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Elastic materials are ubiquitous in nature and indispensable components in man-made 
devices and equipments. When a device or equipment involves composite or multiple 
elastic materials, elasticity interface problems come into play. The solution of three-dimen-
sional (3D) elasticity interface problems is significantly more difficult than that of elliptic 
counterparts due to the coupled vector components and cross derivatives in the governing 
elasticity equations. This work introduces the matched interface and boundary (MIB) 
method for solving 3D elasticity interface problems. The proposed MIB elasticity interface 
scheme utilizes fictitious values on irregular grid points near the material interface 
to replace function values in the discretization so that the elasticity equation can be 
discretized using the standard finite difference schemes as if there were no material 
interface. The interface jump conditions are rigorously enforced on the intersecting 
points between the interface and the mesh lines. Such an enforcement determines 
the fictitious values. A number of new techniques have been developed to construct 
efficient MIB elasticity interface schemes for dealing with cross derivative in coupled 
governing equations. The proposed method is extensively validated over both weak and 
strong discontinuities of the solution, both piecewise constant and position-dependent 
material parameters, both smooth and nonsmooth interface geometries, and both small 
and large contrasts in the Poisson’s ratio and shear modulus across the interface. Numerical 
experiments indicate that the present MIB method is of second order convergence in both 
L∞ and L2 error norms for handling arbitrarily complex interfaces, including biomolecular 
surfaces. To our best knowledge, this is the first elasticity interface method that is able to 
deliver the second convergence for the molecular surfaces of proteins.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Although materials, such as solids, are composed of atoms or molecules, which are discrete in nature, continuum models 
based on the continuum mechanics are highly accurate and applicable to length scales much greater than that of inter-
atomic distances [4]. One of the most widely applied continuum models is elasticity theory, which describes how solid 
materials return to their original shapes once being deformed by applied forces. Linear elasticity theory is often employed 
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when the deformation is relatively small. In such a case, the stress-strain relation is governed by the constitutive equation. 
One class of elastic materials is isotropic homogeneous, whose constitutive equations can be uniquely determined with any 
two terms of six moduli, namely, bulk modulus, Young’s modulus, Lamé’s first parameter, shear modulus, Poisson’s ratio and 
p-wave modulus [1]. For isotropic inhomogeneous materials, the inhomogeneity is often modeled by position-dependent 
moduli in their constitutive equations. For example, in seismic wave equations, inhomogeneity is accounted by position-
dependent Lamé’s parameters [21]. Similar models have also been employed in the elasticity analysis of biomolecules 
[25–27].

Interface description in the elasticity modeling is indispensable whenever elastic materials encounter rapid changes or 
discontinuities in material properties due to voids, pores, inclusions, dislocations, cracks or composite structures [5,9,23,22]. 
The resulting problem is called an elasticity interface problem, which is of considerable importance in man-made materials, 
devices, equipments, tissue engineering, biomedical science and biophysics [23,22,25–27]. Mathematically, discontinuities in 
elasticity interface problems can be classified into two types, namely, strong ones and weak ones. Strong discontinuities are 
referred to situations where the displacement has jumps across the interface, while weak discontinuities have a continuous 
displacement but with jumps in the gradient of the displacement. In general, analytical solution to elasticity interface prob-
lems is difficult to obtain, except for simple interface geometries. In 1950s, Eshelby found that under a uniformly applied 
stress, an infinite and elastically isotropic system with an ellipsoidal inhomogeneity has a uniform eigenstrain distribution 
inside the ellipsoidal domain [6,7]. For arbitrarily shaped inhomogeneity, semianalytic approaches have been proposed for 
finding stress tensors [18].

Numerical approaches, such as finite element methods (FEMs), boundary element methods (BEMs) and finite difference 
methods (FDMs), are the main workhorse for elasticity interface problems arising from practical applications. Based on 
computational meshes used, these methods can be classified into two types, i.e., schemes utilize body-fitting meshes and 
algorithms based on special interface schemes. Body-fitting meshes are generated according to geometry of the interface so 
that no mesh lines cut through the interface. In this type of methods, locally adaptive meshes are frequently employed based 
on local refinement techniques [30]. In the second type of algorithms, regular meshes that may cut through the interface are 
used. Consequently, sophisticated numerical schemes are needed to incorporate the interface conditions into element shape 
functions or operator discretizations. Immersed interface method (IIM) originally proposed for elliptic interface problems 
[14] has been developed to solve two-dimensional (2D) elasticity interface problems with isotropic homogenous media [31]. 
This finite difference based approach achieves second order accuracy. A second-order sharp numerical method has been 
developed for linear elasticity equations [24]. Many finite element based methods have also been proposed for elasticity 
interface problems. Among them, partition of unity method (PUM), the generalized finite element method (GFEM) and 
extended finite element method (XFEM) are designed to capture the non-smooth property of the solution over the interface 
[23,22,9]. Enrichment functions are utilized to handle the material interface. Discontinuous Galerkin based methods have 
also been constructed to deal with strong and weak discontinuities [12,2,19]. Recently, immerse finite element (IFM) method 
has been developed to solve elasticity problems with interface jump conditions [15,29]. This approach locally modifies finite 
element basis functions to enforce the jump conditions across the interface. Most recently, a Nitsche type method has been 
proposed for elasticity interface problems [20].

There are few numerical issues in the solution of elasticity interface problems. One issue is to deal with complex inter-
face geometry. It is easy to construct a numerical method for some special designed simple interface shapes. However, it is a 
challenge to automatically deal with complex interface geometries. Another issue is to develop robust numerical schemes for 
handling interfaces of Lipschitz continuity or geometric singularities, such as cusps, sharp edges, tips and self-intersecting 
surfaces [13]. It is still a major challenge to develop second order accurate schemes for arbitrarily complex interface geome-
tries in a three-dimensional (3D) setting. One example of arbitrarily complex interface geometries is the protein molecular 
surfaces [32,33,11]. The other issue is position dependent material parameters. It is necessary for numerical methods to be 
able to treat spatially varying coefficients. Additionally, taking care of strong discontinuities, handling large contrast between 
material parameters across the interfaces and treatment of the Poisson’s ratio near the incompressible limit are also valid 
numerical issues in elasticity interface problems [17,16]. Finally, it is a challenge to develop second order accurate schemes 
for arbitrarily complex interface geometries in three-dimensional (3D) setting. As a vector equation, the existence of three 
deformation components gives rise to an extraordinary requirement for numerical schemes to be unusually efficient. Al-
though many elegant and efficient algorithms have been developed for 2D and 3D elasticity interface problems, to our best 
knowledge, there is little literature about second order convergent schemes for arbitrarily complex interface geometries in 
3D, including interfaces of Lipschitz continuity.

The matched interface and boundary (MIB) method was originally constructed for dealing with material interfaces in 
Maxwell’s equations [36] and Poisson equation [32,33,42,41,11]. The essential idea of the MIB method is to extend the so-
lution beyond the interface so that the derivatives near the interface can be discretized as if there were no interface. The 
extension along the interface is carried out by iteratively incorporating the lowest order of interface conditions so that in 
principle, arbitrarily high order accuracy can be achieved. Sixteenth order accuracy was achieved for simple interface geome-
tries [36,42] and up to sixth order convergence was realized for 3D complex interface shapes [33]. For arbitrarily complex 
interfaces with geometric singularities, robust second order numerical convergence was observed [32,33,11]. In the past 
decade, the MIB method has been successfully applied to a variety of problems. For example, in computational biophysics, 
an MIB based Poisson–Boltzmann solver, MIBPB [3], has been developed for the analysis of the electrostatic potential of 
biomolecules [32,11,39], molecular dynamics [10] and charge transport phenomenon [37,38]. Zhao has constructed second 
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Fig. 1. Illustration of the elasticity interface problem at a cross section. The whole domain consists of two subdomains �+ and �− by the interface �.

order and fourth order MIB schemes for the Helmholtz problems [35,34]. A second order MIB method has been developed 
by Zhou and coworkers to solve the Navier–Stokes equations with discontinuous viscosity and density [40]. Recently, the 
MIB method has been extended to solve elliptic equations with multi-material interfaces [28].

The objective of the present work is to develop MIB schemes for solving 3D elasticity interface problems. We consider 
both smooth and sharp interfaces for isotropic homogeneous and inhomogeneous elastic materials. First, we extend our 
earlier MIB method for elliptic interface problems to elasticity counterparts. To this end, we take care of both central deriva-
tives and cross derivatives in the elasticity equation. Several numerical techniques namely, disassociation, extrapolation, and 
neighbor combination, are proposed to compute the fictitious values for the discretization of the cross derivatives. Addition-
ally, to make the present MIB method efficient for dealing with three coupled vector components, we carefully optimize 
our algorithms so that the resulting discretization matrix is as symmetric and diagonally dominant as possible. Moreover, to 
handle geometric singularities, we develop a technique to simultaneously employ two sets of interface conditions from two 
intersecting points where the interface meets mesh lines. Finally, we validate the proposed MIB for wide variety of elas-
ticity interface problems, including large contrast in material parameters across the interface, strong interface discontinuity, 
sharp-edged interface, interface with variable material coefficients and biomolecular interfaces.

The rest of this paper is organized as follows. The formulation of 3D elasticity interface problems is presented in Sec-
tion 2. Section 3 is devoted to the construction of MIB algorithms for elasticity interface problems. Methods for determining 
fictitious values are proposed for both central derivatives and cross derivatives in the elasticity equation. The present 
methods are extensively validated by analytical tests with complex interface geometries, including interfaces of Lipschitz 
continuity in Section 4. We demonstrate that the second order accuracy is achieved by the proposed MIB method. This 
paper ends with a conclusion.

2. Formulation of the elasticity interface problem

The 3D linear elasticity motion considered in the present work is governed by the following linear elasticity equations

∇ ·T+ F = d2u

dt2
, (1)

where T is the strain tensor, F = (F1(x), F2(x), F3(x))T := (F1, F2, F3)
T is the external force on the elasticity body, u =

(u1(x), u2(x), u3(x))T is a displacement vector, x = (x, y, z)T is a position vector, and ∗T is the transpose of quantity ∗.
For isotropic homogeneous media, the strain tensor T is a 3 by 3 symmetric matrix which has the form

T = λ tr(σ )I + 2μσ, (2)

where λ is the Lamé’s parameter, μ is the shear modulus, I is a 3 by 3 identity matrix, and σ is a stress tensor which can 
be further written as

σ = 1

2

(
∇u + (∇u)T

)
. (3)

The static state elasticity equation is given by

∇ ·T+ F = 0. (4)

In the present work, we focus on the static state problem (4).

2.1. Interface jump conditions

Consider a two-phase elastic body having two different elastic materials in a rectangular prism domain � ⊂ R
3. The two 

phase elastic motion is separated by an arbitrarily complex interface �, which splits the whole domain � into �+ and �− , 
i.e., � = �+ ∪ � ∪ �− , as illustrated in Fig. 1.

Lemma 2.1. For the 3D elasticity equations of the static state (4), if the source term F has a potential function representation U , i.e., 
∇U = F, then the static state elasticity equations can be written as a homogeneous equation. More precisely, there exist another 3 by 
3 matrix T̃ such that
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∇ · T̃ = 0,

where 0 is the 3D zero vector.

Definition 2.1. Weak Solution: T̃ is said to be the weak solution of the homogeneous equation ∇ · T̃ = 0 provided∫
�

∇φ · T̃dr = 0,

holds for ∀φ ∈ C∞
0 (�), where C∞

0 (�) is the space of smooth functions with compact support on �, and dr = dxdydz is the 
volume integral element.

Theorem 2.1. Let T be a second order tensor in R3 which can be written as a 3 by 3 matrix. For the elasticity equations

∇ ·T+ F = 0, (5)

where F is a 3-dimensional vector valued function and 0 ∈ R
3 . If the force term has a potential function U , i.e., ∇U = F, then across 

the interface, the weak solution satisfies the following interface conditions

[T · n] = T, (6)

where T is a 3-dimensional vector-valued function, [∗] is the jump of quantity ∗ across the interface, and n is the normal direction of 
the interface.

Remark 1. If the material has no fracture which corresponds to the weak discontinuity in the linear elasticity interface 
problem, the following interface condition is enforced in traditionally elasticity interface problems

[u] = 0.

However, fractures often occur in realistic materials which corresponds to the strong discontinuity. In this work, our numer-
ical scheme is designed for both strong and weak discontinuity of elasticity interface problems.

2.2. Linear elasticity interface problem

In this work, we only consider the static state elasticity equation (4). As discussed above, the 3D elasticity interface 
problem can be formulated as

∇ ·T+ F = 0, in �+ ∪ �−, (7)

[u] |� = b, on �, (8)

[T · n] |� = T, on �, (9)

u = u0, on ∂�, (10)

where u = (u1, u2, u3)
T : � → R

3 is the displacement field and n = (n1, n2, n3)
T is the unit outer normal vector to the 

interface �. Function F, as stated above, is a 3D vector-valued function of body force field. Vector u0 = (u0
1, u

0
2, u

0
3)

T is the 
Dirichlet boundary conditions. For elasticity interface problem, generally, if vector b = (b1, b2, b3) does not equal 0, it is 
called strong discontinuity, otherwise weak discontinuity. Here vector valued function T = (φ, ψ, η)T are the jump of the 
traction T · n across the interface �.

In material science, the stress-strain relation is usually described by constitutive equation, which in terms of Lamé’s 
parameters can be expressed as,

T = λ tr(σ )I + 2μσ . (11)

Here strain tensor σ is defined as,

σ = 1

2

(
∇u + (∇u)T

)
.

