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Persistent Homology Analysis of Biomolecular Data
By Guo-Wei Wei

Technological advances in the past few 
decades have fueled the exponential growth 
of “omic” data in biology. Understanding 
the rules of life from existing omic data sets, 
which offer unprecedented opportunities for 
mathematicians, remains an important mis-
sion of the field. Biomolecular structure-
function relationship is a major rule of life, 
and recognizing this relationship is the holy 
grail of biophysics and a central issue in 
experimental biology.

Geometric modeling is vital to the 
comprehension of biomolecular structure-
function relationships. It also bridges the 
gap between biological data and theo-
retical models, such as quantum mechanics, 
molecular mechanics, statistical mechanics, 
thermodynamics, and multiscale models. 
However, geometry-based models are fre-
quently inundated with too much struc-
tural detail and thus often computationally 
intractable. Topology provides the ultimate 
abstraction of geometric complexity by 
concerning only the connectivity of dif-
ferent components in a space and charac-
terizing independent entities, rings, and 
higher-dimensional faces of the space in 
terms of topological invariants or Betti 
numbers. To study topological invariants 
in a discrete data set—like atoms in a bio-
molecule—algebraic topology utilizes sim-
plicial complexes under various settings, 
such as the Vietoris-Rips complex, Čech 
complex, or alpha complex. Specifically, a 
0-simplex is a vertex, a 1-simplex an edge, 
a 2-simplex a triangle, and a 3-simplex 
a tetrahedron, as illustrated in Figure 1. 
Algebraic groups built on these simplicial 
complexes are used in simplicial homology 
to systematically compute Betti numbers 
for a given data set [7].

Nevertheless, traditional topology and 
homology are truly free of metrics or coor-
dinates and thus keep too little geometric 
information to be practically useful for 
biomolecules. Persistent homology, a new 
branch of algebraic topology, embeds mul-
tiscale geometric information into topo-
logical invariants to achieve an interplay 
between geometry and topology [14]. It 
creates a variety of topological spaces of a 
given object by varying a filtration param-
eter, such as the radius of balls or the 
level set of a real-valued function. As 
a result, persistent homology can capture 
topological features continuously over a 
range of spatial scales, and the resulting 
analysis is often visualized by barcodes 
[6] or persistence diagrams [5]. As such, 
the changes of topological invariants over 
scales are recorded by the “birth,” “death,” 
and “persistence” of barcodes over filtra-
tion. Persistent homology has been applied 

to a variety of domains, including image/
signal analysis, chaotic dynamics, sensor 
networks, complex networks, shape recog-
nition, and computational biology [13].

For nano- and biomolecules, persistent 
homology enables a quantitative topologi-
cal analysis—which reveals biomolecular 
“topology-function relationships”—via 
topological fingerprints (TFs) [9, 11]. 
Contrary to popular belief, short-lived topo-
logical events are not noise, but rather part 
of TFs; they play a valuable role in the 
quantitative topological analysis of protein 
folding stability [9] and fullerene curvature 
energy [8]. Differential geometry has been 
utilized to derive partial differential equa-
tion-based persistence for biomolecules [8]. 
Multidimensional persistence induced by a 
multiresolution analysis [12] is particularly 
useful for resolving ill-posed inverse prob-
lems in cryo-electron microscopy structure 
determination [10].

TFs provide biomolecules with a system-
atic and unique representation that cannot 
be literally cast into traditional physical 
interpretation. Fortunately, this representa-
tion is ideally suited for machine learning 
(particularly deep learning), which cap-
tures nonlinear and high-order interactions 
among features in sufficiently large and 
intrinsically complex data sets. One of the 
first integrations of machine learning and 
TFs offered encouraging classification of 
tens of thousands of proteins involving 
hundreds of tasks [4]. However, persistent 
homology neglects chemical and biologi-
cal information during topological simpli-
fication and is thus not as competitive as 
geometry or physics-based representation in 
quantitative predictions. Element-specific 
persistent homology, or multicomponent 
persistent homology built on colored bio-
molecular networks, has been introduced 
to retain chemical and biological informa-
tion during topological abstraction [2]. This 
approach enciphers biological properties—
such as hydrogen bonds, van der Waals 
interactions, hydrophilicity, and hydropho-
bicity—into topological invariants, render-
ing a potentially revolutionary representa-
tion for biomolecules [1, 3].

