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Tailoring Wavelets for Chaos Control
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Chaos is a class of ubiquitous phenomena and controlling chaos is of great interest and importance. In
this Letter, we introduce wavelet controlled dynamics as a new paradigm of dynamical control. We find
that by modifying a tiny fraction of the wavelet subspaces of a coupling matrix, we could dramatically
enhance the transverse stability of the synchronous manifold of a chaotic system. Wavelet controlled
Hopf bifurcation from chaos is observed. Our approach provides a robust strategy for controlling chaos
and other dynamical systems in nature.
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developed in the last two decades and has had tremendous
success and impact on signal/image processing, data

Let us consider a coupled nonlinear system of N cha-
otic oscillators
Chaos is omnipresent in nature. For a nonlinear system
of more than 2 degrees of freedom, it is chaotic whenever
its evolution sensitively depends on the initial conditions.
Mathematically, there must be an infinite number of un-
stable periodic orbits embedded in the underlying chaotic
set and the dynamics in the chaotic attractor is ergodic.
Physically, chaos can be found in nonlinear optics (laser),
chemistry (Belouzov-Zhabotinski reaction), electronics
(Chua-Matsumoto circuit), fluid dynamics (Rayleigh-
Bénard convention), meteorology, solar system, and the
heart and brain of living organisms. As chaos is intrinsi-
cally unpredictable and its trajectories diverge exponen-
tially in the course of time evolution, controlling chaos is
apparently of great interest and importance. Ott, Grebogi,
and Yorke [1] proposed a successful technique to control
low-dimensional chaos. The basic idea is to take advan-
tage of the sensitivity to small disturbances of chaotic
systems to stabilize the system in the neighborhood of a
desirable unstable periodic orbit naturally embedded in
the chaotic motion. Pyragas [2] proposed a more efficient
method which makes use of a time-delayed feedback to
some dynamical variables of the system. Control of spa-
tiotemporal chaos in partial differential equations was
also considered [3,4]. As an alternative control means,
chaos synchronization was pioneered by Pecora and
Carroll [5]. The theory and application of chaotic syn-
chronization has been extensively studied [6] in various
research directions, for instance, electronic circuits, laser
experiment, secure communication, biological and
chemical systems, shock capturing [7], and wake turbu-
lence [8]. Synchronous stability was studied by Pecora
and Carroll [9] and Yang et al. [10]. The stability of the
synchronous state can be understood from the eigenvalue
distribution of the coupling matrix of a nonlinear system.
However, possible wavelet subspace control of chaos and
chaos synchronization has not been addressed yet.

The theory of wavelets is a new branch of mathematics
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compression, computer vision, telecommunication, and
a variety of other science and engineering disciplines
[11,12]. Mathematically, wavelets are sets of L2 functions
generated from a single function by translation and dila-
tion. Compared to the usual orthogonal L2 bases, such as
the Fourier transform, wavelets often have much better
properties for expanding a function of a physical origin.
Some of the most important features of wavelets include
time-frequency localization and multiresolution analysis.
Physically, wavelet transform can split a function into
different frequency bands or components so that each
component can be studied with a resolution matched to
its scale, thus providing excellent frequency and spatial
resolution, and achieving high computational efficiency.
Moreover, we can devise a wavelet system for represent-
ing physical information at various levels of details,
leading to the so-called mathematical microscopy. For
many physical systems, due to the multiscale nature, the
wavelet multiresolution theory provides perhaps some of
the most appropriate analysis tools. Application of wave-
lets to nonlinear dynamics has been widely studied, and
successful examples can be found in time series analysis
[13], prediction of low-dimensional dynamics [14], mul-
tiscale analysis of turbulence [15–17], spatial hierarchies
in measles epidemics [18], North Atlantic oscillation
dynamics [19], magnetic flux on the Sun [20], human
heartbeat dynamics [21], and pattern characterization
[22]. However, to our knowledge, the use of wavelets in
all the previous work in the nonlinear dynamics is limited
to analysis and/or characterization. The use of wavelets as
the basis in the direct control of the system dynamics has
not been exploited. The objective of this Letter is to
introduce a paradigm of chaos control and synchroniza-
tion by using wavelets. It is found that the modification of
a tiny fraction of wavelet subspaces of a coupling matrix
could lead to dramatic change in chaos synchronizing
properties.
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FIG. 1 (color online). Schematic representation of the three-
scale wavelet decomposition of Fig. 2. The upper left square
labeled by LL1 corresponds to the lowest resolution subspace in
both the horizontal and vertical directions. The information
contained in this subspace is a coarse approximation of the
original matrix. The other nine regions involve higher resolu-
tion subspaces, and they constitute the details of the original
matrix at different scales. Among them, three diagonal regions
labeled by HH3, HH2, HH1 correspond to the highest resolu-
tion subspaces at each scale, and they contain the most detailed
information of the original matrix in their scales.
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du
dt

� �FI � "A�u; u � �u1; u2; . . . ; uN�
T; (1)

where Fui � f�ui� is a nonlinear function of the ith
oscillator, which has a state function ui 2 �0;1� � Rn,
I is a unit matrix, " is a coupling strength, and A is a
coupling matrix having the periodic structure at the
boundaries.

