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SUMMARY

This paper introduces a new scheme for the numerical computation involving shock waves. The essence
of the scheme is to adaptively implement a conjugate low-pass �lter to e�ectively remove the accumu-
lated numerical errors produced by a set of high-pass �lters. The advantages of using such an adaptive
algorithm are its controllable accuracy, relatively low cost and easy implementation. Numerical ex-
amples in one and two space dimensions are presented to illustrate the proposed scheme. Copyright
? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A major di�culty in the numerical approximation of non-linear hyperbolic conservation laws
is the presence of discontinuities in the solution [1–4]. Traditional schemes generate spurious
oscillations in the numerical solution near the discontinuities. The numerically induced oscil-
lations are usually ampli�ed in (time) iterations. Over the last 50 years, a great number of
numerical schemes have been proposed for shock capturing. As early as 1950, a solution to
this problem was given by von Neumann and Richtmyer [5], who introduced arti�cial vis-
cosity in a �nite di�erence scheme. This method is simple to use. Unfortunately, the method
smears shocks, and serious errors can be induced in the computation of strong shocks. An
alternative approach is to construct a full solution by using low-order piecewise discontinu-
ous approximations [6–9]. Such a piecewise solution is a good approximation at the smooth
regions, and is capable of representing the shock front over a small region of grid with
the use of a Riemann solver. A total variation diminishing (TVD) scheme was proposed by
Harten [10] to reduce the spurious oscillations in the numerical solution. The TVD scheme
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was later generalized to an essentially non-oscillatory (ENO) scheme [11; 12]. The key idea
of the ENO scheme is to use the ‘smoothest’ stencil among several candidates to approximate
the �uxes at cell boundaries to a high-order accuracy and at the same time to avoid spurious
oscillations near shocks. This approach was further polished recently in a weighted essen-
tially non-oscillatory (WENO) scheme [13]. Recently, one of the present authors proposed a
synchronization-based algorithm for shock computations [14]. A somewhat di�erent approach
was proposed by Engquist et al. [15]. They applied a non-linear �lter of a conservation form
at every time iteration to the solution obtained from a standard �nite di�erence scheme.
The existence of so many di�erent approaches for shock capturing indicates both the im-

portance and the di�culty of the problem. The purpose of the present work is to propose
a new scheme for shock wave computations. A low-pass �lter is introduced to intelligently
remove the accumulated numerical errors produced by its conjugate high-pass �lters. This set
of high- and low-pass �lters are conjugate in the sense that they are derived from one gen-
erating function and consequently have essentially the same degree of regularity, smoothness,
time–frequency localization, e�ective support and bandwidth. The new approach can reduce
the oscillation adaptively without speci�cally checking the location of the shock wave at each
grid point, and thus improve the computational e�ciency. In the present study, all conjugate
�lters are constructed by using a discrete singular convolution (DSC) algorithm [16], which
is a potential approach for the numerical implementation of singular convolutions and has
controllable accuracy for solving di�erential equations [16–18].
This paper is organized as follows: Section 2 is devoted to the theory of conjugate DSC

�lters. A new scheme of treating nonlinear hyperbolic conservation laws is proposed in
Section 3. Numerical experiment and conclusion are presented in Sections 4 and 5, respec-
tively.

2. CONJUGATE FILTERS GENERATED BY USING DISCRETE
SINGULAR CONVOLUTION

The conjugate �lters (CFs) are constructed by using the DSC kernels. A brief review of the
DSC algorithm is given before CFs are introduced.
Singular convolutions occur commonly in science and engineering. Discrete singular convo-

lution is a potential approach for numerical realization of singular convolutions. The simplest
way to introduce the theory of singular convolution is to work in the context of distribution.
Let T be a distribution and �(t) be an element of the space of test functions. A singular
convolution is de�ned as

F(t)= (T ∗ �)(t)=
∫ ∞

−∞
T (t − x)�(x) dx (1)

Here T (t − x) is a singular kernel. Depending on the form of the kernel T , the singular
convolution is the central issue for a wide range of science and engineering problems. Of
particular relevance to the present study are the singular kernels of the delta type

