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SUMMARY

A benchmark quality solution is presented for �ow in a staggered double lid driven cavity obtained
by using the wavelet-based discrete singular convolution (DSC). The proposed wavelet based algo-
rithm combines local methods’ �exibility and global methods’ accuracy, and hence, is a promising ap-
proach for achieving the high accuracy solution of the Navier–Stokes equations. Block structured grids
with pseudo-overlapping subdomains are employed in the present simulation. A third order Runge–
Kutta scheme is used for the temporal discretization. Quantitative results are presented, apart from the
qualitative �uid �ow patterns. The prevalence of rich features of �ow morphology, such as two primary
vortex patterns, merged single primary vortex patterns, and secondary eddies, makes this problem very
attractive and interesting. The problem is quite challenging for the possible existence of numerically in-
duced asymmetric �ow patterns and elliptic instability. Important computational issues like consistence,
convergence and reliability of the numerical scheme are examined. The DSC algorithm is tested on the
single lid driven cavity �ow and the Taylor problem with a closed form solution. The double lid driven
cavity simulations are cross-validated with the standard second order �nite volume method. Copyright
? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Owing to a continuous increase in computing power and the improvement in numerical al-
gorithms, computation is now regarded as an indispensable and equally powerful approach,
along with theory and experiment, in the study of �uid dynamics. Computation enables the
study of complex systems and natural phenomena that would be too expensive, dangerous, or
even impossible, to investigate by direct experimentation in a laboratory. The desire for better
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understanding of turbulent �ow, multiphase �ow, �ow in complex geometry, �uid–structure
interaction, etc. provide great impetus to the development of new computer architecture and
better computational algorithms. The latter involves several important issues like, accuracy,
consistence, stability, and reliability, whose validation has become both inevitable and crucial
to the improvement and recognition of new computational schemes. Such validation in turn
necessitates a common platform for the examination of potential computational schemes and
algorithms. To this end, several benchmark problems have become popular in the open lit-
erature, e.g. the (single) lid driven cavity, �ow over backward facing step, buoyancy driven
cavity, �ow past a circular cylinder, �ow past a square cylinder, etc. Although there is a
vast amount of literature, the quest for an ideal test problem still continues. Further, all
these existing benchmark problems come under the category of well understood problems.
Therefore, it is natural that the CFD community continuously embraces new benchmark prob-
lems, which possess the properties of both computational complexity and richness in physics.
To this end, it is desirable to look at the basic attributes of a benchmark problem. In our
view, the geometry of a �uid �ow domain should preferably, be simple but not trivial. The
boundary conditions should be very well de�ned and with complete lack of ambiguity. An
additional requirement which can really spur motivation is the presence of rich and complex
�uid �ow patterns. The availability of theoretical and/or experimental data for the purpose
of comparison will have an additional advantage. Then, the real concern for the numerical
scheme would be the accuracy and stability with which these patterns can be simulated by
the scheme. It is in this context that in a recent review, Shankar and Deshpande [1] have
pointed out that, driven cavity �ows exhibit almost all the phenomena that can possibly occur
in incompressible �ows: eddies, secondary �ows, complex three-dimensional patterns, chaotic
particle motions, instability, and turbulence. Thus, these broad spectra of features make the
cavity �ows overwhelmingly attractive for examining the computational schemes. However,
some other interesting �ow phenomena, such as elliptical instability, cannot occur in this
model. Elliptical instability and solution multiplicity have been recently reported in a double
shear driven cavity [2]. In such investigation, �uid �ow stability has been studied by both
experimental and numerical means [3]. However, the geometry of both the single lid driven
cavity and double lid driven cavity is in fact too simple, from the numerical view point.
Therefore, additional constraints have to be imposed for validating a numerical scheme for
complex geometries.
In compliance with the above views, the problem of staggered double lid driven cavity is

considered. Although at the very outset, the geometry looks like a simple extension of the
double lid driven cavity, it is a much more complex problem. The domain of the staggered
double lid driven cavity has all the essential features of a complex cavity and in some sense,
looks like a synthesis of two popular benchmark problems viz. a lid driven cavity and a back-
ward facing step. This problem was earlier introduced by Hinatsu and Ferziger [4]. However,
to the best of our knowledge, no quantitative results have been reported in the literature.
Numerically, the staggered double shear driven cavity is a nontrivial extension of a lid driven
cavity. It poses three additional di�culties. First, the geometry of the problem is no longer
a simple square box. Therefore, di�erent approaches, such as, domain decomposition, can be
introduced to account for the geometric complexity. Secondly, the inherent symmetry of the
problem requires a symmetric representation in the �ow pattern for certain range of Reynold’s
numbers, which imposes a severe challenge to the computational scheme in terms of numeri-
cal accuracy and reliability. A small perturbation can be ampli�ed in the long time integration
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and can lead to an asymmetric �ow pattern. Finally, the possible presence of elliptic instability
in this system poses another hurdle for its numerical simulation. However, the occurrence of
solution multiplicity has to be veri�ed carefully against the possibility of numerically induced
asymmetric patterns. Therefore, a reliable numerical scheme is indispensable for the present
study.
The large variety of available numerical schemes can be classi�ed under two categories

viz. global and local methods. Global methods, such as spectral methods [5, 6], pseudospectral
methods [7], fast Fourier transform [8, 9], di�erential quadrature [10], approximate a di�eren-
tiation at a point by all the grid points in the computational domain, and thus can be highly
accurate. For example, spectral methods converge exponentially with respect to mesh re�ne-
ment for approximating an analytic function [7] and thus, has the potential for being used in
high precision computations. Several global methods have been successfully used for the sim-
ulation of both internal and external �ows. However, global methods are well known for their
limitations in handling complex geometries and boundary conditions. Indeed, for engineering
�uid �ow simulations, �nite di�erences [11, 12], �nite elements [13–16], �nite strips [17], and
�nite volumes [18], are the dominant approaches. Local methods utilize information at the
nearest neighbouring grid points to approximate a di�erentiation at a point and thus, are much
more �exible in handling irregular geometries. However, local methods have disadvantages,
such as slower convergence with respect to mesh re�nement and thus, are very expensive
to achieve a high accuracy computation. There are two ways to extend the applicability of
global methods to complex domains. One approach is to divide the computational domain into
a number of regular subdomains. within which spectral methods are implemented to achieve
high accuracy [19, 20]. The second approach involves mapping of an irregular computational
domain into a regular one, in which spectral methods can be implemented.
Recently, the discrete singular convolution (DSC) algorithm was proposed as a potential

