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Abstract. – This letter proposes a novel image edge detection algorithm based on the differ-
ence of two synchronizing spatially extended nonlinear dynamical systems. The time evolution
of each system is identified as a low-pass filtering process, whereas the difference of two syn-
chronizing states is identified as the result of high-pass filtering. Two systems are weakly
coupled and allowed to take a common image as their initial value, but have different time
scales in their dynamical motions. Results are compared with those of standard image pro-
cessing schemes. Some of the best image edges could be obtained by an appropriate balance
between synchronization and desynchronization.

There has been a great deal of interest in the synchronization phenomenon in the recent
years [1–12]. The modern theory of synchronization is rich in its content due to rapid de-
velopments in theoretical and computational analyses and a broad spectrum of applications.
Synchronization is of fundamental importance in secure communication [2], electronic cir-
cuits [3], nonlinear optics [4], chemical and biological systems [5]. More recently, the study of
synchronization has led to an efficient control of wake turbulence and a robust shock-capturing
scheme which provides an effective technique for the understanding of hyperbolic conserva-
tion laws [6]. Synchronization-associated signal processing and pattern recognition have been
discussed [7]. Some of the most important synchronizations include lag synchronization [8],
phase synchronization [9], generalized synchronization [10], and complete synchronization [11].
Among them, complete synchronization has the strongest correlation between two interacting
systems. Most recently, the relationship and definition of various synchronizations have been
discussed [12]. It is well known that, in many cases, synchronization is not ideal. For exam-
ple, the similarity function of the lag synchronization has rarely been found to be identical
to zero [8]. The residual of synchronization, defined by the difference of two synchronizing
states, is generally considered as an undesirable aspect. Thus, the utility of synchronization
residual has not been addressed, to our knowledge. In particular, the image filter property of
a synchronization process is not well understood.

A key issue in pattern recognition, computer vision, target tracking and image processing
is the detection of image edges. The latter usually refers to rapid changes in some physical
properties, such as geometry, illumination, and reflectivity. The edge detection process serves
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Fig. 1 – (a) The original Barbara image; (b) edges detected by the Sobel detector; (c) edges detected by
the Prewitt detector; (d) edges detected by the Canny detector; (e) edges detected by the anisotropic
diffusion scheme; (f) edges detected by the synchronization scheme.

to simplify the analysis of image by dramatically reducing the amount of data to be processed,
meanwhile preserving useful structural information about the object [13]. Standard edge
detectors, such as the Sobel and Prewitt detectors, are finite-difference–based first-derivative
operators, which pick up high-frequency responses at image edges. Recently, Canny [14]
has formulated edge detection as an optimization problem, and the Canny detector can be
effectively approximated by the first derivative of the Gaussian function. Despite the great
success of traditional image processing techniques, the problem of quality edge detection with
many real-world images remains unsolved due to large amount of textures. Solution of this
problem is of pressing importance to both practical and scientific interest, such as missile
guiding and biomedical imaging. Figure 1(a) depicts a standard test image, the Barbara
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image which is of 8 bits in resolution and has 512 × 512 pixels in size. The Barbara image
contains much high-frequency texture and is a severe test case for most existing edge detection
methods. We employ the standard Sobel, Prewitt and Canny detectors [14] to extract edges
of the Barbara image. Figures 1(b), (c) and (d) show the image edges obtained by using these
detectors with a standard threshold technique [15]. It is seen that none of these detectors
gives correct edge response to the texture part of the Barbara image. The regularity of the
thin lines in the original image has been entirely distorted. The purpose of this letter is to
introduce a synchronization-based realistic edge detection scheme for image edge detection
and pattern recognition.

We consider two coupled dynamical systems given by

ut = F1(u,∇u,∇2u, . . .) + ε1(v − u), (1)

vt = F2(v,∇v,∇2v, . . .) + ε2(u − v), (2)

where u(x, y, t) and v(x, y, t) are scalar fields on a domain Ω of interest and ε1, ε2 are the
coupling strengths. Here, F1 and F2 are nonlinear functions. To arrive at an algorithm for
image processing, we consider a generalized flux vector

j1(x, y, t) = −d1(|∇u|)∇u(x, y, t), (3)

where d1(|∇u|) is a function of local gradient which controls the mobility. In this work, the
mobility function is chosen as a non-increasing function of the gradient, e.g., a Gaussian

d1(|∇u|) = Γ1 exp
[
− |∇u|2

2σ2
1

]
, (4)

where Γ1 is positive semi-definite. Here σ2
1 is the variance defined by

σ2
1(t) =

1
NM

N∑
i=1

M∑
j=1

[u(xi, yj , t) − ū(xi, yj , t)]2, (5)

where ū is the mean of u and N and M are the data length in the x and y directions,
respectively. The conservation requires

F1 = −∇ · j1(x, y, t) = ∇ · [d1(|∇u|)∇u]. (6)

Equation (6) can be recognized as an anisotropic diffusion operator [16] and has been used for
image noise removal provided that u(x, y, 0) = I(x, y) is an image. The anisotropic diffusion
can be used to describe the boundary-restricted diffusion, multiphase chemical reaction and
reaction-diffusion in porous media. It was generalized [17] to include hyper-flux vectors which,
in physics, describe a number of complex phenomena, such as pattern formation in alloys,
glasses, polymers, combustion and biological systems.