The synchronous manifold of the chaotic system,
which is a subspace of the original coupled system,
Eq. (1), can be studied by setting u1�t� � u2�t� � 	 	 	 �
uN�t� � s�t�, where the chaotic solution s�t� satisfies the
single oscillator equation ds=dt � f�s�t�
. The stability
property of the synchronous manifold can be studied in
the space of difference variables �ui�t� � ui�t� � s�t�,
which are governed by [5,6,9,10]

d�u
dt

� �DfI � "A��u; �u � ��u1; �u2; . . . ; �uN�T;

Df �
df�u�
du

: (2)

It turns out that the eigenvalue spectrum of the matrix A
determines the stability of the coupled chaotic system.
The largest eigenvalue �1 is equal to 0, which governs the
motion on the synchronized manifold, and all of other
eigenvalues �i (i � 1) control the transverse stability of
the chaotic synchronous state. The stability condition can
be given by Lmax � "�2 � 0, where Lmax > 0 is the larg-
est Lyapunov exponent of a single chaotic oscillator. As a
consequence, the second largest eigenvalue �2 is domi-
nant in controlling the stability of chaotic synchroniza-
tion, and the critical coupling strength "c can be
determined in terms of �2,

"c �
Lmax

��2
: (3)

For the nearest neighbor coupling, the eigenvalue
spectrum of an appropriately normalized A is given
by [9,10] �i � �4 sin2��i�1�

N , i � 1; 2; . . . ; N. In general,
a larger coupling width gives a smaller nonzero eigen-
value �2. However, very little is known about the recon-
struction of matrix A and its eigenvalue reduction for
achieving efficient control of chaos synchronization. In
the rest of this Letter, we introduce a wavelet approach to
enhance synchronous stability and chaos control.

We consider a two-dimensional (2D) multiscale analy-
sis. The 2D subspace LLm at scalem can be constructed as
the tensor product of two 1D subspaces Vxm and Vym
[11,12,22],

LLm � Vxm  Vym; m 2 Z: (4)

Since Vim (i � x; y) admit the decomposition into a lower
order resolution scale m� 1
284103-2
Vim � Vim�1 �W
i
m�1; i � x; y; (5)

where Wm�1 are wavelet subspaces, the 2D subspaces can
be decomposed into

LLm � Vxm  Vym
� LLm�1 � LHm�1 �HLm�1 �HHm�1; (6)

where LLm�1 � Vxm�1  V
y
m�1, LHm�1 � Vxm�1 W

y
m�1,

HLm�1 � Wx
m�1  V

y
m�1, and HHm�1 � Wx

m�1 W
y
m�1.

Here L and H resemble ‘‘low-resolution’’ and ‘‘high-
resolution,’’ respectively. A three-scale 2D wavelet de-
composition is schematically illustrated in Fig. 1.

For a given matrix A, the above wavelet decomposition
(transform) allows a perfect reconstruction (inverse
wavelet transform), by which there is nothing to gain:
A � W�1�W �A��, where W and W�1 denote wavelet
transform and its inverse, respectively. The advantage of
using wavelets is that each wavelet subspace can be
independently modified for specific purposes. In this
Letter, we consider a simple operation to attain a desir-
able coupling matrix

~AA � W�1�O�W �A���; (7)

whereO denotes the nontrivial action on selected wavelet
subspaces and the identity operator on other subspaces.
For a given O, the matrix ~AA carries a new relationship
284103-2
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among the coupled oscillators, which might not be as
simple as the original matrix A. Nevertheless, the stabil-
ity of the synchronous states can be studied with matrix
~AA, whose eigenvalue spectrum ~��i (i � 1; 2; . . . ; N) deter-
mines the synchronous stability of the coupled chaotic
system.

To illustrate the idea, we choose the matrix A to be the
one generated from the nearest neighbor coupling scheme
and limitO to be the multiplication of a scalar factorK on
the elements of subspaces LL1. An image view of matrix
A of size 642 is depicted in Fig. 2(a). The three-scale
wavelet transform of A [i.e., W �A�] obtained by using the
Daubechies-20 wavelets [11] is plotted in Fig. 2(b). The
image ofO�W �A�� is displayed in Fig. 2(c). It is seen that
only a tiny fraction (1.56%) of W �A� (the LL1 subspace)
is modified. In principle, such a modified fraction can be
further minimized in a four-scale or five-scale analysis.
However, in the physical space, matrix ~AA exhibits a very
interesting nontrivial structure; see Fig. 2(d). It is this
wavelet subspace enhanced ~AA that gives rise to spectacu-
lar synchronous stability for the coupled chaotic system.