approach for the computer realization of singular integrations [21–23]. The theory of dis-
tribution and wavelet analysis forms the mathematical foundation for the DSC. Sequences
of approximations to the singular kernels of Hilbert, Abel and delta types were constructed.
Applications to analytical signal processing, Radon transform and surface interpolation are
discussed. Numerical solutions to di�erential equations are formulated via singular kernels
of the delta type. By appropriately choosing the DSC kernels, the DSC approach exhibits
global methods’ accuracy for integration and local methods’ �exibility in handling complex
geometries and boundary conditions. Many DSC kernels, such as (regularized) Shannon’s
delta kernel, (regularized) Dirichlet kernel, (regularized) Lagrange kernel and (regularized)
de la Vall�ee Poussin kernels, are constructed for a number of applications, such as numerical
solutions of the Fokker–Planck equation [21, 22] and the Schr�odinger equation [24]. The DSC
algorithm was also used for waveguide model analysis, electromagnetic wave propagation
[25] and structural (plate and beam) analysis [26–28] with excellent results. It was used to
facilitate a new synchronization scheme for shock capturing [29]. Most recently, the DSC
algorithm was used to resolve a few numerically challenging problems. It was utilized to
integrate the (non-linear) sine-Gordon equation with the initial values close to a homoclinic
orbit singularity [30], for which conventional local methods encounter great di�culties and
numerically induced chaos was reported [31]. Another di�cult example resolved by using
the DSC algorithm is the integration of the (nonlinear) Cahn–Hilliard equation in a circular
domain, which is challenging because of the fourth order arti�cial singularity at the ori-
gin and the complex phase space geometry [32]. Analyses of plates vibrating at extremely
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high frequency and with densely distributed internal supports are very challenging tasks.
Conventional methods have encountered great di�culty of numerical instability for such anal-
yses. The DSC algorithm found its success in resolving these problems [33, 34]. The DSC
solution of the Navier–Stokes equations is of primary interest to the present study. The stan-
dard Taylor problem was solved to machine precision with just 33 grid points in each di-
mension [26]. A DSC-successive over relaxation (DSC-SOR) algorithm was developed for
simulating the incompressible viscous �ows [35, 36]. The objective of the present work is to
explore the �ow phenomena in the staggered double lid driven cavity and to present bench-
mark quality solution for this problem. Numerical issues such as consistence, convergence,
stability and reliability are addressed. Some of the DSC results are cross-validated by using
a completely di�erent numerical scheme, a standard second order �nite volume approach. It
is believed that interesting �ow features observed in the present investigation will be useful
for validating emerging computational schemes and for possible experimental studies on this
geometry.
The subsequent sections are organized as follows: Theoretical formulation is presented in

Section 2 to describe the problem and the DSC algorithm. Section 3 is devoted to the solution
scheme. Results of the numerical simulations are presented in Section 4. In this section, both
qualitative �uid �ow patterns and quantitative results are presented, apart from consistence
and convergence issues. The paper ends with a conclusion.

2. THEORETICAL FORMULATION

This section describes the problem and its governing partial di�erential equations. The phi-
losophy behind the discrete singular convolution is brie�y discussed.

2.1. The mathematical model

A staggered double shear driven cavity can be thought of as two superimposed square cavities
diagonally o�set by 40%. Both the upper and lower cavities are staggeredly combined and
have a uni�ed boundary. For the sake of convenience, all the corners are labelled as in
Figure 1. The lid (DE) on the upper cavity is a wall which continuously moves towards the
right, and the lid (AH) on the lower cavity moves towards the left as shown in Figure 1.
The �uid �ow features inside the cavity described above, can be simulated by a set of mass
and momentum conservation equations. The �ow is assumed to be two-dimensional, laminar,
incompressible and Newtonian. The governing non-linear partial di�erential equations can be
written as follows:

continuity equation:

@u
@x
+
@v
@y
=0 (1)

x-momentum equation:

@u
@t
+ u

@u
@x
+ v

@u
@y
=−@p

@x
+
1
Re

(
@2u
@x2

+
@2u
@y2

)
(2)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 57:211–234



FLOW IN A STAGGERED DOUBLE LID DRIVEN CAVITY 215

4

1

3

F

25

H

B
C

A

G

D E

Figure 1. The con�guration of staggered double lid driven cavity with pseudodomain demarcation.

y-momentum equation:

@v
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The above equations were non-dimensionalized as follows:

x=
�x
Lref

; y=
�y
Lref

; u=
�u
Uref

; v=
�v
Uref

(4)

and

t=
�tUref
Lref

; p=
�p

�U 2
ref
; Re=

UrefLref
�

(5)

In these equations, the values with an over bar refer to the corresponding dimensional vari-
ables. The Lref is the reference length dimension (width of the cavity along the upper or
lower lid), while Uref is the reference velocity dimension. The �uid property �, refers to the
kinematic viscosity. The Reynold’s number, Re, is the ratio of inertial to viscous forces, which
in�uences the �uid �ow features within the cavity.
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2.1.1. Boundary conditions. No-slip velocity boundary condition (u= v=0:0) is applied on
all the walls, except the top and bottom lids. On the top lid (u=1:0; v=0:0) is applied,
while on the bottom lid (u=−1:0; v=0:0) is enforced as a part of the moving wall boundary
condition.
For the convenience of presenting the method of solution, we de�ne

D(U ) =
@u
@x
+
@v
@y

(6)

L(U ) = F(U )−∇p (7)

F(U ) = [f; g]T; U =[u; v]T; ∇p=
[
@p
@x
;
@p
@y

]T
(8)
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1
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)
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u
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+ v
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)
(9)

Therefore, the system of equations (1)–(3) can be simpli�ed as

D(U ) = 0 (10)

@U
@t
= L(U )=F(U )−∇p (11)

These governing equations are used for �ow simulations in complex geometries. Their spatial
and temporal discretizations are described in the rest of this section.