Dramatically different elasticity behaviors can be observed between inhomogeneous media and homogeneous media. To 
take this property into consideration, we elaborate the elasticity interface problem in both situations. For inhomogeneous 
material, Lamé’s parameters are position dependent, i.e., λ = λ(x, y, z)) and μ = μ(x, y, z)). Using the constitutive relation 
in Eq. (11), the governing equation of elasticity interface problem can be expressed as,

∇λ(∇ · u) + ∇μ ·
[
∇u + (∇u)T

]
+ (λ + μ)∇∇ · u + μ∇2u = −F. (12)

We can spell out all the terms as follows:
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(λ + 2μ)
∂2u1

∂x2
+ μ

∂2u1

∂ y2
+ μ

∂2u1

∂z2
+ (λ + μ)

∂2u2

∂x∂ y
+ (λ + μ)

∂2u3

∂x∂z
+ λx

(
∂u1

∂x
+ ∂u2

∂ y
+ ∂u3

∂z

)

+ 2μx
∂u1

∂x
+ μy

(
∂u1

∂ y
+ ∂u2

∂x

)
+ μz

(
∂u1

∂z
+ ∂u3

∂x

)
= −F1, (13)

μ
∂2u2

∂x2
+ (λ + 2μ)

∂2u2

∂ y2
+ μ

∂2u2

∂z2
+ (λ + μ)

∂2u1

∂x∂ y
+ (λ + μ)

∂2u3

∂ y∂z
+ μx

(
∂u2

∂x
+ ∂u1

∂ y

)

+ λy

(
∂u1

∂x
+ ∂u2

∂ y
+ ∂u3

∂z

)
+ 2μy

∂u2

∂ y
+ μz

(
∂u2

∂z
+ ∂u3

∂ y

)
= −F2, (14)

μ
∂2u3

∂x2
+ μ

∂2u3

∂ y2
+ (λ + 2μ)

∂2u3

∂z2
+ (λ + μ)

∂2u1

∂x∂z
+ (λ + μ)

∂2u2

∂ y∂z
+ μx

(
∂u3

∂x
+ ∂u1

∂z

)
+ μy

(
∂u3

∂ y
+ ∂u2

∂z

)

+ λz

(
∂u1

∂x
+ ∂u2

∂ y
+ ∂u3

∂z

)
+ 2μz

∂u3

∂z
= −F3. (15)

With the constitutive equations, the jump conditions regarding to the strain tensor can be represented as,[(
λ

(
∂u1

∂x
+ ∂u2

∂ y
+ ∂u3

∂z

)
+ 2μ

∂u1

∂x

)
n1 + μ

(
∂u2

∂x
+ ∂u1

∂ y

)
n2 + μ

(
∂u3

∂x
+ ∂u1

∂z

)
n3

]
|�= φ, on �, (16)

[
μ

(
∂u1

∂ y
+ ∂u2

∂x

)
n1 +

(
λ

(
∂u1

∂x
+ ∂u2

∂ y
+ ∂u3

∂z

)
+ 2μ

∂u2

∂ y

)
n2 + μ

(
∂u3

∂ y
+ ∂u2

∂z

)
n3

]
|�= ψ, on �, (17)

[
μ

(
∂u1

∂z
+ ∂u3

∂x

)
n1 + μ

(
∂u2

∂z
+ ∂u3

∂ y

)
n2 +

(
λ

(
∂u1

∂x
+ ∂u2

∂ y
+ ∂u3

∂z

)
+ 2μ

∂u3

∂z

)
n3

]
|�= η, on �. (18)

Together with the Dirichlet boundary conditions and the jump conditions, we set up the general formulation for linear 
elasticity interface problem with inhomogeneous media.

For homogeneous material, algebraic relations exist between different elasticity moduli, i.e., Bulk modulus K , Young’s 
modulus E , Lamé’s first parameter λ, shear modulus μ, Poisson’s ratio ν and P-wave modulus M . For instance, Lamé’s 
parameters can be represented by Young’s modulus E and Poisson’s ratio ν as,

μ = E

2(1 + ν)
, λ = Eν

(1 + ν)(1 − 2ν)
.

Due to the constant moduli, the governing equation can be simplified as

(λ + μ)∇∇ · u + μ∇2u = −F. (19)

With the above algebraic relations of elasticity moduli, the governing equation can be further written as,

2(1 − ν)
∂2u1

∂x2
+ (1 − 2ν)

∂2u1

∂ y2
+ (1 − 2ν)

∂2u1

∂z2
+ ∂2u2

∂x∂ y
+ ∂2u3

∂x∂z
= f1, (20)

(1 − 2ν)
∂2u2

∂x2
+ 2(1 − ν)

∂2u2

∂ y2
+ (1 − 2ν)

∂2u2

∂z2
+ ∂2u1

∂x∂ y
+ ∂2u3

∂ y∂z
= f2, (21)

(1 − 2ν)
∂2u3

∂x2
+ (1 − 2ν)

∂2u3

∂ y2
+ 2(1 − ν)

∂2u3

∂z2
+ ∂2u1

∂x∂z
+ ∂2u2

∂ y∂z
= f3. (22)

Here ( f1, f2, f3) are prerequisite terms, and they can be related to the body force by ( f1, f2, f3) = (− F1
μ+λ

, − F2
μ+λ

, − F3
μ+λ

).
Also the second set of jump conditions can be rewritten as,[

2μ

1 − 2ν

(
(1 − ν)

∂u1

∂x
+ ν

∂u2

∂ y
+ ν

∂u3

∂z

)
n1 + μ

(
∂u1

∂ y
+ ∂u2

∂x

)
n2 + μ

(
∂u1

∂z
+ ∂u3

∂x

)
n3

]
|� = φ, on �, (23)

[
μ

(
∂u1

∂ y
+ ∂u2

∂x

)
n1 + 2μ

1 − 2ν

(
ν

∂u1

∂x
+ (1 − ν)

∂u2

∂ y
+ ν

∂u3

∂z

)
n2 + μ

(
∂u3

∂ y
+ ∂u2

∂z

)
n3

]
|� = ψ, on �, (24)

[
μ

(
∂u1

∂z
+ ∂u3

∂x

)
n1 + μ

(
∂u2

∂z
+ ∂u3

∂ y

)
n2 + 2μ

1 − 2ν

(
ν

∂u1

∂x
+ ν

∂u2

∂ y
+ (1 − ν)

∂u3

∂z

)
n3

]
|� = ρ, on �. (25)

The above two sets of equations, together with the Dirichlet boundary conditions and jump conditions regarding to 
displacement, constitute general formulation for linear elasticity interface problem in homogeneous media.
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3. Method and algorithm

In this section, the MIB method for elliptical interface problems is extended to solve elasticity interface problems. Due 
to the existence of the interface, the direct application of the standard central finite difference (CFD) schemes leads to a 
dramatic decrease in the accuracy and convergence of the numerical solution. To maintain the designed order of accuracy, 
MIB method extends function values across the interface. The resulting extended function values are called fictitious values, 
which are employed, together with function values on the other side of the interface, for the CFD discretization of the PDE 
across the interface. For example, at a grid point (i, j, k) near the interface, if its finite difference scheme refers to some grid 
points that are in the other side of the interface, fictitious values from other side of the interface are utilized in the finite 
difference discretization. To extend the function values to the other side of the interface and enable the MIB discretization of 
second order convergence, the interface conditions on both function values and normal derivatives are utilized and enforced.

The location of a fictitious value is called an irregular grid point, while those grid points where no fictitious value is 
required are called regular grid points. Loosely speaking, irregular grid points form extended domains on both sides of the 
interface. The extended domains ensure that the standard central finite difference scheme can be uniformly applied without 
the loss of numerical accuracy.

Additionally, derivatives involved in the elasticity equation are classified into central derivatives and cross derivatives. 
Central derivatives involve only one direction, while cross derivatives refer to more than one direction. These two situations 
are to be handled in different manners in the present method. Additional care is needed for discretizing cross derivatives to 
the second order accuracy.

Moreover, interfaces are classified into smooth ones and nonsmooth ones. The nonsmooth interfaces are Lipschitz con-
tinuous with geometric singularities, such as cusps, tips and/or sharp edges. To maintain designed order of accuracy, 
nonsmooth interfaces are much more difficult to deal with.

3.1. General MIB algorithms for Laplace operator

3.1.1. Simplification of interface jump conditions
As the interface normal direction varies along the interface, which is very troublesome from a computational perspective. 

It is necessary to define a set of local coordinates at each intersection point of the interface and the Cartesian mesh, so that 
different interface geometries can be treated in a systematical manner. In this section, we present the local coordinate 
transformation formula. At a specific intersection point, the local coordinate system is chosen to be (ξ, η, ζ ), where ξ is 
along the normal direction and η is in the xy plane. This local coordinate system can be obtained from the Cartesian 
coordinate system via the following transformation⎛

⎝ ξ

η
ζ

⎞
⎠ = P ·

⎛
⎝ x

y
z

⎞
⎠ , (26)

where P .= {P (i, j)}i, j=1,2,3 is a transformation matrix

P =
⎛
⎝ sinφ cos θ sinφ sin θ cosφ

− sin θ cos θ 0
− cos φ cos θ − cosφ sin θ sinφ

⎞
⎠ , (27)

where θ and φ are the azimuth and zenith angle with respect to the normal direction, respectively.
In the new local coordinate system, the interface conditions on function values and normal derivatives become (here for 

simplicity, we only discuss the constant material parameter case, the case of spatially dependent material parameters can 
be treated similarly)

[u]|� = b, (28)

and

[T · ξ ]|� = T. (29)

To achieve better stability and higher efficiency, which is essential for the present 3D vector equation, only the low-
est order jump conditions are utilized in the MIB method. Therefore, we avoid generating high order (derivative) jump 
conditions, even if in arbitrarily high order MIB methods [36,42,32]. However, we hope to have as many low order jump 
conditions as possible so as to gain flexibility in dealing with complex interface geometries. To this end, we differentiate the 
jump condition of the vector function to derive two additional sets of interface jump conditions along η and ζ directions, 
respectively

[uη]|� =
(

− sin θ
∂u+

∂x
+ cos θ

∂u+

∂ y

)
−

(
− sin θ

∂u−

∂x
+ cos θ

∂u−

∂ y

)
, (30)

and
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[uζ ]|� =
(

− cos φ cos θ
∂u+

∂x
− cosφ sin θ

∂u+

∂ y
+ sinφ

∂u+

∂z

)

−
(

− cosφ cos θ
∂u−

∂x
− cosφ sin θ

∂u−

∂ y
+ sinφ

∂u−

∂z

)
, (31)

where u = (u1, u2, u3)
T .

In summary, at a specific intersection point of the interface and the mesh line, there are four sets of interface conditions 
(28)–(31), which only refer to the function values and lowest order derivatives. This property is crucial to endow the MIB 
method with high efficiency and stability in handling complex interface geometries since no higher order derivative is 
referred in determining fictitious values. Additionally, lowest order derivatives lead to a more banded matrix and a smaller 
condition number, which are crucial in solving 3D vector interface problems.

In the MIB method, the function values near the interface are extended across the interface by introducing fictitious 
values. The extension is done along one mesh line at a time, so that it is locally a 1D-like scheme for a higher-dimensional
interface. Fictitious values can be determined by the aforementioned interface conditions (28)–(31). These conditions involve 
eighteen derivatives ∂u±

∂x j
, where x j = x, y, z and u = (u1, u2, u3)

T . These derivatives are to be evaluated on the interface and 
thus are called interfacial derivatives. They are elements of a special interfacial vector α in our jump condition representa-
tion formulas (32). Due to the geometric complexity, some of these eighteen interfacial derivatives can be very difficult to 
compute numerically. In general, these interfacial derivatives are grouped into six sets because u1, u2 and u3 can be treated 
in a similar manner in most situations.

In a second order scheme, we typically have two (sets of) fictitious values along one specific mesh line at one time. 
However, there are four sets of interface conditions. Therefore, two sets of interface conditions are redundant. This redun-
dancy gives two more degrees of freedom for us to design efficient and robust second order schemes in a complex interface 
geometry. Our basic idea is to algebraically eliminate two sets of interfacial derivatives that are the most difficult to compute 
by using two sets of redundant interface conditions. Therefore, at each intersection point we only need to evaluate four sets 
of derivatives that are relatively easy to approximate numerically.

The two sets of derivatives that are to be eliminated are selected by the following principles.

• Two sets of fictitious values along the mesh line that intersects with the interface are determined at one time.
• Two sets of derivatives along the mesh line that intersect with the interface must be kept.
• In the remaining four sets of derivatives, select two sets that are most difficult to evaluate due to the local geometry 

and eliminate them by two sets of jump conditions.