T (x)= �(q)(x) (q=0; 1; 2; : : :) (2)

where � is the delta distribution. Here the superscript denotes the qth-order distribution deriva-
tive. The kernel T (x)= �(0)(x) is important for the interpolation of surfaces and curves, and
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T (x)= �(q)(x); (q=1; 2; : : :) are essential for numerically solving di�erential equations. How-
ever, distributions cannot be directly implemented for numerical computations. Therefore, it
is important to consider a DSC

f(q)� (t)=
∑
k
�(q)� (t − xk)f(xk) (3)

where f(q)� (t) is an approximation to f(q)(t), ��(t − xk) is an approximation to the delta
distribution and xk is an appropriate set of discrete points on which the DSC is well de�ned.
It is this approximation that makes a computer realization possible. A variety of DSC kernels
��(t − xk) have been constructed [16–18]. A simple example is Shannon’s kernel

��(x)= (sin �x)=�x (4)

Shannon’s kernels are of delta sequence and thus provide an approximation to the delta
distribution

lim
�→∞

∫
sin �x
�x

�(x) dx= �(0) (5)

Shannon’s kernels have great impact on information theory, signal and image processing
because the Fourier transform of Shannon’s kernel is an ideal low-pass �lter. However, the
usefulness of Shannon’s kernels is limited by the fact that they have a slow-decaying
oscillatory tail proportional to 1=x in the co-ordinate domain. For signal processing, Shan-
non’s kernels are in�nite impulse response (IIR) low-pass �lters. Therefore, when truncated
by computational applications, their Fourier transforms contain evident oscillations. To im-
prove their behaviour in the co-ordinate representation, a regularization procedure can be
used as

��; �(x)=
sin �x
�x

e−x2=2�2 �¿0 (6)

Since e−x2=2�2 is a Schwartz class function, it makes the regularized kernel applicable to
tempered distributions. The regularized kernels can be utilized as �nite impulse response (FIR)
low-pass �lters, since they decay very fast in the co-ordinate domain, and the oscillation in
the Fourier domain is dramatically reduced.
For sequences of the delta type, an interpolating algorithm sampling at Nyquist frequency,

�=�=�, has great advantage over a non-interpolating discretization (Here � is the grid
spacing). Therefore, on a grid, the regularized Shannon’s kernel is discretized as

��;�=�(x − xk)=
sin[(�=�)(x − xk)]
(�=�)(x − xk)

e−(x−xk )
2=2�2 (7)

The regularized kernel ��;�=�(x) corresponds to a family of low-pass �lter, each with a di�erent
compact support, according to � and �, in the frequency domain. Its qth-order derivative terms
are given by analytical di�erentiations

�(q)�; �=�(x − xk)=
(
d
dx

)q sin[(�=�)(x − xk)]
(�=�)(x − xk)

e−(x−xk )
2=2�2 (8)

In this work, �(q)�; �=�(x) (q=0; 1; 2; : : :) are referred as a family of ‘conjugate �lters’.
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From the point of view of frequency analysis, the Fourier transforms of �(q)�; �=�(x) satisfy

�̂(q)�; �=�(!)= j!�̂(q−1)�; �=� (!)= ( j!)
q�̂(0)�; �=�(!) (9)

where �(0)�; �=�(x) is a symbol for ��;�=�(x). Since �̂(0)�; �=�(0) is non-singular,

�̂(0)�; �=�(0)=1− erfc
(

��√
2�

)
(10)

where erfc is the error function, it is seen that

�̂(q)�; �=�(0)=0 (q=1; 2; : : :) (11)

and thus they are a set of high-pass �lters. Due to the common regularizer e−x2=2�2 , the con-
jugate �lters have essentially the same degree of regularity, smoothness and e�ective support.
In application, the best results are usually obtained if the window size � varies as a function
of the central frequency �=�, such that r=�=� is a parameter chosen in computations. Both
interpolation and di�erentiation are realized by the following convolution algorithm:

f(q)(x) ≈
W∑

k=−W
�(q)�;�(x − xk)f(xk) (q=0; 1; 2; : : :) (12)

where 2W + 1 is the computational bandwidth, or e�ective kernel support, which is usually
smaller than the whole computational domain, [a; b]. Note that kernels (12) are either sym-
metric or antisymmetric, and thus are translationally invariant in the computational domain.
Therefore, it is easy to implement. The truncation error is dramatically reduced by the intro-
duction of the delta regularizer. The computational accuracy is controlled by an appropriate
choice of W .