2.2. Discrete singular convolution

Singular convolutions (SC) are a special class of mathematical transformations, which appear
in many science and engineering problems, such as Hilbert transform, Abel transform and
Radon transform. It is most convenient to discuss the singular convolution in the context
of the theory of distributions. The latter has a signi�cant impact in mathematical analysis.
Discrete singular convolution provides a numerical realization of the singular convolution. In
this part, we will present the formulation of DSC in approximation of the spatial derivatives.
We recommend References [21–23] for its mathematical details.
A typical DSC approximation to qth order derivative of a function f(x), which is only

available at a set of discrete values f(xk), can be given by

f(q)(x)≈
W∑

k=−W
�(q)�;�(x − xk)f(xk); q=0; 1; 2; : : : (12)

where ��;�(x − xk) is a DSC kernel. There are a variety of di�erent DSC kernels that could
be used for the present work. A frequently used DSC kernel is the regularized Shannon
kernel (RSK)

��;�(x − xk)= sin �=�(x − xk)�=�(x − xk) exp
(
(x − xk)2
2�2

)
(13)
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Figure 2. Comparison of dispersion relations of the �nite di�erence (FD) scheme and
regularized Shannon kernel (RSK).

where � controls the width of the Gaussian window. In numerical computation, an optimal
result can be attained if this window is related to the grid spacing � by r=�=�, which
in turn depends on the computational support W . High accuracy approximations can be ob-
tained by choosing appropriate combinations of W and r. Some commonly used pairs are
W=8; r=2:0; W=16; r=2:6 and W=32; r=3:5. It may be noted that the DSC algorithm
actually provides a systemic procedure to generate high order �nite di�erence schemes [22],
i.e. di�erence coe�cients for high order derivatives can be generated by di�erentiating the
kernel ��;�(x − xk). By taking the advantage of varying W , DSC scheme can be customized
to obtain desired accuracy for a given task. Moreover, for a given W , the DSC algorithm
can be more accurate than the standard �nite di�erence scheme as shown in Figure 2, in
which approximations to the �rst order derivative are compared. Mathematical analysis [37]
indicates that the approximation error of the RSK for certain bandlimited functions decays
exponentially as W increases, which con�rms the spectral feature of the DSC algorithm.

3. SOLUTION SCHEME

One of the major di�culties in numerically solving incompressible Navier–Stokes equations
is the lack of an explicit evolution equation for pressure. Generally, there are two issues
associated with this problem: how to ‘derive’ a governing equation for pressure and how
to propose appropriate boundary conditions for this additional equation, if necessary. For this
purpose, many specially designed schemes have been developed in the literature [18, 38]. In the
present investigation, we adopt a fractional-time-step and potential-function method (FTSPFM)
[35, 36], which is a variant of the MAC method for solving the governing Equations (10)
and (11).
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The DSC algorithm deals with the boundary conditions by using a ‘ghost-point’ approach.
For no-slip boundary conditions of the velocity, the values at ‘ghost-points’ are set to the ve-
locity of the solid boundary. The governing equation introduced for pressure, i.e. the potential
function, admits homogeneous boundary condition. Thus, its values outside the computational
domain are obtained by the symmetric extension. Validation by using the analytically solvable
Taylor problem and a comparison with the benchmark solution on the single lid-driven cavity
verify that the present treatment is feasible to general boundary conditions for �ow problems.

3.1. Pseudo-overlapping block-structured grid

In this subsection, domain decomposition, spatial and temporal discretization are described.
Multiblock grids are considerably more �exible in handling complex geometries than single-
block grids. Typically, block-structured grids of matched interfaces, non-matching interfaces
and overlapped interfaces are used for decomposing complex and irregular geometries. In the
present method, the computational domain is �rst divided into a number of simple rectangular
blocks (or subdomains). Two neighbouring blocks are joined together along a common grid
line. Di�erent subdomains may have very di�erent geometric sizes and mesh sizes (i.e. non-
matching interfaces). Therefore, one can reduce the topological complexity of an irregular
computational domain by employing several simple regular subdomains. Moreover, it permits
the grid of each individual subdomain to be generated independently, so that, both geometry
and resolution in the boundary region can be treated in a desired manner. In the present study,
we divide the total computational domain of the staggered double lid driven cavity into �ve
subdomains as illustrated in Figure 1.
The present treatment of block interfaces is di�erent from the conventional approaches, due

to the existence of pseudodomains. As discussed earlier, the DSC algorithm requires pseu-
dodomains at computational boundaries. Such a pseudodomain of one subdomain may overlap
with the computational domain of a neighbouring subdomain. This relation is illustrated in
Figure 3(a). Block ABDC, shown in Figure 3(a), is the original computational domain, and
is split into two subdomains ABFE and EFDC, as shown in Figure 3(a). The dashed line
EF is the common line connecting block ABFE and block EFDC. The area of GHFE is
a pseudodomain of EFDC and a pseudo-overlapping zone for subdomain ABFE. Similarly,
the area of EFJI is a pseudodomain of ABFE and a pseudo-overlapping zone for subdomain
EFDC. The size of pseudo-overlapping zones is determined by the computational bandwidth
W chosen in the DSC algorithm. Hence, it is very �exible to adjust the size of the overlapping
zones to meet the accuracy requirement of di�erent problems by changing the value of the
computational bandwidth W .
It is important to note that, the requirement of mutual positioning or communication between

adjacent blocks can have a considerable in�uence on the e�ciency of numerical calculations.
If the grid size used in every subdomain is the same (i.e. matched interfaces), then infor-
mation exchange between adjacent blocks is simple: one just needs to assign nodal values
directly at the pseudo-overlapping zone of one subdomain to those at the pseudodomain of
its adjacent subdomain. If di�erent grids are employed in two neighbouring subdomains (non-
matching interfaces), pseudo-overlapping zone will have two di�erent grids. In such a case,
a special treatment is required to transfer information from the pseudo-overlapping zone of
one subdomain to the pseudodomain of its adjacent subdomain. In the present approach, such
an information exchange is realized by using the DSC interpolation algorithm. Speci�cally,
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Figure 3. (a) Subdomain division with interfaces and pseudo-overlapping zones; and
(b) the staggered grid system.

the DSC interpolation kernel ��;� is used for information transfer between di�erent subdo-
mains. In an iterative process, the use of pseudo-overlapping zones will lead to fast global
convergence. The performance of the present approach lies in the unique use of the DSC
algorithm for both data interpolation and the spatial discretization of the governing equations.
Since the DSC algorithm is a local approach with user-de�ned computational bandwidth and
controllable approximation accuracy, the present approach not only provides a high local ac-
curacy in each subdomain, but also achieves a high global accuracy. Since the calculation in
each subdomain is relatively independent, it is expected that a parallel implementation of the
present method can be easily realized.