Denote T := (T1, T2, T3)
T in interface conditions (29), and by further introducing the matrix notation, the interface 

conditions (29)–(31) can be rewritten as:(
T1, T2, T3,

[
∂u1

∂η

]
,

[
∂u2

∂η

]
,

[
∂u3

∂η

]
,

[
∂u1

∂ζ

]
,

[
∂u2

∂ζ

]
,

[
∂u3

∂ζ

])T

= C

(
∂u+

1

∂x
,
∂u−

1

∂x
,
∂u+

1

∂ y
,
∂u−

1

∂ y
,
∂u+

1

∂z
,
∂u−

1

∂z
,
∂u+

2

∂x
,
∂u−

2

∂x
,
∂u+

2

∂ y
,
∂u−

2

∂ y
,
∂u+

2

∂z
,
∂u−

2

∂z
,
∂u+

3

∂x
,
∂u−

3

∂x
,
∂u+

3

∂ y
,
∂u−

3

∂ y
,
∂u+

3

∂z
,
∂u−

3

∂z

)T

.= C · α (32)

where

C =
⎛
⎝ C1,1 C1,2 C1,3

C2,1 C2,2 C2,3
C3,1 C3,2 C3,3

⎞
⎠ ,

C1,1 =
⎛
⎝ M+ P (1,1) −M− P (1,1) μ+ P (1,2) −μ− P (1,2) μ+ P (1,3) −μ− P (1,3)

λ+ P (1,2) −λ− P (1,2) μ+ P (1,1) −μ− P (1,1) 0 0
λ+ P (1,3) −λ− P (1,3) 0 0 μ+ P (1,1) −μ− P (1,1)

⎞
⎠

C1,2 =
⎛
⎝ μ+ P (1,2) −μ− P (1,2) λ+ P (1,1) −λ− P (1,1) 0 0

μ+ P (1,1) −μ− P (1,1) M+ P (1,2) −M− P (1,2) μ+ P (1,3) −μ− P (1,3)

0 0 λ+ P (1,3) −λ− P (1,3) μ+ P (1,2) −μ− P (1,2)

⎞
⎠

C1,3 =
⎛
⎝ μ+ P (1,3) −μ− P (1,3) 0 0 λ+ P (1,1) λ− P (1,1)

0 0 μ+ P (1,3) −μ− P (1,3) λ+ P (1,2) −λ− P (1,2)

μ+ P (1,1) −μ− P (1,1) μ+ P (1,2) −μ− P (1,2) M+ P (1,3) −M− P (1,3)

⎞
⎠
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C2,1 =
⎛
⎝ P (2,1) −P (2,1) P (2,2) −P (2,2) 0 0

0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎠

C2,2 =
⎛
⎝ 0 0 0 0 0 0

P (2,1) −P (2,1) P (2,2) −P (2,2) 0 0
0 0 0 0 0 0

⎞
⎠

C2,3 =
⎛
⎝ 0 0 0 0 0 0

0 0 0 0 0 0
P (2,1) −P (2,1) P (2,2) −P (2,2) 0 0

⎞
⎠

C3,1 =
⎛
⎝ P (3,1) −P (3,1) P (3,2) −P (3,2) P (3,3) −P (3,3)

0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎠

C3,2 =
⎛
⎝ 0 0 0 0 0 0

P (3,1) −P (3,1) P (3,2) −P (3,2) P (3,3) −P (3,3)

0 0 0 0 0 0

⎞
⎠

C3,3 =
⎛
⎝ 0 0 0 0 0 0

0 0 0 0 0 0
P (3,1) −P (3,1) P (3,2) −P (3,2) P (3,3) −P (3,3)

⎞
⎠ .

In the above expressions, M = 2μ(1−ν)
1−2ν , λ and μ are the p-wave module, bulk modulus and shear modulus, respectively. 

Here ∗+ and ∗− are the limiting values of the quantity ∗ inside and outside the interface, respectively.

Lemma 3.1. Consider the matrix:

A
.=

⎛
⎝ M+ P (1,1) −M− P (1,1) μ+ P (1,2) −μ− P (1,2) μ+ P (1,3) −μ− P (1,3)

P (2,1) −P (2,1) P (2,2) −P (2,2) 0 0
P (3,1) −P (3,1) P (3,2) −P (3,2) P (3,3) −P (3,3)

⎞
⎠

where M+ , M− , μ+ , μ− , P (i, j), i, j = 1, 2, 3 are the same as above. Then ∀1 ≤ l, m ≤ 6, l �= m, there exists constants a, b, c such 
that the l-th and m-th column of the vector aA(1, :) + b A(2, :) + c A(3, :) are both zero, where A(1, :), A(2, :), A(3, :) are the first, 
second and the last row of the matrix A.

Proof. If l = 5, m = 6 or l = 6, m = 5 we simply let a = 0, b = 1, c = 0 then it is obvious that the 5-th and 6-th column of 
the vector aA(1, :) + b A(2, :) + c A(3, :) are both zero.

Otherwise, we let:

a = A(2, l)A(3,m) − A(3, l)A(2,m),

b = A(3, l)A(1,m) − A(1, l)A(3,m),

c = A(1, l)A(2,m) − A(2, l)A(1,m),

then we have the l-th and m-th column of the vector aA(1, :) + b A(2, :) + c A(3, :) are both zero. �
Now suppose that according to the local geometry the l-th and m-th elements of the array:(

∂u+

∂x
,
∂u−

∂x
,
∂u+

∂ y
,
∂u−

∂ y
,
∂u+

∂z
,
∂u−

∂z

)
, (33)

are to be eliminated, where 1 ≤ l, m ≤ 6, l �= m. We are going to seek the combined interface conditions for computing the 
two pairs of fictitious values at the two irregular grid points.

First, if l = 5, m = 6 or l = 6, m = 5 then we simply employ the interface conditions (28) and (30) for computing the 
fictitious values. Otherwise, we have the following results.

Lemma 3.2. For given 1 ≤ l, m ≤ 6, l �= 5 or 6, or, m �= 5 or 6, then there exists constants ai , bi , ci , di , ei , f i , gi , i = 1, 2, 3, such that 
the l-th, m-th (l + 6)-th (m + 6)-th (l + 12)-th and (m + 12)-th elements of the following vectors are all zero:



B. Wang et al. / Journal of Computational Physics 294 (2015) 405–438 413
a1C(1, :) + b1C(4, :) + c1C(7, :) + d1C(5, :) + e1C(8, :) + f1C(6, :) + g1C(9, :),
a2C(2, :) + b2C(4, :) + c2C(7, :) + d2C(5, :) + e2C(8, :) + f2C(6, :) + g2C(9, :),
a3C(3, :) + b3C(4, :) + c3C(7, :) + d3C(5, :) + e3C(8, :) + f3C(6, :) + g3C(9, :),

where C(i, :), i = 1, . . . , 9, is the i-th column of the above matrix C.

Proof. We only show that there exists constants a1, b1, c1, d1, e1, f1, g1 such that the results stated in the lemma are true 
for the first vector, and the other two are the same.

Consider the following three matrices:

A1
.=

⎛
⎝ M+ P (1,1) −M− P (1,1) μ+ P (1,2) −μ− P (1,2) μ+ P (1,3) −μ− P (1,3)

P (2,1) −P (2,1) P (2,2) −P (2,2) 0 0
P (3,1) −P (3,1) P (3,2) −P (3,2) P (3,3) −P (3,3)

⎞
⎠

A2
.=

⎛
⎝ μ+ P (1,2) −μ− P (1,2) λ+ P (1,1) −λ− P (1,1) 0 0

P (2,1) −P (2,1) P (2,2) −P (2,2) 0 0
P (3,1) −P (3,1) P (3,2) −P (3,2) P (3,3) −P (3,3)

⎞
⎠

A3
.=

⎛
⎝ μ+ P (1,3) −μ− P (1,3) 0 0 λ+ P (1,1) −λ− P (1,1)

P (2,1) −P (2,1) P (2,2) −P (2,2) 0 0
P (3,1) −P (3,1) P (3,2) −P (3,2) P (3,3) −P (3,3)

⎞
⎠

According the previous lemma, let

a1 = A1(2, l)A1(3,m) − A1(3, l)A1(2,m) = A2(2, l)A2(3,m) − A2(3, l)A2(2,m)

= A3(2, l)A3(3,m) − A3(3, l)A3(2,m) = C(4, l)C(7,m) − C(7, l)C(4,m),

b1 = A1(3, l)A1(1,m) − A1(1, l)A1(3,m) = C(7, l)C(1,m) − C(1, l)C(7,m),

c1 = A1(1, l)A1(2,m) − A1(2, l)A1(1,m) = C(1, l)C(4,m) − C(4, l)C(1,m),

d1 = A2(3, l)A2(1,m) − A2(1, l)A2(3,m) = C(8, l + 6)C(1,m + 6) − C(1, l + 6)C(8,m + 6),

e1 = A2(1, l)A2(2,m) − A2(2, l)A2(1,m) = C(1, l + 6)C(5,m + 6) − C(5, l + 6)C(1,m + 6),

f1 = A3(3, l)A3(1,m) − A3(1, l)A3(3,m) = C(9,1 + 12)C(1,m + 12) − C(1, l + 12)C(9,m + 12),

g1 = A3(1, l)A3(2,m) − A3(2, l)A3(1,m) = C(1, l + 12)C(6,m + 12) − C(6, l + 12)C(1,m + 12),

then we have the l-th and m-th column of the following vectors are all zero:

a1 A1(1, :) + b1 A1(2, :) + c1 A1(3, :),
a1 A2(1, :) + d1 A2(2, :) + e1 A2(3, :),
a1 A3(1, :) + f1 A3(2, :) + g1 A3(3, :).

Note the relationship of the matrix C and the matrices A1, A2 and A3, it ends up that the l-th, m-th (l + 6)-th (m + 6)-th 
(l + 12)-th and (m + 12)-th elements of the following vector are all zero:

a1C(1, :) + b1C(4, :) + c1C(7, :) + d1C(5, :) + e1C(8, :) + f1C(6, :) + g1C(9, :). �
According to the above lemma, if l �= 5 or 6, or, m �= 5 or 6. The following two sets of interface conditions can be 

employed to compute the fictitious values, which do not contains the l-th and m-th columns’ elements of (33).
The first set of interface conditions is due to the jump of function values, i.e.,

[u1]|� = b1, (34)

[u2]|� = b2, (35)

[u3]|� = b3. (36)

The other set is due to derivatives,

a1T1 + b1[∂u1

∂η
] + c1

[
∂u1

∂ζ

]
+ d1

[
∂u2

∂η

]
+ e1

[
∂u2

∂ζ

]
+ f1

[
∂u3

∂η

]
+ g1

[
∂u3

∂ζ

]
= (a1C(1, :) + b1C(4, :) + c1C(7, :) + d1C(5, :) + e1C(8, :) + f1C(6, :) + g1C(9, :)) · α, (37)
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Fig. 2. Illustration of a smooth interface at cross section (x = xi). The k-th mesh line along the y-direction intersects the interface at point (x0, y0, z0). 
A pair of fictitious values at irregular grid points (i, j, k) and (i, j + 1, k) in blue color is to be determined. To this end function values and derivatives at 
(x0, y0, z0) approximated from �+ and �− are to be matched. Four points along the y-direction are utilized to approximate quantities at (x0, y0, z0), and 
six cyan points are adopted to approximate ∂u−(x0,y0,z0)

∂z . (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

a2T2 + b2

[
∂u1

∂η

]
+ c2

[
∂u1

∂ζ

]
+ d2

[
∂u2

∂η

]
+ e2

[
∂u2

∂ζ

]
+ f2

[
∂u3

∂η

]
+ g2

[
∂u3

∂ζ

]
= (a2C(2, :) + b2C(4, :) + c2C(7, :) + d2C(5, :) + e2C(8, :) + f2C(6, :) + g2C(9, :)) · α, (38)

a3T3 + b3

[
∂u1

∂η

]
+ c3

[
∂u1

∂ζ

]
+ d3

[
∂u2

∂η

]
+ e3

[
∂u2

∂ζ

]
+ f3

[
∂u3

∂η

]
+ g3

[
∂u3

∂ζ

]
= (a3C(3, :) + b3C(4, :) + c3C(7, :) + d3C(5, :) + e3C(8, :) + f3C(6, :) + g3C(9, :)) · α, (39)

where a1 = a2 = a3 = C(4, l)C(7, m) − C(7, l)C(4, m),
b1 = C(7, l)C(1, m) − C(1, l)C(7, m),
c1 = C(1, l)C(4, m) − C(4, l)C(1, m),
d1 = C(8, l + 6)C(1, m + 6) − C(1, l + 6)C(8, m + 6),
e1 = C(1, l + 6)C(5, m + 6) − C(5, l + 6)C(1, m + 6),
f1 = C(9, 1 + 12)C(1, m + 12) − C(1, l + 12)C(9, m + 12),
g1 = C(1, l + 12)C(6, m12) − C(6, l + 12)C(1, m + 12),
b2 = C(7, l)C(2, m) − C(2, l)C(7, m),
c2 = C(2, l)C(4, m) − C(4, l)C(2, m),
d2 = C(8, l + 6)C(2, m + 6) − C(2, l + 6)C(8, m + 6),
e2 = C(2, l + 6)C(5, m + 6) − C(5, l + 6)C(2, m + 6),
f2 = C(9, 1 + 12)C(2, m + 12) − C(2, l + 12)C(9, m + 12),
g2 = C(2, l + 12)C(6, m + 12) − C(6, l + 12)C(2, m + 12),
b3 = C(7, l)C(3, m) − C(3, l)C(7, m),
c3 = C(3, l)C(4, m) − C(4, l)C(3, m),
d3 = C(8, l + 6)C(3, m + 6) − C(3, l + 6)C(8, m + 6),
e3 = C(3, l + 6)C(5, m + 6) − C(5, l + 6)C(3, m + 6),
f3 = C(9, 1 + 12)C(3, m + 12) − C(3, l + 12)C(9, m + 12),
g3 = C(3, l + 12)C(6, m + 12) − C(6, l + 12)C(3, m + 12).
In the following, we omit the discussion for the case that l = 5, m = 6 or l = 6, m = 5, which is essentially the same as 

the other cases.

3.1.2. General fictitious scheme
Consider the geometry illustrated in Fig. 2, two sets of fictitious values f(i, j, k) := ( f c

1 (i, j, k), f c
2 (i, j, k), f c

3 (i, j, k))T and 
f(i, j + 1, k) := ( f c

1 (i, j + 1, k), f c
2 (i, j + 1, k), f c

3 (i, j + 1, k))T are to be determined on the irregular grid points (i, j, k) and 
(i, j + 1, k) for discretizing central derivatives.

