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may serve as benchmark solutions for such platP©l: 10.1115/1.1501083

1 Introduction these plates. We shall consider a multi-span rectangular Mindlin
- . late with two opposite edges simply supported while the other
Multi-span rectangular plates are important structural comp o edges may take an arbitrary combination of boundary condi-

nents that are widely used In various engineering apphcatlcms, tions. The Levy solution method and the state-space technique
aeroplane surfaces, slabs in house construction, bridge decks 153_27 are employed to establish the proposed analytical ap-

glass window panels. The problgm .Of free vipration of multi-sp roach for the vibration analysis of the Mindlin plate. This ap-
rectangular plates or plates with internal line supports has i -

; roach i t nerate exact vibration solutions. Th lu-
tracted the attention of many researchers. Veletsos and New ach is used to generate exact vibration solutions. These solu

[1] pioneered the r rch in this area by studving the vibrati s are indeed valuable and are tabulated as they serve as
pioneered the research in this area by studying the vidratigh, ., tant henchmark values for checking the convergence, valid-
behavior of a two-span rectangular plate. Since then, many

J h - - . iy and accuracy of potential numerical methods for the analysis
searchers have carried out investigations on the topic using v

ous analytical and numericd2—14] methods. Among these re- multi-span thick plates.

searchers, Azimi et al.7] obtained exact solutions for simply

supported multi-span plates by using the receptance method. Most . .

recently, Xiang et al[15] proposed an analytical approach for the Mathematical Modelling

vibration analysis of multi-span rectangular plates with two oppo- Consider an isotropic rectangular Mindlin plate of length

site edges simply supported. By utilizing the Levy solutionvidth L and thicknes$ as shown in Fig. 1. The plate is simply

method and the state-space technique, their approach is ablgupported on the two edges parallel to thexis. There arer(

find exact solutions for the vibration of multi-span rectangulas 1) internal line supports in the direction that divide the plate

plates involving free and clamped eddés)]. into n spans(see Fig. 1L The internal line supports enforce zero
All the aforementioned studies are for plates based on the clasnsverse displacement along the line supports in the plate. The

sical thin plate theorythe Kirchhoff plate theory The investiga- origin of the coordinatesx, y) is set at the middle point of the

tions on the vibration of multi-span thick rectangular plates aggate bottom edge. The problem at hand is to determine the vibra-

relatively scarcé¢16]. It is well-known that the classical thin platetion frequencies of the multi-span rectangular Mindlin plate.

theory overestimates the vibration frequencies when a plate beWe take a typical span in the plate to derive the Levy type

comes thick or a plate vibrates at higher frequencies. This ovewlution. The governing differential equations based on the Mind-

estimation is due to the fact that the thin plate theory neglects the plate theory[14] for thei-th span in harmonic vibration can be

effects of transverse shear deformation and rotary inertia indarived as:

plate. To overcome this problem, one may employ the first order

shear-deformable plate theofthe Mindlin plate theory[17]) or 2 h{

the higher order plate theorithe Reddy plate theorj/18]) for

analysis of thick plates. Using thgb-2 Ritz method, Liew et al.

+pho®w'=0 (1)

J |+0‘)+0 (9Wi+0i
ax\aox X aylay Y

i Yy _ i i
[19] studied the vibration of rectangular Mindlin plates with in- D i(&_@x v% (_l v)D i(ﬁ_ﬁu (9_6*)
ternal line supports being either parallel to the edges or in diago- X\ dx ay 2 ay\ ax  dy
nal directions. They extended their studies later to the vibration of w he
rectangular Mindlin plates with intermediate stiffen¢29] and _ 2 MW i P agi
- S : k“Gh +65 |+ 0°6,=0 2
skew Mindlin plates with internal line supporf21]. Kong and IX 12
Cheung[22] investigated the vibration of shear-deformable plates i i i i
with internal line supports by the finite layer approach. i(ﬁ_ﬂervﬁ_ﬁx (1-vD i(ﬁ_ﬁu ﬁ_ﬁx)
It is apparent that there are no exact solutions for the vibration ay \ ay X 2 ax\ ax  ay
of multi-span thick rectangular plates in the open literature. The i he
purpose of this work is to fill the current gap in this area by _ .2 ﬂ i P i
! . ) : . : k“Gh +6, |+ w°6,=0 (3)
introducing an analytical method for dealing with multi-span rect- ay y 12 y

angular Mindlin plates and providing exact vibration solutions fo\;\/here the superscript=1,2 n) denotes the-th span in the