3.2. Spatial discretization

A staggered grid system as shown in Figure 3(b) is employed in the present investigation.
For each subdomain (block), the momentum equation in the horizontal direction is written at
the point (i + 1

2 ; j), the momentum equation in the vertical direction is written at the point
(i; j + 1

2), and the pressure is given at point (i; j). The continuity equation is approximated
at the point (i; j). All spatial derivatives in Equations (10) and (11) are discretized by using
the DSC algorithm. A uniform grid in both x- and y-directions for each block is employed
in this work. The discretized forms of Equations (6)–(9) are expressed as follows:

Dh(U ) =
W∑

k=−W
�(1)�; �(k�xN )ui+k; j +

W∑
k=−W

�(1)�; �(k�yN )vi; j+k (14)

∇hp=
[

W∑
k=−W

�(1)�; �(k�xN )pi+k; j;
W∑

k=−W
�(1)�; �(k�yN )pi; j+k

]T
(15)
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fh =
1
Re

[
W∑

k=−W
�(2)�; �(k�xN )ui+12+k; j

+
W∑

k=−W
�(2)�; �(k�yN )ui+12 ; j+k

]

−
[
u
i+12 ; j

W∑
k=−W

�(1)�; �(k�xN )ui+12+k; j
+ v

i+12 ; j

W∑
k=−W

�(1)�; �(k�yN )ui+12 ; j+k

]
(16)

gh =
1
Re

[
W∑

k=−W
�(2)�; �(k�xN )vi+k; j+12

+
W∑

k=−W
�(2)�; �(k�yN )vi; j+12+k

]

−
[
u
i; j+12

W∑
k=−W

�(1)�; �(k�xN )vi+k; j+12
+ v

i; j+12

W∑
k=−W

�(1)�; �(k�yN )vi; j+12+k

]
(17)

Lh(U ) = Fh(U )−∇hp
Fh(U ) = [fh; gh]T (18)

where �(1)�; � and �
(2)
�; � are coe�cients of the regularized Shannon kernel (RSK). Here, �xN

and �yN denote the grid spacings in the x- and y-directions, respectively, for the N th com-
putational block.
Note that in the expression for U , the values of both velocity components u and v are ob-

tained at point (i; j). It is, therefore, necessary to transfer their values into the points (i+ 1
2 ; j)

and (i; j + 1
2), respectively. Meanwhile, in Equations (16)–(18), the values of velocity com-

ponent u need to be computed at point (i; j+ 1
2). Similarly, the values of velocity component

v need to be computed at point (i + 1
2 ; j). We can use the DSC algorithm to perform these

transformations and to obtain their values at the speci�ed points as follows:

u
i; j+12

=
W∑

k=−W
�(0)�; �

((
k − 1

2

)
�yN

)
ui; j+k (19)

u
i+12 ; j

=
W∑

k=−W
�(0)�; �

((
k − 1

2

)
�xN

)
ui+k; j (20)

v
i; j+12

=
W∑

k=−W
�(0)�; �

((
k − 1

2

)
�yN

)
vi; j+k (21)

v
i+12 ; j

=
W∑

k=−W
�(0)�; �

((
k − 1

2

)
�xN

)
vi+k; j (22)

where �(0)�; � is the coe�cient of the RSK.
By substituting Equations (14)–(18) into Equations (10) and (11), the following semi-

discretized approximation for Equations (10) and (11) is obtained

Dh(U ) = 0 (23)

dU
dt
= Lh(U )=Fh(U )−∇hp (24)
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Here the subscripts i; j on the left hand side of Equation (24) are omitted for simplicity.
These equations are discretized in time in the next subsection.

3.3. Temporal discretization and the treatment of pressure

The third-order Runge–Kutta (R–K) scheme is used for the temporal discretization. The
scheme has third-order accuracy in time and was used in the literature [39, 35]. Updating
the pressure �eld requires special care. At each step of the R–K scheme, the FTSPFM [35]
is adopted to solve Equations (23) and (24). We refer the reader to Reference [35] for the
detailed description of the temporal discretization and the treatment of pressure for a single
domain. In the present work, intersubdomain iterations are further required.

4. RESULTS AND DISCUSSION

4.1. Accuracy assessment of the scheme

The Taylor problem is a popular benchmark with a known closed form solution. Such a
problem renders a rigorous assessment on the order of accuracy of the present scheme. For
the two-dimensional incompressible �ow with periodic boundary conditions in both directions,
the exact solution is given by

u(x; y; t) =− cos(kx) sin(ky) exp(−2k2t=Re) (25)

v(x; y; t) = sin(kx) cos(ky) exp(−2k2t=Re) (26)

p(x; y; t) =−(cos(2kx) + cos(2ky)) exp(−4k2t=Re)=4:0 (27)

When t=0, above solution yields the initial conditions. By increasing the wave number k,
one can use this problem to examine the resolution of new numerical schemes.
The incompressible Navier–Stokes equations with the Reynold’s number of 1000 and three

di�erent wavenumbers k=2; 4 and 8 are solved in this assessment. Di�erent combinations
of mesh size and computational bandwidth are examined. For simplicity, we adopt uniform
mesh size 1=N in both directions. Numerical errors are evaluated when equations are solved
to t=2 (see Tables I and II).
The two parameters which in�uence numerical order are, bandwidth and the mesh size. For

W=8, the numerical order is relatively low, though the accuracy is essentially high. While the
bandwidth is increased to 16, the numerical order of the scheme also improves substantially.

Table I. Numerical errors, orders and relative CPU times in solving the
Taylor problem (t=2; k =2).

N =16 N =32

W L∞ CPU(s) L∞ CPU(s) Order

8 8.47E-6 7.5 8.89E-7 67.2 3.25
16 5.22E-8 12.9 7.45E-11 74.1 9.45
32 — — 8.48E-14 147.4 —
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Table II. Numerical errors, orders and relative CPU times in solving the Taylor
problem with high wavenumbers (t=2).

k =4 k =8

N W L∞ CPU(s) Order N W L∞ CPU(s) Order

16 16 3.92E-05 9.1 — 32 32 3.96E-6 71.6 —
32 16 2.24E-08 54.2 11.77 64 32 1.06E-11 546.2 18.51
32 32 9.46E-13 114.4 — —

A relatively long CPU time is required when the computation is set at a very high accuracy.
It is noted that for cases N=16; k=4 and N=32; k=8, the pressure �elds are solved at the
Nyquist critical sampling rate, i.e. two grid points per wavelength. Such a spectral resolution
is consistent with the discrete Fourier analysis given in Figure 2 and the mathematical analysis
reported in Reference [37].

4.2. Further validation

4.2.1. Single lid driven cavity. As a precursor to the problem of double shear driven cavity,
we test the present approach by studying the popular single lid driven cavity �ow. The �ow
domain for this problem is a unit square, with an upper lid driving the �ow in the cavity.
The �ow features are simulated at two di�erent Reynold’s numbers of 100 and 1000 for a
comparison. At Re=100, a uniform grid of 65× 65 is used in the present study, which is
smaller than that used by Ghia et al. [41] in their benchmark work. The horizontal and ver-
tical velocity distribution along the centreline are compared in Figure 4 for both simulations.
An excellent comparison can be seen. Similarly, good comparison can also be observed for
velocity distributions at a higher Reynold’s number, Re=1000, where both results are simu-
lated by the grid of 129× 129. In fact, a good quantitative agreement between the two results
has been observed for many other Reynold’s numbers, as well.