We denote the left domain as �+ and the right one as �− , in this case, u+ , u− , u+
y , and u−

y at (x0, y0, z0) can be 
easily approximated through interpolations and standard finite difference (FD) schemes from information in �+ and �− , 
respectively:

u+ = (ω0, j−1,ω0, j,ω0, j+1) · (u(i, j − 1,k),u(i, j,k), f(i, j + 1,k))T , (40)

u− = (ω̃0, j, ω̃0, j+1, ω̃0, j+2) · (f(i, j,k),u(i, j + 1,k),u(i, j + 2,k))T , (41)

u+
y = (ω1, j−1,ω1, j,ω1, j+1) · (u(i, j − 1,k),u(i, j,k), f(i, j + 1,k))T , (42)

u−
y = (ω̃1, j, ω̃1, j+1, ω̃1, j+2) · (f(i, j,k),u(i, j + 1,k),u(i, j + 2,k))T , (43)



B. Wang et al. / Journal of Computational Physics 294 (2015) 405–438 415
Fig. 3. An illustration of the disassociation type of irregular grid points at cross section (x = xi). Fictitious values f(i, j, k) cannot be computed from 
y-direction by the aforementioned scheme. Nevertheless, they can be computed from the z-direction. In the discretization schemes, the fictitious value at 
(i, j, k) found from the vertical direction is utilized for both vertical and horizontal discretizations of the derivatives in the governing equation.

where ωm,n , ω̃m,n denote the interpolation or finite difference weights, the first subscript n represents either the interpola-
tion (n = 0) or the first order derivatives (n = 1) at interface point (x0, y0, z0), while the second subscript denotes the node 
index. All the coefficients/weights are generated from standard Lagrange polynomials [8].

We only need to compute two of the remaining four vector valued interface quantities. If u−
x and u−

z can be conveniently 
computed, then u+

x and u+
z are eliminated by using the above elimination process with setting l = 1 and m = 5.

Here we provide a detailed scheme to approximate ∂u−
∂z . Other derivatives can be approximated in the same manner. 

Without the loss of generality, we only demonstrate how to approximate the first component ∂u−
1

∂z .

As shown in Fig. 2, to approximate ∂u−
1

∂z , we need u1 values along the auxiliary line y = y0 on the yz-plane. However, 
these values are unavailable on the grid and have to be approximated by the interpolation schemes along the y-direction. 
Therefore six more auxiliary grid points are involved. In this situation, ∂u−

1
∂z |(x0,y0,z0) can be approximated as

∂u−
1

∂z
=

⎛
⎝ ω1,k

ω1,k+1
ω1,k+2

⎞
⎠

T

·
⎛
⎝ ω0, j ω0, j+1 ω0, j+2 0 0 0 0 0 0

0 0 0 ω′
0, j ω′

0, j+1 ω′
0, j+2 0 0 0

0 0 0 0 0 0 ω∗
0, j ω∗

0, j+1 ω∗
0, j+2

⎞
⎠ · U. (44)

Here U = ( f c
1 (i, j, k), u1(i, j + 1, k), u1(i, j + 2, k), u1(i, j, k + 1), u1(i, j + 1, k + 1), u1(i, j + 2, k + 1), u1(i, j, k + 2), u1(i, j +

1, k + 2), u1(i, j + 2, k + 2))T . By solving the above six interface conditions (34)–(39) together, six fictitious values f(i, j, k)

and f(i, j + 1, k) can be easily represented in terms of 48 function values and 12 interface jump conditions around 
them.

3.1.3. Matrix optimization
The MIB matrix is banded due to the reason that the interfaces are 2D surfaces and typically there is only one fictitious 

value on each side of the interface in a second order MIB scheme. However, to determine each pair of fictitious values, 12 
auxiliary grid points are involved and their distribution affects the convergence property of the resulting MIB matrix. In most 
cases, the choice of these 12 auxiliary grid points is not unique. In general, it is very important to make the MIB matrix 
optimally symmetric and diagonally dominated so as to accelerate the speed of the convergence of the resulting linear 
algebraic solver. This aspect becomes more important in elasticity interface problems than in elliptic interface problems 
because the matrix size is much larger. We therefore select 12 auxiliary grid points as close to the interface as possible. 
This strategy has been employed in our earlier MIBPB II software package [32,33] for solving elliptical interface problems. 
A more detailed description can be found elsewhere [33]. In the present work, we utilize the same strategy to construct the 
MIB matrix for elasticity interface problems.

3.1.4. Fictitious scheme for interface with large curvatures
The key assumption in the above scheme is that there should be at least two grid points on each mesh line inside a 

subdomain so that fictitious values on the mesh line can be determined. However, when the curvature of the interface is 
very large, the above requirement cannot be guaranteed on all mesh sizes.

As shown in Fig. 3, the above scheme is not applicable for finding the fictitious values at grid point (i, j, k) along the 
y-direction, since there is only one point inside the interface along the y-direction, which is not enough for the interpola-
tion. Nevertheless, there is no problem to find the fictitious values at grid point (i, j, k) along the z-direction. Hence, it is 
possible to replace the fictitious values to be found along y-direction with the fictitious values found along the z-direction 
or the x-direction, this treatment is referred as the disassociation technique [41].
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Fig. 4. Illustration of two types of sharp-edged interfaces at cross section (x = xi). The jump conditions of the function values at the point o1 and o2

(two red points) and the jump of derivatives at o1 are employed to compute fictitious values at two blue irregular grid points. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Note that this replacement does not reduce the numerical accuracy in general, since if fictitious values found along 
z-direction have the numerical accuracy O (hm) for some integer m, this estimate holds for the fictitious values at (i, j, k)

no matter how they are determined, where h is the grid size of the uniform mesh.

Remark 2. In principle, we need to make the final algebraic linear system as symmetric and banded as possible. If the 
fictitious values can be found along the given direction, one should avoid using the disassociation technique.

3.1.5. Fictitious scheme for interface with sharp edge
Geometric singularities, such as tips, cusps and self-intersecting surfaces, are ubiquitous in science and engineering 

problems. Due to the existence of geometric singularities, the schemes proposed above may not work because fictitious 
values cannot be determined. Therefore, it is crucial to develop some special schemes for determining fictitious values near 
geometric singularities.

According to the local interface geometry, the sharp-edged interface can be classified into two classes, one is locally 
convex, the other is locally concave, as shown in Fig. 4.

Let us discuss how to determine fictitious values at grid point (i, j, k) for the convex interface case, and the other case 
can be treated in the same manner.

In the MIB scheme, a pair of fictitious values is determined at one time. Suppose that the fictitious values at grid point 
(i, j, k) are going to be determined along the positive y-direction and the interface intersects the mesh line at point o1, the 
MIB scheme determines fictitious values at (i, j, k) and (i, j + 1, k) simultaneously.

In the left chart of Fig. 4, the point (i, j − 1, k) will be referred in the discretization of the interface conditions (34)–(39). 
Due to the sharp-edged interface, (i, j − 1, k) is not in the same subdomain with (i, j, k), and fictitious values at grid point 
(i, j, k) cannot be calculated directly from the interface conditions (34)–(39). In this case, one more set of fictitious values 
at grid point (i, j − 1, k) will be involved, so that there are nine fictitious values to be determined while there are only six 
interface conditions available.

Note that the jump of the function values at point o2, which is another intersection point of the interface with the mesh 
line, can be utilized to compute fictitious values. Now there are nine interface conditions, namely, three jumps of function 
values at o1, three jumps of function values at o2 and three jumps of derivatives at o1.

The discretization of interface conditions (34)–(39) in this sharp-edged interface situation can be obtained simply by 
replacing u(i, j − 1, k) with fictitious values f(i, j − 1, k), where f(i, j − 1, k) := ( f c

1 (i, j − 1, k), f c
2 (i, j − 1, k), f c

3 (i, j − 1, k))T

is the fictitious values at node (i, j − 1, k). Three more interface conditions at o2 can be discretized as

[u]|o2 =
(
ω′

0, j−1,ω
′
0, j,ω

′
0, j+1

)
·
(
(f(i, j − 1,k),u(i, j,k), f(i, j + 1,k))T − (u(i, j − 1,k), f(i, j,k),u(i, j + 1,k))T

)
. (45)

Fictitious values f(i, j − 1, k), f(i, j, k) and f(i, j + 1, k) can be calculated from the modified discretization of interface 
conditions (34)–(39) and Eq. (45).

3.1.6. Second order MIB finite difference for central derivatives
All the fictitious values referred in the MIB discretization of the central derivatives can be obtained by the above schemes. 

At any grid point the second order MIB method applies to all the central derivatives referred in the governing equations 
of the elasticity interface problem. At an irregular grid point if the CFD scheme refers to some grid points in the other 
side of the interface, the MIB scheme simply replace the function values at that point by its fictitious values. For instance, 
the second order MIB finite difference for ∂2u1

∂ y2 at grid point (i, j, k) and (i, j + 1, k) in the left chart of Fig. 4 are given, 
respectively, by:
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Fig. 5. Illustration of extrapolation type of irregular grid points used in cross derivatives at cross section (z = zk). In the left case, fictitious value at the 
bottom black point and function values at other two black points are employed to approximate fictitious value at (i, j, k). For the middle case, function 
values at the right most black point and fictitious values at other two black points are utilized to extrapolate fictitious value at (i, j, k). For the right case, 
fictitious values at three black points are used to approximate fictitious value at (i, j, k).

∂2u1

∂ y2
(i, j,k) = 1

h2

(
f c
1 (i, j − 1,k) − 2u1(i, j,k) + f c

1 (i, j + 1,k)
)
,

and

∂2u1

∂ y2
(i, j + 1,k) = 1

h2

(
f c
1 (i, j,k) − 2u1(i, j + 1,k) + u1(i, j + 2,k)

)
.

3.2. General MIB algorithms for cross derivatives

The cross derivatives in the elasticity equations make the second order CFD scheme more complicated as the points 
referred in the CFD schemes are restricted not only to the nearest neighbor points, but also the next nearest neighbor 
points. This situation does not occur to the elliptic interface problems.

A critical idea of the MIB method is to reduce high-dimensional problems to locally lower-dimensional problems. As such 
in determining fictitious values for the elliptical interface problems, the MIB scheme carries out 1D-like extensions, which 
makes the MIB method highly efficient for versatile interface geometries and geometric singularities. Similar idea is applied 
in the present elasticity interface problem in determining fictitious values for both central derivatives and cross derivatives. 
Based on local interface geometric information, different schemes are designed, including, disassociation type, extrapolation 
type and neighbor combination type.

3.2.1. Disassociation scheme
First we define the disassociation type of fictitious values.

Definition 3.1. An irregular grid point associated with cross derivatives is called a disassociation type provided that the 
irregular grid point is also an irregular grid point associated with central derivatives.

The fictitious values on the disassociation type of irregular grid points for cross derivatives can be replaced by fictitious 
values found for the central derivatives. Their order of approximation was analyzed in an earlier paper [41].

As illustrated in Fig. 3, grid point (i, j, k) is not only irregular in central derivatives, but also irregular in cross derivatives. 
In this case, fictitious values for the central derivatives at grid point (i, j, k) are obtained based on the numerical scheme 
proposed for central derivatives.

3.2.2. Extrapolation scheme
If a grid point is irregular in the CFD scheme of the cross derivatives while regular for that of the central derivatives, 

the aforementioned disassociation technique fails. Further, if there exists a direction along which three values are available 
(function value or fictitious value), then the extrapolation method is applied. Suppose that we are seeking the fictitious 
values at grid point (i, j, k) and project the problem into xy-plane, according to the local geometry, the MIB scheme can be 
classified into three cases.

• Scheme I. Two function values and one fictitious value are used for the extrapolation. Function values at grid point 
(i, j + 2, k) and (i, j + 3, k), fictitious values at (i, j + 1, k) are available and used to extrapolate fictitious values at grid 
point (i, j, k), see the left chart of Fig. 5.

• Scheme II. One function value and two fictitious values are used for the extrapolation. Function values at grid point 
(i + 3, j, k), fictitious values at (i + 1, j, k) and (i + 2, j, k) are available and used to extrapolate fictitious values at grid 
point (i, j, k), see the middle chart of Fig. 5.
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Fig. 6. Illustration of a single point situation at cross section (x = xi). All the nearest and next nearest neighbor grid points are referred in the second 
order CFD scheme at grid point (i, j, k). First, fictitious values at its two nearest neighbor grid point, (i, j + 1, k) and (i, j, k + 1) can be determined by 
the fictitious scheme for sharp-edged interfaces. Second, by the neighbor combination scheme, the fictitious values at the blue point (i, j + 1, k + 1) can 
be approximated by the function or fictitious values at three black points. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

• Scheme III. Three fictitious values at grid point (i, j + 1, k), (i, j + 2, k) and (i, j + 3, k) are applied to extrapolate the 
fictitious value at the grid point (i, j, k), see the right chart of Fig. 5.

Now we consider a very special case, in which fictitious values for cross derivatives cannot be obtained with the above 
schemes.

As illustrated in Fig. 6, the interface is a sphere centered at (i, j, k) with radius less than grid size h. The CFD scheme 
at grid point (i, j, k) refers to all its distance one and two neighbor points. Note that all these points are in the other side 
of the interface. To attain a convergent discretization at grid point (i, j, k), all the fictitious values at its neighbor points 
should be found. Here without the loss of generality, let us only consider the way to find fictitious values for u1 at grid 
points (i, j + 1, k), (i, j, k + 1) and (i, j + 1, k + 1). Due to the symmetry, other fictitious values can be obtained in the same 
manner.

First, the fictitious values at grid points (i, j + 1, k) and (i, j, k + 1) can be found by the sharp interface scheme for 
central derivatives. Denote the obtained fictitious values to be f c

1 (i, j + 1, k) and f c
1 (i, j, k + 1), respectively. Further let the 

analytic extension of the exact solution at these grid points to be û1(i, j + 1, k) and û1(i, j, k + 1). The numerical extension 
based on the above MIB scheme satisfies: f c

1 (i, j + 1, k) = û1(i, j + 1, k) + O (h3) and f c
1 (i, j, k + 1) = û1(i, j, k + 1) + O (h3).