—_— ) ) — ~_plate,E is Young's modulusG=E/[2(1+v)] is the shear modu-
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Fig. 1 Geometry and coordinate system for a Levy plate with
(n—1) internal line supports A general solution of Eq(7) can be obtained as
Y= (18)

wherec is a constant column vector that can be determined by the
mass density of the plate, is the vibration frequency of the plate, plate boundary conditions of the two edges parallel toytlais
w s the transverse displacement, ahdnd 6, are rotations in the and/or interface conditions between adjacent spansg&his the

y andx directions. general matrix solution of Eq7). The detailed procedure in de-
The essential and natural boundary conditions for the two paermining Eq.(18) has been given ifi26] and[27].
allel edgeqdaty=0 andy=L) in thei-th span are Each of the two edges parallel to theaxis may have the
w=0, (4a) following edge conditions |
|
My=0, (4b) M=0, (1)
i
whereM'y is the bending moment and is defined by Q,=0, Iif the edge is free ®
a6, 96, w'=0, (20n)
M! =D ( e v—x) 5 i
y ay X () M. =0, (2)
The general Levy-type solution approach is employed to solve ¢ =0, if the edge is simply supported @0
the governing differential equations for theh span[15,26,21. Y _
The displacement fields can be expressed as w'=0, (21a)
ro m 7 -
i (x)sin ZTy 6,=0, (21b)
w(x,y) 6,=0, if the edge is clamped (2L
: . _mamy . . :
0, (%) | = Px(x)sin—— (6) wherei takes the value 1 on, M}, M}, and Q) are bending
a'y(x,y) moment, twist moment and transverse shear force in the plate,
qbiy(x)cosm:y respectively, and defined by | _
4 . = - i a6, 90,
where,,(x), ¢,(x) and¢y(x) are unknown functions to be de- M,=D x Yy (22)
termined. Equation6) satisfies the simply supported boundary _ ,
conditions on edgeg=0 andy=L as defined in Eqg4a—4c). i 1-v (a6, 96,
Substituting Eq(6) into Eqgs.(1-3), the following differential Mxy=D— ay tox (23)
equation system can be derived: .
: . ) ow' )
() =H'y @) Q'X=KZGh(W+ 0, (24)

where ¥/ =[¢}, (81,)" ¢y (4))' &, (¢,)']", the prime’ repre-
sents the derivative with respectt@ndH' is a 6X6 matrix with
the following non-zero elements:

To ensure the continuity and the internal line support condi-
tions, the essential and natural boundary conditions for the inter-
face between the-th and the {(+1)-th spans are defined as:

H i12: Hi34: H i56: 1 (8) wi=0, (2%)
_ 2.2 2 .
i (mm/L)*k“Gh+ phw © wi*h—g (25)
21 — k%Gh ) .

. o =0, (250)

Hy=—1, (10) -
mar =0y, (25d)

i . .
Has= D Mi=M{ Y, (259)
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Table 1 Comparison studies of frequency parameters for simply supported rectangular Mindlin plates with
two-equal spans (h/L=0.2)

a Sources Mode Sequences
1 2 3 4 5 6 7 8
1 [19] 3.8656 | 4.6102 | 5.5879 [ 5.9975 | 7.9737 | 8.2209 | 9.6018 | 10.385
Present 3.8656 | 4.4839 | 5.5879 | 5.8608 | 7.9737 | 8.0696 | 9.6018 | 9.9392
2 [19] 1.7679 | 2.0151 | 3.8656 | 3.8656 | 3.9689 | 4.3107 | 5.5879 | 5.8685
Present 1.7679 | 1.9869 | 3.8656 | 3.8656 | 3.9319 | 4.1811 | 5.5879 | 5.7238