4.2.2. Convergence and consistence issues. Establishing convergence and consistence forms a
fundamental step for any numerical simulation. This in turn, requires a careful and systematic
investigation. Thus, the objective of this subsection is to pursue these issues and to establish
con�dence for using the DSC algorithm. For a problem like the staggered double shear driven
cavity, error assessment is a key issue as the analytical solution is not available. The real
size of error can never be computed. Nevertheless, it is possible to construct an estimate of
such an error. Error in a strict sense, may be de�ned as the di�erence between exact and
approximate solutions. A variety of estimated error norms are available. In the present study,
reduction in incremental error between two successive iterations was taken as the criterion for
convergence. Error is de�ned as

Enin = max |�n+1 − �n| (28)

where, � refers to the primitive variable of interest, such as the velocity or pressure. The
variation of Enin against time can be regarded as the temporal history of convergence and a
typical plot is given in Figure 5, for Re=100 and 1000. To ensure a steady state solution,
the following inequality, Enin610

−7, is satis�ed in all simulations.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 57:211–234



FLOW IN A STAGGERED DOUBLE LID DRIVEN CAVITY 223

(a)
 −0.4  −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

y

DSC                    
Ghia et al. (1982)

(b)
0 0.2 0.4 0.6 0.8 1

 −0.25

 −0.2

 −0.15

 −0.1

 −0.05

0

0.05

0.1

0.15

0.2

x

v

DSC                    
Ghia et al. (1982)

(c)
 −0.4  −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

y

DSC                    
Ghia et al. (1982)

(d)
0 0.2 0.4 0.6 0.8 1

 −0.6

 −0.5

−0.4

 −0.3

 −0.2

 −0.1

0

0.1

0.2

0.3

0.4

x

v DSC                    
Ghia et al. (1982)

Figure 4. Comparison of velocities for a single lid driven cavity. Horizontal velocity along mid width:
(a) Re=100; (c) Re=1000. Vertical velocity along mid height: (b) Re=100; (d) Re=1000.

A demonstration of the temporal convergence alone is not su�cient for ensuring the cor-
rectness of the solution. Furthermore, it is required to prove that, the algebraic equations being
solved are consistent with the physical model. Therefore, errors due to truncation, round o�,
approximations, interpolation, etc., which might have accumulated during the course of numer-
ical discretization cannot be allowed to be magni�ed, and hence, need to be minimized. This
objective can be achieved by arriving at a reliable and a grid independent mesh, by systematic
grid re�nement. As mentioned earlier, the computational domain under investigation is divided
into �ve subdomains (see Figure 1). Four pseudooverlapping grids (POGs) are employed in
the present investigation as shown in Table III. In Tables IV and V, horizontal and vertical
velocities are summarized, respectively, for the �ow at Re=1000. As can be observed, owing
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Figure 5. Temporal history of the residue for (a) Re=100; and
(b) Re=1000. - - u-velocity; — v-velocity.

Table III. Grid sizes employed in the pseudo-overlapping grids (POGs) in each subdomain.

Mesh in each subdomain

Case No. Subdomain 1 Subdomain 2 Subdomain 3 Subdomain 4 Subdomain 5

POG I 33× 33 33× 33 33× 33 33× 33 33× 33
POG II 129× 65 65× 65 65× 65 129× 65 65× 65
POG III 201× 81 81× 121 121× 121 201× 81 81× 121
POG IV 261× 105 105× 157 157× 157 261× 105 105× 157

to the nature of high accuracy in the DSC approach, even the grid of POG-II can produce
a reasonable result which compares well with those of other re�ned grids. Obviously, the
grid of POG-III is completely adequate for the simulations by the DSC, to ensure the grid
independent nature of the present investigations.

4.3. Velocity distribution

In the previous section we have presented some consistence studies. However, a comparison
with some other available experimental and=or numerical simulations is also necessary to
enhance the reliability of the simulations. Unfortunately, no quantitative data are available
in the open literature for such a comparison exercise. Therefore, we have made use of a
standard �nite volume based approach for the numerical simulation of mass and momentum
conservation equations using the SIMPLE scheme of Patankar [18]. The basic steps involved in
the second order accurate �nite volume based scheme are as follows: (i) solve the momentum
equations, (ii) solve the pressure correction equations, and (iii) check for iterative convergence.
For reasons of brevity, no further details about this well documented approach are discussed.
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Table IV. Grid sensitivity studies for horizontal velocity (u) along mid
width (x=0:7) for Re=1000. POG: pseudo-overlapping grid.

y-co-ordinate POG I POG II POG III POG IV

0.0 −1:0000 −1:0000 −1:0000 −1:0000
0.1 0.1434 0.1541 0.1565 0.1567
0.2 −0:0848 −0:0925 −0:0970 −0:1013
0.3 −0:2774 −0:2971 −0:3054 −0:3104
0.4 −0:2766 −0:2915 −0:2962 −0:2984
0.5 −0:1888 −0:1972 −0:2013 −0:2018
0.6 −0:0950 −0:0992 −0:1026 −0:1020
0.7 −0:0003 −0:0006 −0:0021 −0:0014
0.8 0.0944 0.0979 0.0981 0.0990
0.9 0.1877 0.1953 0.1959 0.1982
1.0 0.2746 0.2888 0.2889 0.2935
1.1 0.2772 0.2974 0.3058 0.3107
1.2 0.0866 0.0962 0.1074 0.1082
1.3 −0:1414 −0:1505 −0:1460 −0:1497
1.4 1.0000 1.0000 1.0000 1.0000

Table V. Grid sensitivity studies for vertical velocity (v) along mid height
(y=0:7) for Re=1000. POG: pseudo-overlapping grid.

x-co-ordinate POG I POG II POG III POG IV

0.0 0.0000 0.0000 0.0000 0.0000
0.1 0.2303 0.2494 0.2564 0.2609
0.2 0.2708 0.2842 0.2872 0.2911
0.3 0.1834 0.1914 0.1953 0.1979
0.4 0.1308 0.1366 0.1408 0.1417
0.5 0.0851 0.0891 0.0925 0.0924
0.6 0.0427 0.0445 0.0464 0.0461
0.7 0.0003 0.0003 0.0002 0.0001
0.8 −0:0422 −0:0440 −0:0460 −0:0459
0.9 −0:0846 −0:0886 −0:0921 −0:0922
1.0 −0:1299 −0:1362 −0:1405 −0:1416
1.1 −0:1836 −0:1915 −0:1957 −0:1981
1.2 −0:2715 −0:2849 −0:2890 −0:2922
1.3 −0:2314 −0:2495 −0:2558 −0:2605
1.4 0.0000 0.0000 0.0000 0.0000