Now the only fictitious value to be determined is f c
1 (i, j + 1, k + 1). Based on the Taylor expansion and the above MIB 

extension estimates, following equations hold for the uniform Cartesian mesh with grid size h.

u1(i, j + 1,k + 1) = u1(i, j,k) + ∂u1

∂ y
(i, j,k)h + ∂u1

∂z
(i, j,k)h + O (h2)

u1(i, j + 1,k) = u1(i, j,k) + ∂u1

∂ y
(i, j,k)h + O (h2)

u1(i, j,k + 1) = u1(i, j,k) + ∂u1

∂z
(i, j,k)h + O (h2)

f c
1 (i, j + 1,k) = û1(i, j + 1,k) + O (h3),

f c
1 (i, j,k + 1) = û1(i, j,k + 1) + O (h3),

where h is the size of the Cartesian mesh.
Therefore, let fictitious value at grid point (i, j + 1, k + 1) to be:

f c
1 (i, j + 1,k + 1) = f c

1 (i, j + 1,k) + f c
1 (i, j,k + 1) − u1(i, j,k).

By direct calculation, the following estimate holds

f c
1 (i, j + 1,k + 1) = û1(i, j + 1,k + 1) + O (h2),

where û1(i, j + 1, k + 1) is the analytic extension of the exact solution at grid point (i, j + 1, k + 1).

Remark 3. The proposed scheme for finding fictitious values at (i, j + 1, k + 1) may reduce the numerical accuracy, while 
based on numerous numerical tests, the proposed scheme is still of second order convergence globally.

3.2.3. Second order MIB finite difference for cross derivatives
It is obviously that all the fictitious values at irregular grid points are guaranteed to be found by the above extension 

and combination schemes. The local combination scheme may lead to some numerical accuracy reduction, however, in most 
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case, this scheme is used quite seldom. Based on our numerous numerical examples, the MIB scheme still has the second 
order numerical accuracy for both L∞ and L2 error for the elasticity interface problem.

Similar to the MIB discretization of the central derivatives, in the discretization of cross derivatives, when grid point 
from the other subdomain referred, fictitious values at that point are adopted to replace the function values in the CFD 
discretization. For instance, the MIB discretization of the ∂2u1

∂ y∂z at grid point (i, j, k) in Fig. 6 is given by:

∂2u1

∂ y∂z
(i, j,k) = f c

1 (i, j + 1,k + 1) + f c
1 (i, j − 1,k − 1) − f c

1 (i, j + 1,k − 1) − f c
1 (i, j − 1,k + 1)

4h2
.

4. Numerical experiments

Numerous numerical tests are designed in this section to investigate the accuracy, efficiency and robustness of the 
proposed MIB method for solving 3D elasticity interface problems with both smooth and non-smooth material interfaces. 
We consider a large number of complex geometric shapes, including sphere, hemisphere, ellipsoid, cylinder, torus, acorn-like, 
apple-shaped, flower-like, and pentagon-star shapes in our tests. To examine the applicability of the proposed new MIB 
scheme for realistic problems, we also consider arbitrarily complex biomolecular interfaces. Both piecewise constant material 
parameters and position-dependent material parameters are tested in our investigation. Furthermore, problems with small 
and large contrast in Poisson’s ratio and shear modulus across the interface are also examined.

The standard bi-conjugate gradient method is employed to solve the linear algebraic system generated by the MIB dis-
cretization of the governing equation of the elasticity interface problems. Numerical solutions are compared to the designed 
analytical solution. Both L2 and L∞ error measurements are employed in examining the accuracy and convergence of the 
MIB algorithm for 3D elasticity interface problems

L∞(uk) := max |uk(m,n, l) − ûk(m,n, l)|, k = 1,2,3; ∀m = 1,2, · · · ,nx; ∀n = 1,2, · · · ,ny; ∀l = 1,2, · · · ,nz

and

L2 :=
√√√√ 1

nx ∗ ny ∗ nz

nx∑
m=1

ny∑
n=1

nz∑
l=1

(uk(m,n, l) − ûk(m,n, l))2,

where uk , ûk are the numerical and exact solutions, respectively. Here L∞ is the maximum error over all the grid points in 
the computational domain.

4.1. Smooth interface

4.1.1. Piecewise constant shear modulus
In this section, the proposed MIB method is tested for the piecewise constant material parameters associated with 

smooth material interfaces. Problems with both large and small contrasts of Poisson’s ratio and shear modulus across the 
interface are considered in our investigation.

Example 1. In this example, the computational domain is set to [−3, 3] × [−3, 3] × [−3, 3] and the interface is a sphere 
which is defined by x2 + y2 + z2 = 4. A sphere is the simplest irregular or complex interface in 3D. The exact solution is 
designed to be

u1(x, y, z) =
{

x2 + y2 + z2 − 4 + cos(x) cos(y) cos(z), in �+,

cos(x) cos(y) cos(z), in �−,

u2(x, y, z) =
{

x2 + y2 + z2 − 4 + xy + cos(x) cos(y) cos(z), in �+,

xy + cos(x) cos(y) cos(z), in �−,

and

u3(x, y, z) =
{

x2 + y2 + z2 − 4 + yz + cos(x) cos(y) cos(z), in �+,

yz + cos(x) cos(y) cos(z), in �−.

Note that the above solution guarantees the continuity of the solution across the interface. The Dirichlet boundary 
conditions and interface jump conditions can be derived from the above exact solution. We consider a series of three cases 
to test the robustness of the proposed MIB method for large contrasts in material parameters across the interface.

Case 1. First, let the piecewise constant type of Poisson’s ratio and shear modulus to be

ν =
{

ν+ = 0.20, in �+,
− −
ν = 0.24, in � ,



420 B. Wang et al. / Journal of Computational Physics 294 (2015) 405–438
Table 1
The L∞ errors for Case 1 of Example 1.

nx × ny × nz L∞(u1) Order L∞(u2) Order L∞(u3) Order

10 × 10 × 10 6.70 × 10−2 6.31 × 10−2 5.68 × 10−2

20 × 20 × 20 1.39 × 10−2 2.27 1.36 × 10−2 2.21 1.31 × 10−2 2.12
40 × 40 × 40 2.72 × 10−3 2.35 2.94 × 10−3 2.21 2.69 × 10−3 2.28
80 × 80 × 80 7.58 × 10−4 1.84 7.28 × 10−4 2.01 7.17 × 10−4 1.91

Table 2
The L2 errors for Case 1 of Example 1.

nx × ny × nz L2(u1) Order L2(u2) Order L2(u3) Order

10 × 10 × 10 1.30 × 10−2 1.29 × 10−2 1.30 × 10−2

20 × 20 × 20 3.20 × 10−3 2.02 3.20 × 10−3 2.01 3.15 × 10−3 2.05
40 × 40 × 40 8.34 × 10−4 1.94 8.39 × 10−4 1.93 8.27 × 10−4 1.93
80 × 80 × 80 2.25 × 10−4 1.89 2.25 × 10−4 1.90 2.23 × 10−4 1.89

Fig. 7. Numerical solution to the sphere interface problem of Case 1 with 40 grid points along each direction. Left chart: u1; Middle chart: u2; 
Right chart: u3.

Fig. 8. Numerical error in solving the sphere interface problem of Case 1 with 40 grid points along each direction. Left chart: u1; Middle chart: u2; 
Right chart: u3.

and

μ =
{

μ+ = 1 500 000, in �+,

μ− = 2 000 000, in �−.

Table 1 lists the grid refinement analysis for the L∞ error of Case 1 of Example 1. We obtain a quite robust second 
order accuracy in the L∞ error norm. It is also interesting to examine the convergence in the L2 error norm as well. Table 2
presents the grid refinement analysis for the L2 error of Case 1 of Example 1. We again found highly accurate solutions.

Figs. 7 and 8 illustrate the solution and error with 40 grid points along each direction. Apparently, the errors are quite 
small.
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Table 3
The L∞ errors for Case 2 of Example 1.

nx × ny × nz L∞(u1) Order L∞(u2) Order L∞(u3) Order

10 × 10 × 10 6.21 × 10−2 5.95 × 10−2 5.45 × 10−2

20 × 20 × 20 1.55 × 10−2 2.00 1.55 × 10−2 1.94 1.53 × 10−2 1.83
40 × 40 × 40 3.13 × 10−3 2.31 3.45 × 10−3 2.17 3.28 × 10−3 2.22
80 × 80 × 80 8.19 × 10−4 1.93 7.89 × 10−4 2.13 7.88 × 10−4 2.06

Table 4
The L2 errors for Case 2 of Example 1.

nx × ny × nz L2(u1) Order L2(u2) Order L2(u3) Order

10 × 10 × 10 1.29 × 10−2 1.28 × 10−2 1.28 × 10−2

20 × 20 × 20 3.29 × 10−3 1.97 3.28 × 10−3 1.96 3.22 × 10−3 1.99
40 × 40 × 40 8.49 × 10−4 1.95 8.53 × 10−4 1.94 8.41 × 10−4 1.94
80 × 80 × 80 2.29 × 10−4 1.89 2.29 × 10−4 1.90 2.28 × 10−4 1.89

Table 5
The L∞ errors for Case 3 of Example 1.

nx × ny × nz L∞(u1) Order L∞(u2) Order L∞(u3) Order

10 × 10 × 10 6.70 × 10−2 6.31 × 10−2 5.68 × 10−2

20 × 20 × 20 1.40 × 10−2 2.26 1.41 × 10−2 1.94 1.31 × 10−2 2.12
40 × 40 × 40 2.72 × 10−3 2.36 2.39 × 10−3 2.16 2.69 × 10−3 2.28
80 × 80 × 80 7.58 × 10−4 1.85 7.28 × 10−4 1.72 7.17 × 10−4 1.91

Table 6
The L2 errors for Case 3 of Example 1.

nx × ny × nz L2(u1) Order L2(u2) Order L2(u3) Order

10 × 10 × 10 1.30 × 10−2 1.29 × 10−2 1.30 × 10−2

20 × 20 × 20 3.19 × 10−3 2.03 3.20 × 10−3 2.01 3.15 × 10−3 2.05
40 × 40 × 40 8.34 × 10−4 1.94 8.39 × 10−4 1.94 8.27 × 10−4 1.93
80 × 80 × 80 2.25 × 10−4 1.89 2.24 × 10−4 1.91 2.23 × 10−4 1.89

Case 2. In this case, we test the proposed MIB method for large contrasts in material parameters across the interface. We 
make the Poisson’s ratio to be 1000 times in contrast

ν =
{

ν+ = 0.00024, in �+,

ν− = 0.24, in �−,

while the shear modulus remains unchanged,

μ =
{

μ+ = 1 500 000, in �+,

μ− = 2 000 000, in �−.

Table 3 lists the grid refinement analysis for the L∞ error. Similarly, Table 4 gives the grid refinement analysis for the 
L2 error of Case 2. It is seen that both the accuracy and convergence are not affected by the large contrast in the Poisson’s 
ratio across the interface.

Case 3. Having tested the proposed MIB method for large contrast in the Poisson’s ratio, let us enlarge the contrast of the 
shear modulus across the interface, while the Poisson’s ratio is unchanged,

ν =
{

ν+ = 0.20, in �+,

ν− = 0.24, in �−,

and

μ =
{

μ+ = 2000, in �+,

μ− = 2 000 000, in �−.

Table 5 gives the grid refinement analysis for the L∞ error of Case 3. In Table 6, we provide the grid refinement analysis 
for the L2 error of Case 3.

Case 4. To further test the MIB method for the Poisson’s ratio, we will test the case with large contrast between both 
Poisson’s ratio and shear modulus across the interfaces, specifically, we set the Poisson’s ratio and shear modulus to:
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Table 7
The L∞ errors for Case 4 of Example 1.

nx × ny × nz L∞(u1) Order L∞(u2) Order L∞(u3) Order

10 × 10 × 10 6.49 × 10−2 6.43 × 10−2 6.47 × 10−2

20 × 20 × 20 9.42 × 10−3 2.78 9.99 × 10−3 2.69 1.01 × 10−2 2.68
40 × 40 × 40 2.33 × 10−3 2.02 2.24 × 10−3 2.16 2.14 × 10−3 2.24
80 × 80 × 80 4.85 × 10−4 2.26 4.62 × 10−4 2.28 4.62 × 10−4 2.21

Table 8
The L2 errors for Case 4 of Example 1.

nx × ny × nz L2(u1) Order L2(u2) Order L2(u3) Order

10 × 10 × 10 1.54 × 10−2 1.46 × 10−2 1.47 × 10−2

20 × 20 × 20 2.46 × 10−3 2.65 2.45 × 10−3 2.58 2.47 × 10−3 2.57
40 × 40 × 40 6.73 × 10−4 1.87 6.57 × 10−4 1.90 6.54 × 10−4 1.92
80 × 80 × 80 1.60 × 10−4 2.07 1.59 × 10−4 2.05 1.59 × 10−4 2.04

Table 9
The L∞ errors for Case 1 of Example 2.

nx × ny × nz L∞(u1) Order L∞(u2) Order L∞(u3) Order

10 × 10 × 10 6.38 × 10−2 5.93 × 10−2 6.17 × 10−2

20 × 20 × 20 1.35 × 10−2 2.24 1.33 × 10−2 2.16 1.35 × 10−2 2.19
40 × 40 × 40 2.67 × 10−3 2.34 2.97 × 10−3 2.16 2.70 × 10−3 2.32
80 × 80 × 80 6.28 × 10−4 2.09 6.52 × 10−4 2.19 5.91 × 10−4 2.19

Table 10
The L2 errors for Case 1 of Example 2.

nx × ny × nz L2(u1) Order L2(u2) Order L2(u3) Order

10 × 10 × 10 1.33 × 10−2 1.32 × 10−2 1.57 × 10−2

20 × 20 × 20 3.35 × 10−3 1.99 3.33 × 10−3 1.99 3.44 × 10−3 2.19
40 × 40 × 40 8.61 × 10−4 1.96 8.61 × 10−4 1.95 8.65 × 10−4 1.99
80 × 80 × 80 2.01 × 10−4 2.10 2.02 × 10−4 2.09 2.01 × 10−4 2.11

ν =
{

ν+ = 0.20, in �+,

ν− = 0.00024, in �−,

and

μ =
{

μ+ = 2000, in �+,

μ− = 2 000 000, in �−.