Rational drug design is an imperative 
life science problem that ultimately tests 
our understanding of biological systems. 
Designing efficient drugs to cure diseases 
is one of the most challenging tasks in 
the biological sciences. Multicomponent 
persistent homology plays a crucial role 
in hot-spot prediction, drug-binding pose 
analysis, binding affinity prediction, struc-
ture optimization, toxicity analysis, and 
pharmacokinetic simulation. For example, 
the integration of machine learning with 
multiscale weighted colored graphs and 
multicomponent persistent homology pro-

vided the best free energy ranking for Set 
1 (Stage 2) in D3R Grand Challenge 2, a 
worldwide competition in computer-aided 
drug design.1

References
[1] Cang, Z.X., & Wei, G.W. (2017). 

Analysis and prediction of protein fold-
ing energy changes upon mutation by 
element specific persistent homology. 
Bioinformatics, doi: 10.1093/bioinformat-
ics/btx460.

[2] Cang, Z.X., & Wei, G.W. (2017). 
Integration of element specific persis-
tent homology and machine learning for 
protein-ligand binding affinity predic-
tion. International Journal for Numerical 
Methods in Biomedical Engineering, 
doi:10.1002/cnm.2914.

[3] Cang, Z.X., & Wei, G.W. (2017). 
TopologyNet: Topology based deep con-
volutional and multi-task neural networks 
for biomolecular property predictions. Plos 
Computational Biology, 13(7), e1005690.

[4] Cang, Z.X., Mu, L., Wu, K., Opron, 
K., Xia, K., & Wei, G.W. (2015). A topo-
logical approach to protein classification. 
Molecular based Mathematical Biology, 3, 
140-162.

[5] Edelsbrunner, H., & Harer, J. 
(2008). Persistent homology — a survey. 
Contemporary Mathematics, 453, 257-282.

[6] Ghrist, R. (2008). Barcodes: The 
persistent topology of data. Bulletin of the 
American Mathematical Society., 45, 61-75.

[7] Kaczynski, T., Mischaikow, K., 
& Mrozek, M. (2004). Computational 
Homology. In Applied Mathematical 

1  http://bit.ly/2h4Vm6q

Sciences (Vol. 157). New York, NY: 
Springer-Verlag.

[8] Wang, B., & Wei, G.W. (2016). 
Object-oriented persistent homology. 
Journal of Computational Physics, 305, 
276-299.

[9] Xia, K.L., & Wei, G.W. (2014). 
Persistent homology analysis of pro-
tein structure, flexibility and folding. 
International Journal for Numerical 
Methods in Biomedical Engineering, 30, 
814-844.

[10] Xia, K.L., & Wei, G.W. (2015). 
Persistent topology for cryo-EM data analy-
sis. International Journal for Numerical 
Methods in Biomedical Engineering, 31, 
e02719.

[11] Xia, K.L., Feng, X., Tong, Y.Y., & 
Wei, G.W. (2015). Persistent homology for 
the quantitative prediction of fullerene sta-
bility. Journal of Computational Chemistry, 
36, 408-422.

[12] Xia, K.L., Zhao, Z.X., & Wei, G.W. 
(2015). Multiresolution topological simpli-
fication. Journal of Computational Biology, 
22, 1-5.

[13] Yao, Y., Sun, J., Huang, X.H., 
Bowman, G.R., Singh, G., Lesnick, M.,…
Carlsson, G. (2009). Topological methods 
for exploring low-density states in biomo-
lecular folding pathways. The Journal of 
Chemical Physics, 130, 144115.

[14] Zomorodian, A., & Carlsson, G. 
(2005). Computing persistent homology. 
Discrete and Computational Geometry, 33, 
249-274. 

Guo-Wei Wei is a professor of mathemat-
ics at Michigan State University.

Figure 1. An illustration of topological invariants (left), basic simplexes (middle), and protein-
persistence barcodes (right). Left. A point, a circle, an empty sphere, and a torus are displayed 
from top to bottom. Betti-0, Betti-1, and Betti-2 numbers are, respectively, 1, 0, and 0 for a 
point; 0, 1, and 0 for a circle; 0, 0, and 1 for a sphere; and 1, 2, and 1 for a torus. Two auxil-
iary rings are added to the torus to explain Betti-1=2. Middle. Four typical simplexes. Right. 
Topological fingerprint (bottom) for a protein (top). Image credit: Zixuan Cang.