The plots of both horizontal and vertical velocities along the mid section of the cavity are
plotted in Figure 6. The central sections (mid height and mid width) are chosen, as they
represent maximum variation for the horizontal and vertical velocity pro�les. There is a good
agreement between the results of the DSC and those of the standard �nite volume based
approach.
Figure 7 depicts the velocity distribution for di�erent Reynold’s numbers (Re=50; 100; 400;

1000). The horizontal velocity pro�le has a slower variation in the core region and a larger
gradient closer to the moving lids. With increase in Reynold’s number, the dominance of
the inertial forces can be noticed, which leads to a larger gradient close to the walls and
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Figure 6. Validation of results with a �nite volume based approach for Re=1000.
- - Finite volume method; — DSC: (a) horizontal velocity at mid width (x=0:7);

and (b) vertical velocity at mid height (y=0:7).

a criss-cross variation in the core region. The horizontal velocity gradient is larger in a zone
closer to the lid walls. The location of vertical velocity peaks move towards the left and right
edges with the increase in Reynold’s number, indicating the dominance of a stronger recircu-
latory eddy. Quantitatively, both horizontal and vertical velocities are listed in Tables VI and
VII for di�erent Reynold’s numbers. These results may serve as benchmarks for further work.

4.4. Fluid �ow patterns

The prevalence of rich and complex �uid �ow patterns in a staggered double shear driven
cavity further vindicates the choice of this problem for investigation. Initially, the cavity is
�lled with the �uid and is assumed to be quiescent. Then, a clock-wise momentum is imparted
to the �uid, by the two driving lids on the top and bottom, when they are set into an anti-
parallel wall motion. The upper lid moves to the right, while the lower one to the left, both
with the same speed. Thus, this problem essentially translates as an extension to the popularly
known lid driven square cavity problem. The Reynold’s number is the single most in�uential
parameter of interest, representing both inertial and viscous forces in the simulation. Its value
is varied in the range of 50–1000. This range is carefully chosen, such that, it falls well
with in the assumptions of two-dimensionality and laminar �ow. Recently, in connection with
the single lid driven cavity, the lack of steadiness and incipience of three dimensionality
were reported beyond a Reynold’s number of 7500. However, such a value is not available
for the staggered double shear driven cavity as it should have to be established from a
thorough comparison of both two and three-dimensional simulations. Therefore, in the present
investigation, we con�ne to a very safe range of values which are much smaller than 7500.
Figure 8 depicts the velocity vectors, streamlines and both u and v velocity contours,

over a range of Reynold’s numbers (from 50 to 1000). These plots are essentially four
di�erent forms of �uid �ow representation. These features can be grossly classi�ed into two
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Figure 7. Variation of horizontal (u) velocity along mid width (x=0:7): (a) — Re=50; - - Re=100;
(b) — Re=400; - - Re=1000; Variation of vertical (v) velocity along mid height (y=0:7); (c) —

Re=50; - - Re=100; and (d) — Re=400; - - Re=1000.

categories: two primary eddy pattern and a merged primary vortex pattern. At low Reynold’s
numbers (Re=50; 100), twin primary eddies are formed between the two driving lids. At high
Reynold’s numbers (Re=400; 1000), the morphology of the �ow patterns is very di�erent. A
distinct merged �ow pattern is formed. Here, the two eddy centres coalesce into one primary
circulation, where the �uid is accelerated by both the moving walls. The centre of this main
circulation is located very close to the centre of the principal diagonal of the cavity. The
formation of four secondary eddies at the corners is an interesting aspect, which essentially
emulates the behaviour of the single lid driven cavity. These corner eddies grow in size with
increased dominance of the inertial e�ects, over the viscous ones.
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Table VI. E�ect of Reynold’s number on the horizontal velocity (u)
along mid width (x=0:7).

y-co-ordinate Re=50 Re=100 Re=400 Re=1000

0.0 −1:00000 −1:00000 −0:99999 −1:00000
0.1 −0:26949 −0:18422 0.02913 0.15663
0.2 −0:00517 −0:01944 −0:08917 −0:09860
0.3 0.05070 −0:01732 −0:21418 −0:30739
0.4 0.05161 −0:02498 −0:24160 −0:29724
0.5 0.03710 −0:02378 −0:18515 −0:20144
0.6 0.01873 −0:01391 −0:09627 −0:10195
0.7 −0:00058 −0:00072 −0:00109 −0:00162
0.8 −0:01977 0.01261 0.09376 0.09851
0.9 −0:03775 0.02289 0.18191 0.19726
1.0 −0:05160 0.02484 0.23861 0.29169
1.1 −0:05008 0.01800 0.21456 0.30773
1.2 0.00595 0.02053 0.09325 0.10635
1.3 0.26999 0.18505 −0:02458 −0:14875
1.4 1.00000 1.00000 1.32500 1.00000

Table VII. E�ect of Reynold’s number on the vertical velocity (v) along
mid height (y=0:7).

x-co-ordinate Re=50 Re=100 Re=400 Re=1000

0.0 0.00000 0.00000 0.00000 0.00000
0.1 0.06080 0.07841 0.17319 0.25745
0.2 0.10392 0.14301 0.29856 0.28866
0.3 0.11530 0.15908 0.24824 0.19675
0.4 0.10223 0.13354 0.17056 0.14115
0.5 0.07560 0.08964 0.11343 0.09208
0.6 0.04024 0.04321 0.05895 0.04595
0.7 −0:00004 0.00007 0.00052 0.00011
0.8 −0:04025 −0:04307 −0:05792 −0:04571
0.9 −0:07549 −0:08948 −0:11262 −0:09185
1.0 −0:10209 −0:13345 −0:17040 −0:14100
1.1 −0:11528 −0:15915 −0:24881 −0:19698
1.2 −0:10400 −0:14317 −0:29932 −0:28998
1.3 −0:06088 −0:07850 −0:17328 −0:25697
1.4 0.00000 0.00000 0.00000 0.00000

The magnitude of the velocity of �uid particles which cannot be directly perceived from
the streamline plots can be assessed in the velocity vectors. Two out of the four secondary
eddies formed at the corners B and F are much weaker, while the other two eddies near the
walls CD and GH are much stronger, which can be perceived in the form of a very small
magnitude of velocity for the former. Both the u and v velocity contours are also plotted and
they depict a perfect anti-symmetric pattern. The vorticity values and locations of the centres
of primary and secondary vortices are listed for di�erent Reynold’s numbers in Table VIII.
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Figure 8. Fluid �ow patterns at steady state for Re=50; 100; 400 and 1000: (a) velocity vectors;
(b) streamlines; (c) u-velocity contours; and (d) v-velocity contours.