Table 7 gives the grid refinement analysis for the L∞ error of Case 4. In Table 8, we provide the grid refinement analysis 
for the L2 error of Case 4.

Obviously, the proposed method is of second order convergence in both L∞ and L2 error norms in all four cases in 
Example 1.

Example 2. In this example, we modify the interface geometry. Let the computational domain be [−3, 3] × [−3, 3] × [−3, 3]
and the interface be given as a hemisphere{

x2 + y2 + z2 = 4,

z ≥ 0.

To ensure the continuity of the solution across the interface, the analytic solution adopted in this example is the same 
as that in Example 1. In this example, we also test the numerical scheme for three different cases of Poisson’s ratio and 
shear modulus, in each case the material parameters are inherited from the corresponded case in Example 1.

Case 1. Table 9 gives the grid refinement analysis of the L∞ error. Similarly the grid refinement analysis of the L2 error is 
presented in Table 10. It is seen that both the level of accuracy and the order of convergence are the same as those in the 
Case 1 of Example 1, which suggests that the proposed method is sensitive to the change in the geometry.

Figs. 9 and 10 show the numerical solution and error for Case 1 of Example 2, respectively. The number of grids is 40 
along each direction of the computational domain.
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Fig. 9. Numerical solution for Case 1 of the hemisphere interface problem with 40 grid points along each direction of the computational domain. 
Left chart: u1; Middle chart: u2; Right chart: u3.

Fig. 10. Numerical error for Case 1 of the hemisphere interface problem with 40 grids along each direction of the computational domain. Left chart: u1; 
Middle chart: u2; Right chart: u3.

Table 11
The L∞ errors for Case 2 of Example 2.

nx × ny × nz L∞(u1) Order L∞(u2) Order L∞(u3) Order

10 × 10 × 10 5.87 × 10−2 5.59 × 10−2 5.93 × 10−2

20 × 20 × 20 1.48 × 10−2 1.99 1.50 × 10−2 1.90 1.58 × 10−2 1.91
40 × 40 × 40 3.00 × 10−3 2.30 3.47 × 10−3 2.11 3.30 × 10−3 2.26
80 × 80 × 80 6.80 × 10−4 2.14 7.00 × 10−4 2.31 6.72 × 10−4 2.30

Table 12
The L2 errors for Case 2 of Example 2.

nx × ny × nz L2(u1) Order L2(u2) Order L2(u3) Order

10 × 10 × 10 1.33 × 10−2 1.32 × 10−2 1.62 × 10−2

20 × 20 × 20 3.42 × 10−3 1.96 3.40 × 10−3 1.96 3.55 × 10−3 2.19
40 × 40 × 40 8.73 × 10−4 1.97 8.75 × 10−4 1.96 8.89 × 10−4 2.00
80 × 80 × 80 2.02 × 10−4 2.11 2.02 × 10−4 2.11 2.13 × 10−4 2.06

Table 13
The L∞ errors for Case 3 of Example 2.

nx × ny × nz L∞(u1) Order L∞(u2) Order L∞(u3) Order

10 × 10 × 10 6.38 × 10−2 5.93 × 10−2 6.17 × 10−2

20 × 20 × 20 1.35 × 10−2 2.24 1.33 × 10−2 2.16 1.35 × 10−2 2.19
40 × 40 × 40 2.67 × 10−3 2.34 2.97 × 10−3 2.16 2.70 × 10−3 2.32
80 × 80 × 80 6.28 × 10−4 2.09 6.52 × 10−4 2.19 5.91 × 10−4 2.19

Case 2. Table 11 gives the grid refinement analysis of the L∞ error for the large contrast between Poisson’s ratio across the 
interface. The numerical behavior is quite similar to that in Case 2 of Example 1.

Table 12 lists the grid refinement analysis of the L2 error for the large contrast between Poisson’s ratio across the 
interface. We observe the second order convergence in the L2 error norm.

Case 3. Table 13 offers the grid refinement analysis of the L∞ error for the large contrast between shear modulus across the 
interface. Table 14 gives the grid refinement analysis of the L2 error.

Case 4. Table 15 offers the grid refinement analysis of the L∞ error for the large contrast between both Poisson ratio and 
shear modulus across the interface. Table 16 gives the grid refinement analysis of the L2 error.
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Table 14
The L2 errors for Case 3 of Example 2.

nx × ny × nz L2(u1) Order L2(u2) Order L2(u3) Order

10 × 10 × 10 1.33 × 10−2 1.32 × 10−2 1.57 × 10−2

20 × 20 × 20 3.35 × 10−3 1.99 3.33 × 10−3 1.99 3.44 × 10−3 2.19
40 × 40 × 40 8.60 × 10−4 1.96 8.61 × 10−4 1.95 8.65 × 10−4 1.99
80 × 80 × 80 2.01 × 10−4 2.10 2.00 × 10−4 2.10 2.00 × 10−4 2.11

Table 15
The L∞ errors for Case 4 of Example 2.

nx × ny × nz L∞(u1) Order L∞(u2) Order L∞(u3) Order

10 × 10 × 10 5.68 × 10−2 5.32 × 10−2 5.17 × 10−2

20 × 20 × 20 7.61 × 10−3 2.90 7.87 × 10−3 2.76 8.03 × 10−3 2.69
40 × 40 × 40 1.89 × 10−3 2.01 1.91 × 10−3 2.04 2.26 × 10−3 1.83
80 × 80 × 80 5.42 × 10−4 1.80 5.53 × 10−4 1.79 5.03 × 10−4 2.17

Table 16
The L2 errors for Case 4 of Example 2.

nx × ny × nz L2(u1) Order L2(u2) Order L2(u3) Order

10 × 10 × 10 9.65 × 10−3 9.67 × 10−3 9.82 × 10−3

20 × 20 × 20 2.22 × 10−3 2.12 2.22 × 10−3 2.12 2.24 × 10−3 2.13
40 × 40 × 40 5.89 × 10−4 1.91 5.89 × 10−4 1.91 6.04 × 10−4 1.89
80 × 80 × 80 1.16 × 10−4 2.34 1.51 × 10−4 1.96 1.38 × 10−4 2.13

Table 17
The L∞ errors for Case 1 of Example 3.

nx × ny × nz L∞(u1) Order L∞(u2) Order L∞(u3) Order

10 × 10 × 10 3.96 × 10−2 5.23 × 10−2 3.16 × 10−2

20 × 20 × 20 1.52 × 10−2 1.38 1.31 × 10−2 2.00 8.07 × 10−2 1.97
40 × 40 × 40 2.82 × 10−3 2.43 3.45 × 10−3 1.93 1.90 × 10−3 2.09
80 × 80 × 80 6.99 × 10−4 2.01 8.81 × 10−4 1.97 4.83 × 10−4 1.98

In all these four cases in Example 2, the second order convergence in both L∞ and L2 errors is essentially reached. The 
level of accuracy is the same as that found in Example 1.

Example 3. In this example, the computational domain is set to be: [−3, 3] × [−4, 4] × [−2, 2] with an ellipsoid interface 
defined as x2

4 + y2

9 + z2 = 1.
The Dirichlet boundary condition and interface jump conditions are determined from the following exact solution

u1(x, y, z) =
{

x2

4 + y2

9 + z2 − 1 + cos(x) cos(y) cos(z), in �+,

cos(x) cos(y) cos(z), in �−,

u2(x, y, z) =
{

x2

4 + y2

9 + z2 − 1 + xy + cos(x) cos(y) cos(z), in �+,

xy + cos(x) cos(y) cos(z), in �−,

and

u3(x, y, z) =
{

x2

4 + y2

9 + z2 − 1 + yz + cos(x) cos(y) cos(z), in �+,

yz + cos(x) cos(y) cos(z), in �−.

Obviously, the property of solution continuity across the interface is also satisfied in the above solution. In this example, 
three different cases of the material parameters used in the above two examples are adopted to examine the sensitivity of 
the proposed MIB method to the change in interface geometry.

Case 1. Grid refinement analysis for L∞ error is demonstrated in Table 17 for the ellipsoid interface. A similar analysis for L2
error is listed in Table 18 for the ellipsoid interface. Again, we see the same type of behavior in accuracy and convergence 
as that in last few examples.

The numerical solution and error of the ellipsoid interface problem are illustrated in Figs. 11, 12 with 40 grid points 
along each direction of the computational domain.
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Table 18
The L2 errors for Case 1 of Example 3.

nx × ny × nz L2(u1) Order L2(u2) Order L2(u3) Order

10 × 10 × 10 1.16 × 10−2 1.45 × 10−2 6.72 × 10−2

20 × 20 × 20 3.54 × 10−3 1.71 3.96 × 10−3 1.88 1.86 × 10−3 1.85
40 × 40 × 40 8.61 × 10−4 2.04 1.08 × 10−4 1.88 4.78 × 10−4 1.96
80 × 80 × 80 2.23 × 10−4 1.95 2.86 × 10−4 1.92 1.26 × 10−4 1.93

Fig. 11. Numerical solution for Case 1 of the ellipsoid interface problem with 40 grid points along each direction of the computational domain. Left chart: u1; 
Middle chart: u2; Right chart: u3.

Fig. 12. Numerical error for Case 1 of the ellipsoid interface problem with 40 grid points along each direction of the computational domain. Left chart: u1; 
Middle chart: u2; Right chart: u3.

Table 19
The L∞ errors for Case 2 of Example 3.

nx × ny × nz L∞(u1) Order L∞(u2) Order L∞(u3) Order

10 × 10 × 10 5.00 × 10−2 5.10 × 10−2 3.37 × 10−2

20 × 20 × 20 1.26 × 10−2 1.99 1.37 × 10−2 1.90 8.01 × 10−2 2.07
40 × 40 × 40 3.24 × 10−3 1.96 3.63 × 10−3 1.92 2.00 × 10−3 2.00
80 × 80 × 80 7.73 × 10−4 2.07 9.98 × 10−4 1.87 5.15 × 10−4 1.96

Table 20
The L2 errors for Case 2 of Example 3.

nx × ny × nz L2(u1) Order L2(u2) Order L2(u3) Order

10 × 10 × 10 1.20 × 10−2 1.50 × 10−2 6.93 × 10−3

20 × 20 × 20 3.77 × 10−3 1.67 4.13 × 10−3 1.70 1.91 × 10−3 1.86
40 × 40 × 40 9.18 × 10−4 2.04 1.12 × 10−4 1.88 4.88 × 10−4 1.97
80 × 80 × 80 2.36 × 10−4 1.96 2.94 × 10−4 1.93 1.30 × 10−4 1.91

Case 2. Grid refinement analysis for the L∞ error is demonstrated in Table 19. A similar grid refinement analysis for L2
error is illustrated in Table 20.

Case 3. Grid refinement analysis for L∞ error is demonstrated in Table 21. We also illustrate the grid refinement analysis in 
terms of L2 error in Table 22.
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Table 21
The L∞ errors for Case 3 of Example 3.

nx × ny × nz L∞(u1) Order L∞(u2) Order L∞(u3) Order

10 × 10 × 10 3.97 × 10−2 5.23 × 10−2 3.16 × 10−2

20 × 20 × 20 1.22 × 10−2 1.70 1.31 × 10−2 2.00 8.07 × 10−2 1.97
40 × 40 × 40 2.82 × 10−3 2.11 3.45 × 10−3 1.93 1.90 × 10−3 2.07
80 × 80 × 80 6.99 × 10−4 2.01 8.81 × 10−4 1.97 4.82 × 10−4 1.98

Table 22
The L2 errors for Case 3 of Example 3.

nx × ny × nz L2(u1) Order L2(u2) Order L2(u3) Order

10 × 10 × 10 1.16 × 10−2 1.45 × 10−2 7.72 × 10−2

20 × 20 × 20 3.24 × 10−3 1.84 3.96 × 10−3 1.99 1.86 × 10−3 2.05
40 × 40 × 40 8.61 × 10−4 1.91 1.08 × 10−3 1.87 4.78 × 10−4 1.96
80 × 80 × 80 2.23 × 10−4 1.95 2.86 × 10−4 1.92 1.26 × 10−4 1.92

Table 23
The L∞ errors for Case 4 of Example 3.

nx × ny × nz L∞(u1) Order L∞(u2) Order L∞(u3) Order

10 × 10 × 10 2.89 × 10−2 3.23 × 10−2 2.23 × 10−2

20 × 20 × 20 7.27 × 10−3 1.99 8.06 × 10−3 2.00 7.55 × 10−3 1.57
40 × 40 × 40 1.53 × 10−3 2.25 2.08 × 10−3 1.95 1.55 × 10−3 2.28
80 × 80 × 80 3.77 × 10−4 2.02 5.32 × 10−4 1.97 3.42 × 10−4 2.18

Table 24
The L2 errors for Case 4 of Example 3.

nx × ny × nz L2(u1) Order L2(u2) Order L2(u3) Order

10 × 10 × 10 7.99 × 10−3 8.71 × 10−3 5.42 × 10−3

20 × 20 × 20 2.20 × 10−3 1.86 2.37 × 10−3 1.88 1.64 × 10−3 1.72
40 × 40 × 40 5.49 × 10−4 2.00 6.63 × 10−4 1.84 3.95 × 10−4 2.05
80 × 80 × 80 1.42 × 10−4 1.95 1.75 × 10−4 1.92 9.95 × 10−5 1.99

Case 4. In the case that with large contrast between both Poisson’s ratio and shear modulus, as the same in the above two 
examples. Grid refinement analysis for L∞ error is demonstrated in Table 23. We also illustrate the grid refinement analysis 
in terms of L2 error in Table 24.

The second order convergence of the MIB algorithm is essentially observed from all the numerical tests in Example 3.