3. CONJUGATE FILTER OSCILLATION REDUCTION ALGORITHM

Figure 1 shows the frequency responses of the conjugate DSC low-pass �lter, the �rst- and
second-order high-pass �lters at �=3:2�. Indeed, all conjugate �lters have essentially the
same e�ective bandwidth, which is about 0:7(�=�). Below 0:7(�=�), all the conjugate �lters
are essentially exact. However, in the very high-frequency region, frequency response of both
the low-pass �lter and the �rst-order high-pass �lter is under estimating, whereas that of the
second-order high-pass �lter is over estimating. The proposed idea is to use the conjugate
low-pass �lter to intelligently eliminate the high-frequency errors produced by the conjugate
high-pass �lters during the numerical computation. As a consequence, the resulting numerical
results are correct and reliable for frequency below the e�ective bandwidth of the conjugate
�lters.
Consider a system of nonlinear hyperbolic conservation laws in one dimension (1D)

ut + f(u)x = 0

u(x; 0) = u0(x)
(13)
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Figure 1. Frequency responses of the conjugate DSC �lters (in the unit of �=�), the maximum amplitude
of the �lters is normalized to the unit. Stars: conjugate low-pass �lter; Solid line: 1st order high-pass

�lter; Dash-dots: second-order high-pass �lter; Small dots: ideal �lters.

when u is a vector and f is a hyperbolic mapping. To eliminate spurious oscillations near
shocks, we propose the following scheme:

vn+1 =H (un) (14)

un+1 =

{
vn+1; �Wn+1¡�;

G(vn+1); �Wn+1¿�
(15)

where H refers to treatment by the DSC high-pass �lters, �(q)�; �=� (q=1; 2; : : :) as required
by a given problem, and G represents the convolution with the DSC low-pass �lter ��;�=�
as given by Equation (12) with q=0. Here � is a threshold value, and W is a high-pass
measure, which is de�ned via a multiscale wavelet transform of a set of discrete function
value {v(xk ; tn)}Nk=1 at time tn as

‖Wn‖=∑
m
‖Wn

m ‖ (16)

where ‖Wn
m ‖ is given by a convolution with a wavelet  mj of scale m

‖Wn
m ‖=∑

k

∣∣∣∣ ∑
j
 mj(xk)un(xj)

∣∣∣∣ (17)

Conjugate low-pass �lters are adaptively implemented whenever the di�erence of high pass
measure accesses a positive alarm threshold �

�W= ‖Wn+1‖ − ‖Wn‖¿� (18)
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Table I. Parameters used in the test examples.

Examples r � �

1 0.6 0.001 —
2 (Sod) 0.6 0.001 0.12
2 (Lax) 0.6 0.001 0.1
3 1.9 0.002 0.001
4 0.6 0.004 0.004

In the present tests, we use the Haar wavelet of one scale. The choice of � depends on the
time increment �t and the grid size �x.
Since the DSC low-pass �lters are interpolative, it is necessary to implement them through

prediction (u(xk)→(xk+1=2)) and restoration (u(xk+1=2)→u(xk)). For non-linear hyperbolic sys-
tems, the use of an additional �ltering at a regular time interval � gives a better results. The
conjugate �lters are non-linear in space-time. The use of such adaptive �lters is cost e�cient
and simple to implement. A standard fourth-order Runge–Kutta scheme is used for the time
integration. It is very easy to extend the conjugate �lters to higher-order space dimensions.

4. NUMERICAL EXPERIMENTS

In this section, a few benchmark numerical problems, including a wave equation, 1D and 2D
Euler systems, are employed to test the proposed scheme and to demonstrate its utility. We
choose W =32 in all the computations. The parameter of r=3:2 is used for high-pass �lters
and for the low-pass �lter prediction. For nonlinear examples, we also apply the low-pass
�lter at a �xed time interval �. The parameters �, � and r for the restoration are summarized
in Table I for all experiments.

Example 1
Consider a linear equation

ut + ux = 0; −1¡x¡1
u(x; 0) = u0(x); u0(x) periodic with period 2

(19)

Three sets of initial data u0(x) are used. The �rst one is u0(x)= sin(�x). The errors of
the proposed scheme at time t=1 are listed in Table II, and compared with those of the

Table II. Comparison of errors of two shock capturing schemes.