Internal Line Support Simply Supported 3 Results and Discussions

Edges In this section, the proposed analytical approach is employed to
study the vibration of multi-span rectangular Mindlin plates with
various edge support conditions. Although the method can be ap-
plied to obtain Levy solutions for rectangular plates of arbitrary
number of spans along thedirection, we limit our study to two
span square plates with varying span ratios and two-, three- and
four-equal-span rectangular plates in the present study. The natu-
L ral frequency of a plate is expressed in terms of a non-dimensional
frequency parametex =(wlL?/7?) Jph/D. For brevity we shall

use the letter§ for a free edgeSfor a simply supported edge and

C for a clamped edge and a two-letter designation to represent the
edge conditions for a Levy plate. For instance,Riplate will

have edgeAB free and edgeCD simply supportedsee Fig. 1,
respectively. The Poisson ratio=0.3 and the shear correction
factor k>=5/6 are used in this study.

[l

g

3.1 Comparison Studies. To confirm the correctness of the
Fig. 2 A Levy plate with an internal line support proposed analytical approach, Table 1 presents the vibration re-
sults for a simply supported two-span rectangular Mindlin plate
generated by the present analytical approach and byth2 Ritz
i) method[16]. We observe that the Ritz result$6] are in close
Myy=Myy (25f) agreement with the present exact solutions in general. However, a

In view of Eq.(18), a homogeneous system of equations can tiew Ritz results in Table 1 are not yet quite converged to the exact
derived by implementing the boundary conditions of the plaglutions.
along the two edges parallel to thexis[Egs.(19-(21)]and the 35 gquare Mindlin Plates of Two-Unequal Spans. The
interface conditions between spaftsq. (25)] when assembling |ay0ut of a two-span Levy plate is shown in Fig. 2. The location of

the spans to the whole plate the internal line support is determined by the location paranteter
() (see Fig. 2
2 Tables 2—4 present the exact frequency parameters of the first
. ten modes for two-span square Mindlin plates with symmetric
oD Levy-type supporting edgege., SS FF andCC plates. The lo-
K c ~ {0} (26) cation parameter of the internal line supplostaries from 0.1, 0.3
c to 0.5 and the plate thickness ratifL is set to be 0.01, 0.05 and
i+t 0.1. Tables 5-7 show the exact frequency parameters of the first
: ten modes for two-span square Mindlin plates with asymmetric
(;n Levy-type supportsi.e., SF, CF and CSplates. In this case, the
\ J location parameter of the internal line suppethanges from 0.3,

The vibration frequencw is determined when the determinant0.5 to 0.7. All results in Tables 2 to 7 are presented with 5 sig-
of K in Eq. (26) is equal to zero. As the vibration frequeneyis  nificant digits. As expected, we observe that the frequency param-
imbedded in matrixH, it cannot be obtained directly from Eq. eters for all six plates decrease with increasing plate thickness
(26). A numerical iteration procedure has been developed to camatio h/L due to the increased influence of transverse shear defor-
out the calculation26,27]. mation and rotary inertia.

Table 2 Vibration frequency parameters A=(wL? &%) ph/D for an SS square plate with an internal line support