Remark 4. In all the above examples, the continuity of the solution across the interface, i.e., the no fracture condition, 
has been carefully maintained in designing the analytical solutions. However, for real world problems, having fractures at 
the interface is very common. In the following two numerical experiments, the continuity condition of the function values 
across the interface is dropped. We test our method for handling general jumps of the function values across the interface. 
Numerically, this situation is slightly more difficult to deal with.

Example 4. The computational domain is set to be [−2, 2] × [−2, 2] × [−2, 4.4] with a cylinder interface defined as⎧⎨
⎩

x2 + y2 = π2

4 ,

z ≤ π,

z ≥ 0.

The Dirichlet boundary condition and interface conditions are determined from the following exact solutions.

u1(x, y, z) =
{

x2 + y2 + z2 − 4, in �+,

cos(x) cos(y) cos(z), in �−,

u2(x, y, z) =
{

x2 + y2 + z2 + xy − 4, in �+,

xy + cos(x) cos(y) cos(z), in �−,

and

u3(x, y, z) =
{

x2 + y2 + z2 + yz − 4, in �+,
−
yz + cos(x) cos(y) cos(z), in � .
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Table 25
The L∞ errors of Example 4.

nx × ny × nz L∞(u1) Order L∞(u2) Order L∞(u3) Order

20 × 20 × 20 4.68 × 10−3 4.68 × 10−3 7.07 × 10−3

40 × 40 × 40 1.16 × 10−3 2.01 1.17 × 10−3 2.00 1.74 × 10−3 2.02
80 × 80 × 80 2.87 × 10−4 2.02 2.91 × 10−4 2.00 4.23 × 10−4 2.04

Table 26
The L2 errors of Example 4.

nx × ny × nz L2(u1) Order L2(u2) Order L2(u3) Order

20 × 20 × 20 1.04 × 10−3 1.04 × 10−3 1.58 × 10−3

40 × 40 × 40 2.61 × 10−4 1.99 2.62 × 10−4 1.99 3.86 × 10−4 2.03
80 × 80 × 80 6.69 × 10−5 1.96 6.77 × 10−5 1.95 9.77 × 10−5 1.98

Fig. 13. Numerical solution to the cylinder interface problem with 40 grid points along each direction of the computational domain. Left chart: u1; 
Middle chart: u2; Right chart: u3.

Fig. 14. Numerical error of solving the cylinder interface problem with 40 grid points along each direction of the computational domain. Left chart: u1; 
Middle chart: u2; Right chart: u3.

The values of the Poisson’s ratio and shear modulus are, respectively, set to

ν =
{

ν+ = 0.20, in �+,

ν− = 0.24, in �−

and

μ =
{

μ+ = 1 500 000, in �+,

μ− = 2 000 000, in �−.

Table 25 offers the grid refinement analysis of the L∞ error for Example 4. Similar grid refinement analysis of the L2
error is given in Table 26 for Example 4. A high level of accuracy and a robust order of convergence are observed from these 
tests.

Numerical solution and error are depicted in Figs. 13 and 14, respectively, where 40 grid points are used along each 
direction of the computational domain. Obviously, the error is very small in all of three solutions.

Example 5. Geometric complexity is a major issue in interface problems. It is often the case that numerical methods de-
signed for simple interface geometries do not work for complex interface geometries. In this example, we consider a more 
complicated interface, which is defined to be a torus
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Table 27
The L∞ errors of Example 5.

nx × ny × nz L∞(u1) Order L∞(u2) Order L∞(u3) Order

20 × 20 × 20 2.04 × 10−1 2.04 × 10−1 1.12 × 10−1

40 × 40 × 40 4.14 × 10−2 2.30 4.05 × 10−2 2.33 2.34 × 10−2 2.09
80 × 80 × 80 1.24 × 10−2 1.74 1.09 × 10−2 1.89 4.66 × 10−3 1.97

Table 28
The L2 errors of Example 5.

nx × ny × nz L2(u1) Order L2(u2) Order L2(u3) Order

20 × 20 × 20 4.54 × 10−2 4.52 × 10−2 1.87 × 10−2

40 × 40 × 40 1.12 × 10−2 1.71 1.10 × 10−2 2.04 4.40 × 10−3 2.09
80 × 80 × 80 2.92 × 10−3 2.04 2.90 × 10−3 1.92 1.12 × 10−3 1.97

Fig. 15. Numerical solution to the torus interface problem with 40 grid points along each direction of the computational domain. Left chart: u1; 
Middle chart: u2; Right chart: u3.

⎧⎨
⎩

x(θ,φ) = (R + r cosφ) cos θ,

y(θ,φ) = (R + r sinφ) sin θ,

z(θ,φ) = r sin φ,

where θ, φ ∈ [0, 2π ] are two parameters. The computational domain is set to be [−10, 10] × [−10, 10] × [−5, 5].
The above torus can also be represented as

(R −
√

x2 + y2)2 + z2 = r2.

We set R = 4, r = 2 in our numerical experiments.
The Poisson’s ratio, shear modulus and designed analytic solution in Example 4 are adopted for this example. Grid 

refinement analysis in terms of L∞ error is given in Table 27. A similar grid refinement analysis in terms of L2 error is 
given Table 28. Although there is some small fluctuation in the convergent order, the second order convergence is essentially 
obtained in this test.

Figs. 15 and 16 illustrate the numerical solution and the error in a 40 × 40 × 40 mesh. Note that errors appear large in 
this test example. However, the amplitude of the solution is much larger too, due to a much larger computational domain.

Example 6. For the last example of the smooth interface with piecewise constant material parameters, we consider a more 
complicated interface geometry, i.e., a flower-like cylinder interface. The interface can be represented as{

r = 5
2 + 5

7 sin 5θ,

− 2
3 ≤ z ≤ 2

3 ,

where r = √
x2 + y2 and θ = arctan y

x . The computational domain is set to [−5, 5] × [−5, 5] × [−2, 2].
Material parameters and exact solutions designed in Example 4 are utilized in this example. Grid refinement analysis in 

terms of L∞ error is given in Table 29 and a similar analysis in terms of L2 error is given in Table 30. It is quite interesting 
to see that good convergent orders are attained.

Figs. 17 and 18 demonstrate the solution and error of the flower-liked interface problem with grid size 0.125. Note that 
the error amplitude depends on the mesh size.
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Fig. 16. Numerical error to the torus interface problem with 40 grid points along each direction of the computational domain, Left chart: u1; 
Middle chart: u2; Right chart: u3.

Table 29
The L∞ errors of Example 6.

Grid size L∞(u1) Order L∞(u2) Order L∞(u3) Order

0.5 4.29 × 10−2 4.49 × 10−2 1.95 × 10−2

0.25 9.04 × 10−3 2.25 9.46 × 10−3 2.25 4.97 × 10−3 1.97
0.125 1.96 × 10−3 2.21 2.17 × 10−3 2.03 7.02 × 10−3 2.82

Table 30
The L2 errors of Example 6.

Grid size L2(u1) Order Error L2(u2) Order L2(u3) Order

0.5 4.12 × 10−3 4.96 × 10−3 2.35 × 10−3

0.25 9.90 × 10−4 2.06 1.11 × 10−3 2.16 4.10 × 10−4 2.52
0.125 2.11 × 10−4 2.23 2.38 × 10−4 2.22 7.68 × 10−5 2.42

Fig. 17. Numerical solution to the flower interface problem with grid size 0.125. Left chart: u1; Middle chart: u2; Right chart: u3.

Fig. 18. Numerical error for solving the flower interface problem with grid size 0.125. Left chart: u1; Middle chart: u2; Right chart: u3.
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Table 31
The L∞ errors of Example 7.

nx × ny × nz L∞(u1) Order L∞(u2) Order L∞(u3) Order

10 × 10 × 10 6.61 × 10−2 6.27 × 10−2 5.67 × 10−2

20 × 20 × 20 1.37 × 10−2 2.27 1.34 × 10−2 2.27 1.31 × 10−2 2.11
40 × 40 × 40 2.66 × 10−3 2.36 2.84 × 10−3 2.24 2.67 × 10−3 2.29
80 × 80 × 80 7.41 × 10−4 1.90 7.15 × 10−4 1.99 7.26 × 10−4 1.89

Table 32
The L2 errors of Example 7.

nx × ny × nz L2(u1) Order Error L2(u2) Order L2(u3) Order

10 × 10 × 10 1.28 × 10−2 1.28 × 10−2 1.29 × 10−2

20 × 20 × 20 3.18 × 10−3 2.01 3.19 × 10−3 2.00 3.14 × 10−3 2.04
40 × 40 × 40 8.30 × 10−4 1.94 8.36 × 10−4 1.93 8.26 × 10−4 1.93
80 × 80 × 80 2.24 × 10−4 1.89 2.24 × 10−4 1.90 2.23 × 10−4 1.89

Table 33
The L∞ errors of Example 8.

nx × ny × nz L∞(u1) Order L∞(u2) Order L∞(u3) Order

10 × 10 × 10 1.85 × 10−2 1.85 × 10−2 3.14 × 10−2

20 × 20 × 20 4.68 × 10−3 1.98 4.68 × 10−3 1.98 7.07 × 10−3 2.15
40 × 40 × 40 1.15 × 10−3 2.02 1.17 × 10−3 2.00 1.74 × 10−3 2.02
80 × 80 × 80 2.99 × 10−4 1.94 3.19 × 10−4 1.87 4.23 × 10−4 2.01

Table 34
The L2 errors of Example 8.

nx × ny × nz L2(u1) Order Error L2(u2) Order L2(u3) Order

10 × 10 × 10 4.16 × 10−3 4.16 × 10−3 7.47 × 10−3

20 × 20 × 20 1.04 × 10−3 2.00 1.04 × 10−3 2.00 1.58 × 10−3 2.24
40 × 40 × 40 2.63 × 10−4 1.98 2.64 × 10−4 1.98 3.92 × 10−4 2.01
80 × 80 × 80 6.82 × 10−5 1.95 7.07 × 10−5 1.90 1.00 × 10−4 1.97

4.1.2. Position dependent shear modulus
Spatially varying shear modulus occurs frequently in natural and man-made materials and devices. The ability to deal 

with position-dependent material parameters cannot be overemphasized for practical applications. For example, the protein 
molecules can have variable shear modulus [27]. In this subsection, we consider that the shear modulus is given as a 
position-dependent function.

Example 7. In this example, we consider the problem defined in Example 1, while replace the shear modulus in Example 1
by the following position-dependent function

μ =
{

μ+ = 1 500 000 + (x + y + z), in �+,

μ− = 2 000 000 + xyz, in �−.

The error analysis is given in Tables 31 and 32 for L∞ and L2, respectively. Essentially, second order convergence is 
obtained. The level of accuracy is the same as that obtained for Example 1, which indicates that the proposed MIB method 
is robust for position-dependent material parameters.

Example 8. To further test the proposed method for its performance in dealing with variable material parameters, we 
consider an example by setting the shear modulus in Example 4 to the following spatially dependent functions

μ =
{

μ+ = 1 500 000 + 2000(x + y + z), in �+,

μ− = 2 000 000 + 1500xyz, in �−.

The L∞ and L2 errors are analyzed in Tables 33 and 34, respectively.

Example 9. In this numerical experiment, we further investigate the robustness of the proposed MIB algorithm to the 
position dependent shear modulus, now we redo Example 8, however, change the shear modulus in Example 8 to be the 
following functions:

μ =
{

μ+ = 1 500 000 + 2000(x2 + y2 + z2), in �+,
− 2 2 2 −
μ = 2 000 000 + 1500x y z , in � .
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Table 35
The L∞ errors of Example 9.

Grid size L∞(u1) Order L∞(u2) Order L∞(u3) Order

20 × 20 × 20 1.67 × 10−1 1.65 × 10−1 9.39 × 10−2

40 × 40 × 40 4.20 × 10−2 1.99 5.36 × 10−2 1.62 2.66 × 10−2 1.82
80 × 80 × 80 9.97 × 10−3 2.07 9.71 × 10−3 2.48 5.96 × 10−3 2.43

Table 36
The L2 errors of Example 9.

Grid size L2(u1) Order Error L2(u2) Order L2(u3) Order

20 × 20 × 20 4.27 × 10−2 4.26 × 10−2 1.78 × 10−2

40 × 40 × 40 1.10 × 10−2 1.96 1.09 × 10−2 1.97 4.48 × 10−3 1.99
80 × 80 × 80 2.80 × 10−3 1.97 2.78 × 10−3 1.97 1.08 × 10−3 2.05

Table 37
The L∞ errors of Example 10.

Grid size L∞(u1) Order L∞(u2) Order L∞(u3) Order

0.6 5.08 × 10−2 5.18 × 10−2 6.60 × 10−2

0.3 1.39 × 10−2 1.87 1.41 × 10−2 2.06 1.74 × 10−2 1.92
0.15 3.07 × 10−3 2.18 3.77 × 10−3 2.18 4.09 × 10−3 2.09

The L∞ and L2 errors are analyzed in Tables 35 and 36, respectively.

Remark 5. From the above three examples, we observe the second order accuracy in both L∞ and L2 norms for elasticity 
interfaces with position-dependent material parameters. Additionally the level of accuracy is not affected by the spatially 
varying material parameters.

4.2. Nonsmooth interfaces

Nonsmooth interfaces are omnipresent in practical applications and give rise to challenges for numerical algorithm de-
sign. In this section, we consider a few elasticity interface problems with geometric singularities.

Example 10. In this example, let us consider an apple-like interface [33]

ρ = 1.9 (1 − cosφ) ,

where ρ = √
x2 + y2 + z2 and φ = arccos z

ρ . The computational domain is set to [−5, 4.6] × [−5, 4.6] × [−8, 4].
The values of the Poisson’s ratio and shear modulus are, respectively

ν =
{

ν+ = 0.24, in �+,

ν− = 0.20, in �−

and

μ =
{

μ+ = 2 000 000, in �+,

μ− = 1 500 000, in �−.