The essential idea behind eq. (6) for image processing is as follows. The evolution of an
image surface under a partial differential operator can be viewed as a form of image process-
ing. Interestingly, the reverse is also true, i.e., an image-processing method corresponds to the
action of a partial differential equation (PDE), with suitable restrictions. Similar to the cou-
pling scheme used in synchronizing conventional oscillators, the anisotropic diffusion equation
is capable of removing certain oscillations on an image surface and produces a smoothed copy
of the original image. Equation (6) provides a potential algorithm for image edge detection,
segmentation, noise removal, and enhancement [17]. In this work, we use eq. (6) to extract
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Fig. 2 – Difference in variance vs. time.

edges of the Barbara image. The fourth-order Runge-Kutta (RK4) scheme is used for the
temporal discretization and a discrete singular convolution (DSC) algorithm is utilized for
the spatial discretization. The DSC is a local spectral method and its use in scientific and
engineering computations has been extensively validated [18]. Results of eq. (6) for the Bar-
bara image are plotted in fig. 1(e), obtained using the anisotropic diffusion operator with the
standard threshold technique [15]. Obviously, the anisotropic diffusion operator also seriously
distorts image textures and the result is similar to those in figs. 1(b)-(d).

Despite restricted diffusion at image edges, the anisotropic diffusion is inherently a smooth-
ing operation. Therefore, the high-frequency texture of an image is easily distorted during the
smoothing. From the point of view of image processing, a smoothing operation is a low-pass
filter. Whereas, image detection should be a high-pass filtering process. Therefore, the dif-
ference operators, such as the Sobel and Prewitt ones, are frequently used in the field. This
analysis motivates us to speculate that the difference (residual) in the synchronization of two
dynamical systems,

r(x, y, t) = u(x, y, t) − v(x, y, t), (7)

might correspond to image edges as if obtained by high-pass filters, provided that their initial
value is a common digital image field u(x, y, 0) = v(x, y, 0) = I(x, y). In the rest of this
letter, we explore the use of synchronization residual, r(x, y, t), for image edge detection. It is
believed that this study is of importance to the development of synchronization-based security
and information processing algorithms.

The task of image processing is quite different from ordinary chaos synchronization and
control. On the one hand, there should be much synchronized features in the dynamics
in order for their residual to be physically meaningful. On the other hand, there should
be substantial desynchronized features so that the residual could carry a sufficient amount
of physical information. Thus, a practical and superior scheme for image processing would
require a cutting edge balance between synchronization and desynchronization. Such a balance
is determined by the selection of F1 and F2, and of time in eq. (7). To ensure sufficient
synchronized features, we limit ourselves to the case where both F1 and F2 have the same
form of the mobility function as given by the anisotropic diffusion operator, eq. (6). Moreover,
a common initial value, i.e., the digital image I(x, y), is chosen for both u(x, y, 0) and v(x, y, 0).
Therefore, there is an initial synchronized (r ∼ 0) period. However, to attain an appropriate
image edge contrast, two dynamical systems must differ dramatically in their time scales of
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Fig. 3 – (a) The original aircraft image; (b) edges detected by the Canny detector; (c) edges detected
by the anisotropic diffusion scheme; (d) edges detected by the synchronization scheme.

motion. This can be realized by setting Γ1 � Γ2 and meanwhile setting both ε1 and ε2 to be
relatively small so that the rate of change of u is dominated by the diffusion. As both systems
are parabolic in nature, they will synchronize at a sufficiently long time, i.e., they converge
to each other in the norm

lim
t→∞ ‖u(x, y, t) − v(x, y, t)‖ = 0, (8)

for a common initial value I(x, y) and appropriate parameters Γq and εq (q = 1, 2). For
image processing, we are interested in the non-zero synchronization residual at a finite time.
Figure 2 plots the difference in variance [σ2

2(t) − σ2
1(t)] of two dynamical systems against the

evolution time. It is found that best results are obtained when such a difference approaches
its maximum.

Figure 1(f) depicts edges of the Barbara image detected by the synchronization residual
r(x, y, t) at t = 11, with the same threshold technique [15] as used in all earlier cases. The
parameters Γ1 = 0.15, Γ2 = 0.01Γ1 and ε1 = ε2 = 0.01Γ1 are used in our computation. In
fact, a wide range of parameters that satisfy Γ1 � Γ2, ε1, ε2 would deliver similar results.
The DSC and RK4 schemes are utilized for spatial and temporal discretizations, respectively.
Obviously, facial edges are accurately extracted by the proposed approach. Moreover, the
image texture is also clearly detected without distortion. To our knowledge, the image edges
given by the synchronization residual are some of the best ever obtained for this severe case.

It remains to be verified that the proposed approach is robust and general for image edge
detection. To this end, we test the proposed scheme on an aircraft image (8 bits resolution and
659 × 409 pixels in size [15]) as shown in fig. 3(a). The ability of resolving some details, such
as the characters “Continental”, could be crucial to pattern recognition and target tracking.
This is a challenge to most existing edge detection algorithms. In this study, we employ the
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standard Canny detector and the anisotropic diffusion operator for a comparison and their
optimal results are given in figs. 3(b) and (c), respectively. As shown in fig. 3(d), the edges
detected by synchronization residual are much superior to those of the other two schemes.
The characters “Continental” are clearly resolved by the proposed approach.

In conclusion, a synchronization-based realistic scheme is proposed for image processing
with an emphasis on image edge detection. Two weakly coupled, spatially extended nonlinear
parabolic systems are identified as image low-pass filters and their difference is identified as
an image high-pass filter. To construct a practical and efficient image-processing scheme, a
balance between synchronization and desynchronization is sought. Two systems are allowed
to take a common initial value, a digital image, but to evolve at two sharply different time
scales so that their synchronization residual is significantly large for a finite time period. The
synchronization residual is utilized for edge detection of texture images, which are difficult for
existing approaches. Some of the best results are obtained by using the proposed approach
for two standard test images, the Barbara and the aircraft.
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