L1 errors L∞ errors

N DSC WENO-RF-5 DSC WENO-RF-5

10 5:09(−09) 1:60(−02) 5:00(−09) 2:98(−02)
20 4:24(−14) 7:41(−04) 2:23(−13) 1:45(−03)
40 5:28(−16) 2:22(−05) 5:42(−15) 4:58(−05)
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Table III. Comparison of errors of two shock capturing schemes.

L1 errors L∞ errors

N DSC WENO-RF-5 DSC WENO-RF-5

20 4:12(−10) 4:91(−02) 1:00(−09) 1:08(−01)
40 1:11(−16) 3:64(−03) 2:07(−15) 8:90(−03)
80 3:44(−17) 5:00(−04) 8:23(−16) 1:80(−03)

WENO-RF-5 scheme [13]. Here N is the total number of cells, and �t=�x is optimized. It
is seen that the proposed scheme yields a very high accuracy even for a very few number of
cells (N =10).

The next case is given by u0(x)= sin
4(�x). The errors at time t=1 are listed in Table III

for two di�erent schemes. The proposed scheme attains high accuracy.
The third initial value is given by [13]

u0(x)=




1
6 [D(x; �; z − �) +D(x; �; z + �) + 4D(x; �; z)]; −0:86x6− 0:6;
1; −0:46x6− 0:2;
1− |10(x − 0:1)|; 06x60:2;
1
6 [F(x; �; a− �) + F(x; �; a+ �) + 4F(x; �; a)]; 0:46x60:6;

0; otherwise

where functions D and F are given by

D(x; �; z) = e�(x−z)2

F(x; �; a) =
√
max(1− �2(x − a)2; 0)

Here the constants are taken as a=0:5, z= −0:7, �=0:005, �=10 and �= log 2=(36�2). The
solution contains a smooth but narrow combination of a Gaussian, a square wave, a sharp
triangle wave, and a half-ellipse. This is a case with the so-called contact discontinuities and
is quite di�cult to handle in hyperbolic systems.
Equation (13) is integrated up to t=8 with 201 grid points in the domain of [−1; 1]. The

numerical results are shown in Figure 2. It is observed that the new scheme has a good
performance. These results are some of the best available to date for the problem.

Example 2
To further test the proposed scheme, we consider the 1D Euler equations of gas dynamics.
The governing equations take the form


�
�u
E



t

+




�u

�u2 + p
u(E + p)



x

= 0 (20)
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Figure 2. Linear equation. t=8, �x=0:01 and �t=�x=0:1.

where � is the density, u the velocity, E the total energy, 	=1:4 a constant and p the pressure
which is given by

p=(	− 1)(E − 1
2�u

2) (21)

Two well-known Riemann problems, Sod’s problem and the Lax problem, are employed.
The initial data of Sod’s problem [13] are

�=1; u=0; p=1; when x¡0

�=0:125; u=0; p=0:1; when x¿0

The numerical result of density at t=2:0 is shown in Figure 3(a).
The other set of data was given by Lax [19]

�=0:445; u=0:698; p=3:528 when x¡0

�=0:5; u=0; p=0:571 when x¿0

The numerical result of density at t=1:5 is shown in Figure 3(b).
It is seen that the proposed scheme gives a correct solution with good resolutions for both

problems. Except for the contact discontinuity, the shock fronts are well preserved.

Example 3
We next consider the problem of shock entropy wave interactions [13]. In this problem, the
interaction of an entropy wave of small amplitude with a moving shock in a 1D �ow is
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Figure 3. Riemann problems of the Euler system (density): (a) Sod problem: t=2:0, �x=0:1,
�t=�x=0:2; and (b) Lax problem: t=1:5, �x=0:1, �t=�x=0:2.

numerically investigated. The governing equations are the same as those of Example 2. On
the interval [0; 5], the initial values are

�=3:85714; u=2:629369; p=10:33333 when x¡0:5

�= e−
 sin(kx); u=0; p=1 when x¿0:5

where 
 and k are the amplitude and wave number of the entropy wave, respectively [13].
The mean �ow is a pure right-moving Mach 3 shock.