The Dirichlet boundary condition and interface jump conditions can be determined by the following exact solution

u1(x, y, z) =
{

cos x cos y cos z + xyz, in �+,

3, in �−,

u2(x, y, z) =
{

cos x cos y cos z + x2 + y2 + z2, in �+,

3, in �−,

and

u3(x, y, z) =
{

cos x cos y cos z, in �+,

3, in �−.

Grid refinement analysis in terms of L∞ error is given in Table 37. A similar L2 error analysis is given in Table 38. The 
level of accuracy and the order of convergence are similar to those observed in earlier cases.

Figs. 19 and 20 illustrate the numerical solution and error of solving the apple-liked interface problem with grid size 
0.15. The grid refinement analysis in Table 37 and Table 38 indicate the second order convergence in both L2 and L∞ error 
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Table 38
The L2 errors of Example 10.

Grid size L2(u1) Order Error L2(u2) Order L2(u3) Order

0.6 5.86 × 10−3 6.11 × 10−3 9.44 × 10−3

0.3 1.51 × 10−3 2.17 1.61 × 10−3 1.92 2.55 × 10−3 1.89
0.15 3.77 × 10−4 2.07 3.96 × 10−4 2.02 6.69 × 10−4 1.93

Fig. 19. Solution to the apple-like interface problem with grid size 0.15. Left chart: u1; Middle chart: u2; Right chart: u3.

Fig. 20. Numerical error for solving the apple-life interface problem with grid size 0.15. Left chart: u1; Middle chart: u2; Right chart: u3.

Table 39
The L∞ errors of Example 11.

Grid size L∞(u1) Order L∞(u2) Order L∞(u3) Order

0.48 3.90 × 10−2 4.28 × 10−2 6.18 × 10−2

0.24 9.92 × 10−3 1.98 1.01 × 10−2 2.08 1.19 × 10−2 2.38
0.12 2.29 × 10−3 2.12 2.54 × 10−3 1.99 2.60 × 10−3 2.19

norms. Note that largest error did not occur at the geometric singularity, which indicates that the proposed MIB method 
works well for geometric singularities.

Example 11. Next, we consider an oak-acorn interface geometry [33]{( x
d

)2 + ( y
d

)2 = (z − q)2, if z > 0,

x2 + y2 + (z − g)2 = R2, if z ≤ 0,

where q = − 6
7 , g = 1

2 , R = 15
7 and d =

√
R2−g2

q2 . The computational domain is set to [−5, 4.6] × [−5, 4.6] × [−5, 4.6]. Note 
that this interface has a tip.

The material parameters and exact solutions in Example 10 are adopted. Grid refinement analysis in terms of L∞ error 
is given in Table 39. In Table 40, similar analysis in terms of L2 error is also given. These results show that the second order 
convergence in both L2 and L∞ error norms is achieved.
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Table 40
The L2 errors of Example 11.

Grid size L2(u1) Order Error L2(u2) Order L2(u3) Order

0.48 5.91 × 10−3 6.37 × 10−3 7.44 × 10−3

0.24 1.36 × 10−3 2.17 1.48 × 10−3 2.11 1.88 × 10−3 1.98
0.12 3.25 × 10−4 2.07 3.60 × 10−4 2.04 4.06 × 10−4 2.21

Fig. 21. Numerical solution to the acorn interface problem with grid size 0.12. Left chart: u1; Middle chart: u2; Right chart: u3.

Fig. 22. Numerical error for solving the acorn interface problem with grid size 0.12. Left chart: u1; Middle chart: u2; Right chart: u3.

The geometry, numerical solution and error distribution are provided in Figs. 21 and 22, which are computed with grid 
size 0.15 in all directions. Again, the largest error is away from the tip, which indicates the robustness of the present MIB 
method for dealing with geometric singularity.

Example 12. Finally, let us extend the benchmark pentagon-star interface test used in 2D to a 3D one, which is a more 
complicated interface with very a sharp edge. We set the interface as

φ(r, θ) =
{

R sin (θt/2)
sin (θt/2+θ−θr−2π(i−1)/5)

− r, θr + π(2i − 2)/5 ≤ θ < θr + π(2i − 1)/5,

R sin (θt/2)
sin (θt/2−θ+θr+2π(i−1)/5)

− r, θr + π(2i − 3)/5 ≤ θ < θr + π(2i − 2)/5,

where θt = π
5 , θt = π

7 , R = 6
7 and i = 1, 2, 3, 4, 5. Furthermore, we have r = √

x2 + y2 and θ = arctan y
x . The z-direction of 

the interface is constrained by

−
√

3

2
≤ z ≤

√
3

2
.

The computational domain is set to [−1.3, 1.1] × [−1.3, 1.1] × [−1.3, 1.1]. The material parameters and exact solutions in 
Example 10 are utilized for this problem.
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Table 41
The L∞ errors of Example 12.

Grid size L∞(u1) Order L∞(u2) Order L∞(u3) Order

0.12 1.27 × 10−3 1.57 × 10−3 1.75 × 10−2

0.06 2.08 × 10−4 2.61 3.98 × 10−4 1.98 1.76 × 10−4 3.31
0.03 3.80 × 10−5 2.45 6.56 × 10−5 2.60 2.79 × 10−5 2.66

Table 42
The L2 errors of Example 12.

Grid size L2(u1) Order Error L2(u2) Order L2(u3) Order

0.12 3.71 × 10−4 1.67 × 10−4 3.57 × 10−4

0.06 3.79 × 10−5 3.29 4.47 × 10−5 1.90 3.76 × 10−5 3.25
0.03 7.67 × 10−6 2.30 1.07 × 10−5 2.60 6.08 × 10−6 2.63

Fig. 23. Numerical solution to the pentagon star interface problem with grid size 0.03. Left chart: u1; Middle chart: u2; Right chart: u3.

Fig. 24. Numerical error for solving the pentagon star interface problem with grid size 0.03. Left chart: u1; Middle chart: u2; Right chart: u3.

Grid refinement L∞ error analysis is given in Table 41. We also shown the grid refinement analysis in terms of L2
error in Table 42. The grid refinement analysis shows that the second order convergence in both L2 and L∞ error norms is 
obtained.

To give a visualization of the numerical solution, error and interface geometry of the pentagon star liked interface 
problem, we provide Figs. 23 and 24, which are plotted with grid size 0.03. In general, error is very small. Additionally, 
the largest error does not occur at the sharp edge of the interface. Therefore, from the above three test examples, we can 
conclude that the proposed MIB method is very robust in handling geometric singularities.

4.3. Biomolecular surfaces

Finally, to further test the convergence and robustness of our method, we consider a much more complex system, the 
molecular surface of proteins whose coordinates are obtained from the Protein Data Bank (PDB). Here we only provide the 
test results for two biomolecular surfaces (PDB ID: 1ptq and 1r69). To obtain an all-atom model for a protein, all attached 
water molecules are cleaned and hydrogen atoms are added. Atomic van der Waals radii defining the dielectric boundary 
were taken from the CHARMM22 force field, and the MSMS software package is utilized for the molecular surface genera-
tion. A major challenge for these surfaces is the tips and cups in the molecular surface definition. To our best knowledge, 
there is no other method in the literature that can deliver second order convergence for this class of problems.

Example 13. In this example, the Poisson ratio and shear modulus are set, respectively, to be:

ν =
{

ν+ = 0.20, in �+,
− −
ν = 0.24, in � ,
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Table 43
The L∞ errors of Case 1 of Example 13.

Grid size (Å) L∞(u1) Order L∞(u2) Order L∞(u3) Order

1.0 2.94 × 10−1 3.50 × 10−1 3.72 × 10−1

0.5 7.21 × 10−2 2.03 7.15 × 10−2 2.29 1.02 × 10−1 1.87
0.25 1.45 × 10−2 2.31 1.48 × 10−2 2.27 1.24 × 10−2 3.04

Table 44
The L2 errors of Case 1 of Example 13.

Grid size (Å) L2(u1) Order L2(u2) Order L2(u3) Order

1.0 3.54 × 10−2 2.92 × 10−2 2.84 × 10−2

0.5 6.83 × 10−3 2.37 7.88 × 10−3 1.89 5.90 × 10−3 2.27
0.25 1.83 × 10−3 1.90 1.88 × 10−3 2.07 1.32 × 10−3 2.16

Fig. 25. The left chart shows the surface maps of the numerical solution, the surface map of the numerical error is depicted in the right chart (grid size 
0.25 Å).

and

μ =
{

μ+ = 1 500 000, in �+,

μ− = 2 000 000, in �−.

The Dirichlet boundary condition and interface conditions are determined from the following designed exact solutions:

u1(x, y, z) = u2(x, y, z) = u3(x, y, z) =
{

3, in �+,

cos(x) cos(y) cos(z), in �−.

The computational domain for both of the following cases are set to be the bounding boxes of the MSMS surfaces of the 
protein molecules with an extra 4 Å along each side. Here �+ is the subdomain that outside the MSMS surface while �−
is that inside the MSMS surface.

Case 1. In the first case, let the interface to be the molecular surface of the protein with PDB ID: 1ptq.
Grid refinement analysis in terms of L∞ error is given in Table 43. In Table 44, similar analysis in terms of L2 error is 

also given. The design second accuracy is achieved.
Fig. 25 shows the error and numerical solution of u1 for Case 1 in Example 13.

Case 2. In the second case, The interface is set to be the molecular surface of the protein with PDB ID: 1r69. Grid refinement 
analysis in terms of L∞ error is given in Table 45. In Table 46, similar analysis in terms of L2 error is also given. Clearly, the 
proposed method achieve the second order convergence for both protein interfaces.

Fig. 26 shows the error and the numerical solution of u1 for Case 2 in Example 13.

5. Conclusion

In this work, we develop the matched interface and boundary (MIB) method for solving three-dimensional (3D) elas-
ticity interface problems. Both isotropic homogeneous material and isotropic inhomogeneous material are considered in 
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Table 45
The L∞ errors of Case 2 of Example 13.

Grid size (Å) L∞(u1) Order L∞(u2) Order L∞(u3) Order

1.0 3.23 × 10−1 4.81 × 10−1 4.11 × 10−1

0.5 1.09 × 10−1 1.57 6.04 × 10−2 2.99 1.26 × 10−1 1.71
0.25 2.00 × 10−2 2.45 1.46 × 10−2 2.05 1.71 × 10−2 2.88

Table 46
The L2 errors of Case 2 of Example 13.

Grid size (Å) L2(u1) Order L2(u2) Order L2(u3) Order

1.0 2.97 × 10−2 2.60 × 10−2 2.73 × 10−2

0.5 8.18 × 10−3 1.86 8.05 × 10−3 1.70 4.94 × 10−3 2.47
0.25 2.14 × 10−3 1.93 1.89 × 10−3 2.09 1.23 × 10−3 2.01

Fig. 26. The left chart depicts the surface maps of the numerical solution, the surface map of the numerical error is illustrated in the right chart (grid size 
0.25 Å).

the theoretical modeling and numerical computation. In particular, the isotropic inhomogeneous material is described by a 
strain-stress constitutive law with a position-dependent modulus function.

Most previous effort in the MIB method has been for elliptic interface problems. Its essential idea is to replace function 
values on irregular grid points fictitious values in the discretization so that the standard finite difference schemes can 
be systematically employed as if there were no interface. Interface jump conditions are enforced on the intersecting points 
between the interface and the mesh lines, which in turn determines fictitious values. In principle, the MIB method developed 
for one interface problem can be utilized for solving another interface problem because the MIB procedure does depend 
on the form of the partial differential equation. However, elasticity interface equations are exceptional because they involve 
both central derivatives and cross derivatives, which lead to new difficulties in determining fictitious values. Additionally, the 
elasticity interface equation is a vector equation with three deformation components in a 3D setting, which results in more 
demanding in efficient numerical schemes in terms of computer memory storage and convergent speed in solving the linear 
algebraic system. Consequently, a new MIB algorithm has been developed in this work to address these issues. To make 
the MIB scheme of second order convergence, a number of new techniques for central derivatives and cross derivatives is 
proposed in this work. For central derivatives, techniques such as local coordinate transformation, disassociation, two sets of 
jump conditions are utilized, while for cross derivatives, disassociation, extrapolation and neighbor combination techniques 
are proposed to determining fictitious values. The resulting large sparse linear systems for the coupled vector equations are 
solved efficiently by using the bi-conjugated gradient method.

The proposed new MIB scheme has been validated by using a variety of benchmark examples. In terms of interface 
complexity, we considered both smooth interfaces and nonsmooth interfaces as well protein interfaces. Smooth interface 
geometries include sphere, hemisphere, genus-1 torus, flower and cylinder. In the category of nonsmooth interface geome-
tries, apple-shaped, oak-acorn-shaped and pentagon star interfaces are considered. It is well known that in order to achieve 
second order convergence, nonsmooth interface geometries require special considerations in the interface algorithm design. 
The robustness of the MIB method proved by showing that the largest error occurs away from the geometric singularities.
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The proposed new MIB scheme has also been tested for elasticity interface problems with both weak discontinuity and 
strong discontinuity in solutions. Another standard test is the stability of the numerical schemes for large contrasts in 
material parameters across the interface. These aspects are investigated with numerous examples. We have demonstrated 
that the proposed MIB method is not sensitive to change in discontinuity and material contrast.

Finally, two classes of material parameters, namely, piecewise constants and spatially varying Poisson’s ratio and shear 
modulus are considered in our numerical experiments. We have demonstrated with extensive numerical examples that pro-
posed MIB method achieve second order convergence in both L∞ and L2 error norms for all the tests described above. 
Additionally, the level of MIB accuracy is not affected the above mentioned test issues. The present test on complex 
biomolecular systems indicates that the present MIB scheme is ready for applications to the real world elastic problems. 
To our best knowledge, there is no other elasticity interface method in the literature that can achieve the second order 
convergence for arbitrarily complex biomolecular interfaces.
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