The increase in strength of the secondary vortices can be noticed with increase in Reynold’s
number. These values could be useful for comparison in the future.
The vorticity contours are depicted in Figure 9. The negative vorticity is indicated by dotted

lines, while the positive values by solid lines. The zones of positive vorticity are con�ned
closer to the wall, indicating a high shear gradient, while the core region is dominated by
negative vorticity. Owing to the recirculation of the secondary eddies, small negative vorticity
zones are formed near the walls CD and GH at high Reynold’s numbers. Positive vorticity is
generated more closer to the walls with increase in the Reynold’s number. Smooth pressure
contours are depicted in Figure 10, which have symmetric patterns in compliance with the
moving lids on the top and bottom of the cavity.
In all the simulations conducted at Reynold’s numbers up to 1000, perfectly symmetric

patterns could be achieved due to the imposed moving boundary on both the top and bottom
lids. However, it was very di�cult to maintain symmetry beyond certain Reynold’s number.
A low accuracy numerical scheme can easily induce symmetry breaking even at a much

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 57:211–234



230 Y. C. ZHOU ET AL.

Table VIII. The vorticity values and corresponding locations of the centres
of primary and secondary vortices.

Primary vortex First secondary vortex Second secondary vortex

Re (x; y) !(x; y) (x; y) !(x; y) (x; y) !(x; y)

50 (0.9781, 1.1600) −3:05843 (1.3556, 0.4405) 0.02395
(0.4219, 0.2518) −3:05670 (0.0444, 0.9595) 0.02394

100 (1.0172, 1.1091) −2:72390 (1.3556, 0.4486) 0.04399
(0.3828, 0.2889) −2:72310 (0.0444, 0.9514) 0.04401

400 (0.7000, 0.7000) −1:54842 (1.3500, 0.4656) 0.15569 (0.4703, 1.1625) 1.38495
(0.0500, 0.9344) 0.15777 (0.9219, 0.2375) 1.38140

1000 (0.7000, 0.7000) −1:41562 (1.3250, 0.4844) 0.53846 (0.5484, 1.2000) 2.38557
(0.0750, 0.9063) 0.53813 (0.7256, 0.2000) 2.38559

lower value of Reynold’s number. What makes the present simulation very challenging is the
fact that this system admits elliptic instability. It takes a great deal of e�ort to distinguish a
numerically induced asymmetric �ow pattern from that created by the elliptic instability, which
likes the K�arm�an vortex shedding behind the �ow past a circular cylinder, is a part of the �ow
instability. In this regard, the DSC algorithm is extremely helpful. It gives us con�dence to
study the symmetry aspect, as it inherently possesses the advantage of controllable accuracy
in one setting. It would be of interest to study how a change in the order of accuracy could
induce asymmetry into the system. Figure 11 depicts two �ow patterns obtained at Re=3200.
The �ow essentially remains symmetric, for a very long time before it �nally switches to an
asymmetric morphology. Such a change is irreversible, as a typical �ngerprint of the elliptic
instability. Further investigations are under progress in this direction.

5. CONCLUSION

The problem of staggered double shear driven cavity is introduced in the context of bench-
marking, for new computational schemes. It is believed that this problem has the potential
to become as popular as the other benchmark problems, like the square driven cavity, back-
ward facing step, �ow past a circular cylinder, etc. Most existing test problems are somewhat
unidirectional. Through the present problem, one can examine a variety of �uid �ow fea-
tures, including symmetry, numerically induced symmetry breaking, and elliptic instability,
which is not possible to verify from most other existing benchmark problems. The wavelet
based discrete singular convolution (DSC) is proposed for the spatial discretization. The phi-
losophy underpinning the DSC algorithm is discussed. A fractional time step potential func-
tion method (FTSPFM) is employed for the numerical implementation of the Navier–Stokes
equations. The successive over relaxation (SOR) scheme is used for solving the Poisson equa-
tion, which was formulated for the potential function. A third order Runge–Kutta scheme is
used for the time integration. The DSC algorithm is validated by solving the Taylor problem
and by a comparison with the benchmark solution by Ghia et al. [41] for the single lid driven
cavity �ow. A popular �nite volume based scheme is employed to further validate our results
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Figure 9. Vorticity contours for di�erent Reynold’s numbers: (a) Re=50;
(b) Re=100; (c) Re=400; and (d) Re=1000.

on the staggered double lid driven cavity �ow. Some remarks can be outlined as follows:

• The wavelet-based DSC algorithm provides high accuracy spatial discretizations. One of
the major attractive features of the present DSC approach is its controllable accuracy
which is attained by an appropriate choice of the DSC parameter W , as veri�ed with
the Taylor problem.

• Pseudo-overlapping subdomains are used to divide the computational domain into smaller
regions. An equi-spaced stencil is employed in each subdomain. Equipped with this
domain decomposition approach, the high accuracy DSC algorithm can also be used to
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Figure 10. Pressure contours for di�erent Reynold’s numbers: (a) Re=50;
(b) Re=100; (c) Re=400; and (d) Re=1000.

treat �ow problem with complex geometry and the overall method also has the potential
to be used in parallel architecture.

• The present DSC algorithm is tested by computing the single lid driven cavity �ow
for which benchmark solution is available. Results on the staggered double lid driven
cavity �ow are validated by extensive studies on consistence and convergence to achieve
reliability. A standard second order �nite volume scheme is employed for cross-validation
of the proposed approach.

• For the double lid driven cavity, benchmark quality solution is obtained over a range
of Reynold’s numbers. Qualitative �uid �ow features such as, streamlines, velocity,
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(a) (b)

Figure 11. The existence of: (a) symmetric and (b) asymmetric patterns at Re=3200. The latter pattern
was obtained after a long-time integration and is attributed to the mechanism of elliptic instability.

pressure and vorticity contours are depicted. Quantitative results of velocity values are
tabulated.

• Flow pattern topology of two distinct features is observed. Two primary vortex type
�ow pattern was found at low Reynold’s numbers and a single merged primary vortex
patterns occur at high Reynold’s numbers.

• The secondary eddies are observed at four corners. Their strength increases with the
increase in Reynold’s number.

• The high accuracy of the present scheme enables as a check on the issue of symmetry.
The elliptic instability can be distinguished from numerically induced asymmetric pat-
terns. Symmetric solution is obtained for Reynold’s number below 1000, whereas elliptic
instability occurs at Re=3200, in which both asymmetric and symmetric �ow patterns
are observed.