As a proof of principle, we consider a set of coupled
Lorenz oscillators ui � �xi; yi; zi�, (i � 1; 2; . . . ; N)

dxi
dt

� "�yi � xi�;
dyi
dt

� #xi � yi � xizi;

dzi
dt

� xiyi � $zi: (8)
FIG. 2 (color). The impact of modifying a wavelet subspace
to the coupling matrix A of chaotic oscillators. (a) The original
coupling matrix; (b) the three-scale wavelet decomposition of
the original coupling matrix; (c) the modified wavelet decom-
position (note the change in subspace LL1); (d) the physical
space image of the wavelet enhanced coupling matrix, ~AA
obtained by the inverse wavelet transform of (c).
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With the classical parameters " � 10:0, # � 28:0,
and $ � 8=3, the system is chaotic as the largest
Lyapunov exponent of each single oscillator is Lmax �
0:908. The size of the system is chosen as N � 512. The
synchronization of chaos is possible by adding nearest
neighbor couplings of the form "�ui�1 � 2ui � ui�1�
to all of three components xi, yi, and zi as prescribed
in Eq. (1).

We demonstrate the wavelet subspace control by exam-
ining the relation of the critical coupling strength "c
versus the multiplication factor K. Without wavelet sub-
space enhancement, the present chaotic system requires
an enormously large critical coupling strength ["c �
6029, following Eq. (3)] to synchronize. However, the
use of wavelet subspace control leads to a dramatic re-
duction in "c as indicated in Fig. 3. Obviously, "c de-
creases linearly with respect to the increase of K until a
critical value Kc � 1011. The smallest "c is about 6,
which is about 1011 times smaller than the original criti-
cal coupling strength, indicating the efficiency of the
proposed approach.

The Kc value is determined by the wavelet subspace
structure and limited by the largest eigenvalue in the high
resolution subspace HH1; i.e., Kc is bounded by �32

�2
�

1011. For a fixed number of oscillators and a three-scale
wavelet analysis, a further increase in Kc is possible, but
it requires a different operation O, for example, an O that
modifies larger subspaces, LL2 (note that LL2 includes
HH1). Moreover, other operations that change the ele-
ments of a high resolution subspace, such as HH1, or
HH2, or HH3 alone do not have any impact on the trans-
verse stability of the synchronous manifold.

It remains to be verified that the proposed wavelet
strategy is robust and general for controlling chaos. To
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FIG. 3 (color). Critical coupling strength "c vs K with the red
line and green line denoting the effects of wavelet control in
subspaces (1) LL1 and (2) HH1, HH2, and HH3, respectively.
The horizontal green line indicates the nil impact of modifying
high resolution subspaces to the transverse stability of syn-
chronous manifold.
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FIG. 4 (color). Wavelet controlled dynamics showing the
transition from chaos to periodicity. (a) The original chaotic
states; (b) wavelet induced Hopf bifurcation from chaos.
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this end, we add nearest neighbor couplings of the type
"�yi�1 � 2yi � yi�1� � r�yi�1 � yi�1� to the yi compo-
nents of Eq. (8) describing the dynamics of 64 oscillators.
With the parameter set" � 10:0, # � 60:0, and$ � 8=3,
the system resides in its chaotic region when the coupling
strength is " � 6:0 and r � 4:0, as shown in Fig. 4(a) for
the xi components. We use a two-scale wavelet transform
and multiply each element of the LL1 subspace by a factor
of K � 31:8. We observe the Hopf bifurcation from chaos
[23] as indicated in Fig. 4(b). An onset of synchronization
is further observed at K � 32.

In conclusion, we have presented a novel wavelet sub-
space approach to the control of chaotic dynamical sys-
tems. In contrast to the previous use of wavelets as an
analyzing tool, the present study utilizes wavelets as a
new efficient strategy for controlling nonlinear dynamics.
The control is achieved by modifying the wavelet sub-
spaces of the coupling matrix of chaotic oscillators. We
find that the transverse stability of the synchronous mani-
fold is extremely sensitive to the wavelet subspace
manipulation of the coupling matrix. Dramatic reduction
in the critical coupling strength is achieved with the
modification of a tiny fraction of wavelet subspaces.
Wavelet controlled Hopf bifurcation from chaos is ob-
served. It is believed that the proposed approach has
potential applications to the control of other discrete
and continuous dynamical systems, such as coupled
284103-4
map lattices, cellular automata, turbulence, and pattern
formation.
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