22.850
C92(C2)25 23.895 C92(C2)26 23.023 C92(C2)27 23.263 C92(D3)28 23.566
C92(D2h)29 24.174 C92(C1)30 22.941 C92(C2)31 22.878 C92(C1)32 22.733
C92(C1)33 22.922 C92(C2)34 22.706 C92(C2v)35 23.380 C92(C2)36 22.903
C92(C1)37 23.056 C92(C1)38 22.529 C92(C1)39 22.930 C92(C1)40 22.894
C92(C1)41 25.793 C92(C1)42 24.935 C92(C1)43 25.754 C92(C2)92 25.488
C92(C2)45 25.834 C92(C2)46 26.079 C92(C1)47 24.285 C92(C1)48 25.210
C92(C2)49 24.380 C92(C1)50 24.960 C92(C1)51 24.174 C92(C1)52 23.454
C92(Cs)53 25.790 C92(Cs)54 24.117 C92(C2v)55 23.983 C92(C1)56 24.320
C92(C1)57 23.831 C92(C1)58 24.991 C92(C1)59 23.427 C92(C1)60 24.054
C92(C2)61 24.892 C92(C1)62 24.170 C92(C1)63 24.061 C92(C1)64 24.537
C92(C1)65 24.804 C92(C2)66 26.402 C92(C1)67 23.276 C92(C2)68 23.218
C92(C1)69 22.958 C92(Cs)70 23.619 C92(Cs)71 24.168 C92(D3h)72 22.846
C92(T)73 24.076 C92(C2)74 23.621 C92(D2)75 22.582 C92(C2)76 23.848
C92(C1)77 22.900 C92(C1)78 23.065 C92(C2)79 23.463 C92(D3)80 23.159
C92(C2)81 24.389 C92(S4)82 23.258 C92(D2)83 23.903 C92(Cs)84 24.040
C92(D2)85 25.617 C92(D3d)86 28.214
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Table 16
Fullerene C100 isomers and total curvature energies.

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C100(C2)1 32.862 C100(D2)2 35.990 C100(Cs)3 30.4100 C100(C1)4 30.393
C100(C2)5 30.646 C100(Cs)6 29.299 C100(C1)7 29.177 C100(C1)8 28.759
C100(C1)9 30.445 C100(C1)10 29.177 C100(C1)11 28.855 C100(C1)12 29.210
C100(C1)13 30.490 C100(C1)14 30.907 C100(C2)15 31.612 C100(C1)16 29.602
C100(C1)17 31.948 C100(C1)18 29.269 C100(C1)19 28.916 C100(C1)20 29.258
C100(C2)21 29.903 C100(C2)22 28.553 C100(C1)23 27.864 C100(C1)24 27.635
C100(C1)25 28.1007 C100(C1)26 28.045 C100(C1)27 28.271 C100(C1)28 28.514
C100(C2)29 28.955 C100(C1)30 28.1007 C100(C2)31 30.073 C100(C1)32 30.317
C100(C1)33 28.577 C100(C1)34 27.383 C100(C1)35 26.944 C100(C1)36 29.248
C100(C1)37 27.645 C100(Cs)38 29.592 C100(C1)39 27.276 C100(Cs)40 26.724
C100(C1)41 27.721 C100(C1)42 27.676 C100(C2)43 26.717 C100(Cs)44 27.455
C100(C1)45 30.622 C100(C1)46 27.1004 C100(C1)47 28.032 C100(C1)48 27.408
C100(C1)49 27.1009 C100(C2)50 28.618 C100(C1)51 27.005 C100(C1)52 27.127
C100(C1)53 26.929 C100(C1)54 26.754 C100(C1)55 26.705 C100(C1)56 26.846
C100(C1)57 26.919 C100(D2)58 32.111 C100(C1)59 28.477 C100(C1)60 23.375
C100(C1)61 29.172 C100(C1)62 25.762 C100(C1)63 26.041 C100(C1)64 27.762
C100(C1)65 26.077 C100(Cs)66 25.729 C100(Cs)67 27.443 C100(C1)68 26.383
C100(C1)69 27.389 C100(C1)70 25.753 C100(C1)71 27.405 C100(C1)72 26.846
C100(C1)73 26.857 C100(C1)74 25.468 C100(C1)75 26.336 C100(C1)76 27.267
C100(C1)77 29.103 C100(C1)78 25.6100 C100(C1)79 27.349 C100(C1)80 25.765
C100(C1)81 26.857 C100(C2)82 26.813 C100(C2)83 28.263 C100(C2)84 25.361
C100(C1)85 27.436 C100(C1)86 25.508 C100(C1)87 27.288 C100(C2)88 27.449
C100(C1)89 25.532 C100(C1)90 26.098 C100(C1)91 26.693 C100(Cs)92 25.805
C100(C1)93 26.103 C100(D2d)94 26.864 C100(Cs)95 25.937 C100(C1)96 26.124
C100(C1)97 26.130 C100(C1)98 25.646 C100(C2)99 27.367 C100(C1)100 26.255
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