ACKNOWLEDGEMENTS

This work was supported by the National University of Singapore and the National Science and Tech-
nology Board of the Republic of Singapore.

REFERENCES

1. Shankar PN, Deshpande MD. Fluid mechanics of the driven cavity. Annual Review of Fluid Mechanics 2000;
32:93–136.

2. Albensoeder S, Kuhlmann HC, Rath HJ. Multiplicity of steady two-dimensional �ow in two-sided lid driven
cavities. Theoretical and Computational Fluid Dynamics 2001; 14:223–241.

3. Kuhlmann HC, Wanschura M, Rath HJ. Flow in two-sided lid driven cavities: non-uniqueness, instabilities, and
cellular structures. Journal of Fluid Mechanics 1997; 336:267–299.

4. Hinatsu M, Ferziger JH. Numerical computation of unsteady incompressible �ow in complex geometry using a
composite multigrid technique. International Journal for Numerical Methods in Fluids 1991; 13:971–997.

5. Gottlieb D, Hussaini MY, Orszag SA. In Spectral Methods for Partial Di�erential Equations, Voigt RG,
Gottlieb D, Hussaini MY (eds). SIAM: Philadelphia, 1984.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 57:211–234



234 Y. C. ZHOU ET AL.

6. Canuto C, Hussaini MY, Quarteroni A, Zang TA. Spectral Methods in Fluid Dynamics. Springer-Verlag: Berlin,
1988.

7. Fornberg B. A Practical Guide to Pseudospectral Methods. Cambridge University Press, 1996.
8. Cooley JW, Tukey JW. An algorithm for the machine calculation of complex Fourier series. Mathematics of
Computation 1965; 19:297–301.

9. Walker JS. Fast Fourier Transforms. CRC Press: Florida, 1996.
10. Bellman R, Kashef BG, Casti J. A technique for the rapid solution of nonlinear partial di�erential equations.

Journal of Computational Physics 1972; 10:40–52.
11. Forsythe GE, Wasow WR. Finite-di�erence Methods for Partial Di�erential Equations. Wiley: New York, 1960.
12. Tsai WT, Yue DKP. Computation of nonlinear free-surface �ows. Annual Review of Fluid Mechanics 1996;

28:249.
13. Zienkiewicz OC. The Finite Element Method in Engineering Science. McGraw-Hill: London, 1971.
14. Lewis RW, Morgan K, Thomas HR, Seetharamu KN. The Finite Element Method in Heat Transfer. Wiley:

New York, 1994.
15. Reddy JN. Energy and Variational Methods in Applied Mechanics. Wiley: New York, 1984.
16. Glowinski R, Pironneau O. Finite element methods for Navier–Stokes equations. Annual Review of Fluid

Mechanics 1992; 24:167–204.
17. Cheung YK. Finite Strip Methods in Structural Analysis. Pergamon Press: Oxford, 1976.
18. Patankar SV. Numerical Heat Transfer and Fluid Flow. McGraw-Hill: New York, 1980.
19. Agouzal A, Debit N. Space-time domain decomposition methods for scalar conservation law. Communications

in Numerical Methods in Engineering 1997; 13:777–783.
20. Keskar J, Lyn DA. Computations of a laminar backward-facing step �ow at Re=800 with a spectral domain

decomposition method. International Journal for Numerical Methods in Fluids 1999; 29:411–427.
21. Wei GW. Discrete singular convolution for the solution of the Fokker–Planck equations. Journal of Chemical

Physics 1999; 110:8930–8942.
22. Wei GW. A uni�ed approach for solving the Fokker–Planck equation. Journal of Physics A 2000; 33:343–352.
23. Wei GW. Wavelet generated by using discrete singular convolution kernels. Journal of Physics A 2000;

33:8577–8596.
24. Wei GW. Solving quantum eigenvalue problems by discrete singular convolution. Journal of Physics B 2000;

33:343–352.
25. Wei GW. A uni�ed method for solving Maxwell’s equation. In Proceedings of the 1999 Asia-Paci�c Microwave

Conference, Singapore, 30 November, 1999; 562–565.
26. Wei GW. A new algorithm for solving some mechanical problems. Computer Methods in Applied Mechanics

and Engineering 2001; 190:2017–2030.
27. Wei GW. Vibration analysis by discrete singular convolution. Journal of Sound and Vibration 2001; 535–553.
28. Wei GW. Discrete singular convolution for beam analysis. Engineering Structures 2001; 1045–1053.
29. Wei GW. Synchronization of single-side locally averaged adaptive coupling and its application to shock

capturing. Physical Review Letters 2001; 86:3542–3545.
30. Wei GW. Discrete singular convolution method for the Sine-Gordon equation. Physica D 2000; 137:247–259.
31. Ablowitz MJ, Herbst BM, Schober C. On numerical solution of the Sine-Gordon equation. Journal of

Computational Physics 1996; 126:299–314.
32. Guan S, Lai C.-H., Wei GW. Bessel-Fourier analysis of patterns in a circular domain. Physica D 2001; 151:83–98.
33. Wei GW, Zhao YB, Xiang Y. Discrete singular convolution and its application to the analysis of plates with

internal supports. I Theory and algorithm. International Journal for Numerical Methods in Engineering 2002;
55:913–946.

34. Xiang Y, Zhao YB, Wei GW. Discrete singular convolution and its application to the analysis of plates with
internal supports. II Complex supports. International Journal for Numerical Methods in Engineering 2002;
55:947–971.

35. Wan DC, Zhou YC, Wei GW. Numerical solution of unsteady incompressible �ows by the discrete singular
convolution. International Journal for Numerical Methods in Fluids 2002; 38:789–810.

36. Wan DC, Patnaik BSV, Wei GW. A new benchmark quality solution for the buoyancy driven cavity by discrete
singular convolution. Numerical Heat Transfer: Part B. Fundamentals 2001; 40:199–228.

37. Bao G, Wei GW, Zhou AH. Analysis of regularized Whittaker-Kotel’nikov-Shannon sampling expansion. SIAM
Journal on Numerical Analysis, submitted.

38. Chorin AJ. Numerical simulation of Navier–Stokes equations. Mathematics of Computation 1968; 22:745–762.
39. Shu C.-W, Osher S. E�cient implementation of essentially non-oscillatory shock-capturing schemes. Journal of

Computational Physics 1988; 77:439–471.
40. Peyret R, Taylor TD. Computational Methods for Fluid Flow. Springer Ser. Comput Phys., Springer: Berlin,

Heidelberg, 1980.
41. Ghia U, Ghia KN, Shin CT. High-Resolutions for incompressible �ow using the Navier–Stokes equations and

a multigrid method. Journal of Computational Physics 1982; 48:387–411.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 57:211–234