The goal of this test is to examine the stability and accuracy of the new scheme in the
presence of the shock. Since the entropy wave is set to be very weak compared to the shock,
any excessive oscillation might pollute the generated sound waves and the ampli�ed entropy
waves. We take 
=0:01 and k=13 in our test. The amplitude of the ampli�ed entropy
waves predicted by the linear analysis is 0:08690716. This is a numerically challenging case.
Low-order schemes will dramatically damp the magnitude of the transmitted wave. In our
test, 800 grid points are used to resolve the passing waves. The numerical results are shown
in Figure 4. The only amplitude of the entropy wave component is displayed. The mean
�ow and the generated sound waves (or pressure wave), which are of lower frequency than
the ampli�ed entropy waves and thus are much better resolved by this grid size, have been
subtracted from the numerical solution. It is seen that the proposed scheme performs well
with respect to the prediction of the ampli�ed entropy waves at higher frequency downstream
of the shock. The ampli�ed entropy waves are fully resolved. The present results are some
of the best available for this problem to our knowledge. The advantage of the proposed high
order approach over previous schemes is apparent.

Example 4
We �nally test the proposed scheme by using the 2D problem of ‘a Mach 3 wind tunnel
with a step’. The problem is a standard test case for high-order scheme [8]. The governing
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Figure 4. 1D shock entropy wave interaction: the amplitude of entropy waves; N =800, �t=0:001.

equations take the form


�
�u
�v
E



t

+




�u

�u2 + p
�uv

u(E + p)



x

+




�v
�uv

�v2 + p
v(E + p)



y

= 0 (22)

where (u; v) is the 2D �uid velocity and p is given by

p=(	− 1)(E − 1
2�(v

2 + u2)) (23)

The tunnel begins with a uniform Mach 3 wind �ow which encounters a step. The width
and length of the wind tunnel are 1 and 3 length units, respectively. The step is 0.2 length
units high and is located 0.6 length units from the left-hand end of the tunnel. The tunnel is
assumed to have an in�nite width in the direction orthogonal to the plane of the computation.
At the left is a �ow-in boundary condition, and at the right all gradients are assumed to vanish.
The exit boundary condition has no e�ect on the �ow, because the exit velocity is always
supersonic. Initially the wind tunnel is �lled with a gamma-law gas, with 	=1:4, in which
everywhere has density 1.4, pressure 1.0, and velocity 3. Gas with this density, pressure, and
velocity is continually fed in from the left-hand boundary.
Along the walls of the tunnel re�ecting boundary conditions are applied. The corner of

the step is the center of a rarefaction fan and hence is a singular point of the �ow. Without
special treatment of the singularity, the �ows are seriously a�ected by large numerical errors
generated just in the neighbourhood of this singular point. These errors cause a boundary
layer of about one zone in thickness to form just above the step in the wind tunnel. Shocks
then interact with this boundary layer, and the qualitative nature of the �ow in the tunnel is
altered more or less dramatically, depending upon di�erent schemes. For the treatment of the
singularity at the corner of the step, we adopt the technique used in Reference [8].
In Figure 5, the contours of density obtained on the grid �x=1=80 at t=4 is shown. Our

new scheme achieves very �ne resolution and contains very few visible ‘bumps’, which, in
fact, are small numerical oscillations. Also note that the e�ects of the numerical boundary
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Figure 5. A Mach 3 �ow past a wind tunnel with a step. �t=0:001, �x=1=80 and t=4:0. In the
plot 30 equally spaced contours of density are shown.

layer along the top of the step in the duct are very weak. The weak shock from the corner
of the step is resolved.

5. CONCLUSION

In conclusion, a novel approach is introduced for solving the problem of non-linear hyperbolic
conservation laws. The essence of the new scheme is to adaptively implement a conjugate
low-pass �lter to e�ectively remove the accumulated numerical errors produced by a set
of high-pass �lters. The conjugate low-pass and high-pass �lters are derived from a single
function and thus, have essentially the same degree of regularity, smoothness, time–frequency
localization, e�ective support and bandwidth. In this work, all conjugate �lters are constructed
by using discrete singular convolution kernels, which have controllable accuracy for numerical
simulations. Numerical experiments indicate that the new scheme is e�cient, and reliable.
Further work on the parameter selection of the proposed scheme is under consideration.
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