WL b Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
0.1 2.6392 5.4604 6.7781 9.5650 10.362 13.259 14.376 16.075 17.284 20.862
0.01 0.3 3.5328 6.3571 9.6807 11.243 12.620 14.898 17.538 17.599 18.151 21.476
0.5 4.9955 7.0108 7.9884 9.5607 12.969 14.161 16.948 19.928 19.928 20.854
0.1 2.5843 5.3124 6.5118 9.1169 9.9078 12.425 13.492 14.931 16.119 19.088
0.05 0.3 3.4630 6.1682 9.2836 10.713 11.964 13.833 16.165 16.326 16.869 19.456
0.5 4.8907 6.7106 7.7267 9.0653 12.305 13.229 15.845 18.433 18.433 18.938
0.1 2.4416 4.9380 5.8821 8.1036 8.8524 10.675 11.633 12.637 13.722 15.762
0.10 | 03 3.2732 5.6883 8.3308 9.4966 10.485 11.613 13.348 13.835 14.271 15.791
0.5 4.6084 5.9863 7.0716 7.9475 10.809 11.300 13.539 15.174 15.462 15.462
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Table 3 Vibration frequency parameters

A=(wL? =?)phID for an FF square plate with an internal line support

/L b Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
0.1 1.2456 3.2596 4.2351 6.5319 7.4051 9.1903 10.891 11.599 13.489 16.119
0.01 0.3 1.4263 3.2920 4.4249 5.4786 6.4685 8.5657 9.3695 11.456 . 12.469 13.542
0.5 1.6309 2.3050 4,7253 5.1271 7.6042 9.7036 9.9757 10.068 11.195 13.320
0.1 1.2324 3.1863 4.1481 6.3087 7.1414 8.8283 10.330 11.008 12.738 15.062
005 | 03 1.4082 3.2051 4.3260 5.2780 6.2026 8.1429 8.9870 10.797 11.773 12.677
0.5 1.6067 2.2520 4.6094 4.9625 7.3277 9.2886 9.4560 9.5028 10.600 T 12.312
0.1 1.2046 3.0298 3.9283 5.8065 6.5417 7.9786 9.1555 9.7234 11.136 12.857
0.10 | 03 1.3707 3.0266 4.0825 4.8245 5.6518 7.2601 8.1024 9.4666 10.271 10.951
0.5 1.5593 2.1387 4.3358 4.5951 6.7071 8.1537 8.3498 8.4725 9.3836 10.390

Table 4 Vibration frequency parameters

A=(wL? =?)\phID

for a CC square plate with an internal line support

WL b Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
0.1 3.3169 5.8735 8.1316 10.628 10.667 15.230 15.277 17.473 17.871 21.885
0.01 03 4.6841 7.1453 11.779 12.023 14.614 18.541 19.160 20.344 22.724 25.621
0.5 7.0108 9.5608 9.6209 11.690 14.161 15.775 20.854 21.011 22.072 23.639
0.1 3.1958 5.6619 7.6536 9.9975 10.114 13.976 14.121 16.247 16.251 19.909
005 | 03 4.5184 6.8505 11.138 11.238 13.543 17.147 17.511 18.165 20.057 22.259
0.5 6.7130 8.9583 9.0738 10.797 13.244 14.427 18.944 19.091 19.877 21.135
0.1 2.9489 5.1901 6.7054 8.6714 8.9777 11.606 11.982 13.358 13.789 16.265
0.10 | 03 4.1108 6.1636 9.5728 9.7472 11.394 14.202 14.408 14.431 15.467 17.049
0.5 5.9992 7.5511 7.9854 9.0159 11.354 11.928 15.197 15.785 16.086 16.707
Table 5 Vibration frequency parameters  A=(ewL?/ w?)Jph/D for an SF square plate with an internal line support
WL b Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 | Mode 10
03 1.5211 4.4498 5.0600 8.2985 9.3796 11.676 13.371 14.985 15.748 16.292
001 | 05 1.9456 4.9069 5.7162 8.6236 9.1039 9.8289 12.374 13.482 16.723 17.547
0.7 2.7881 4.2836 5.9685 7.0169 10.155 11.005 11.790 13.011 17.836 17.975
0.3 1.4993 4.3475 4.9037 7.9353 8.9944 11.112 12.568 14.054 14.482 15.227
005 | 05 1.9096 4.7706 5.5548 8.2757 8.6289 9.3885 11.557 12.709 15.582 16.113
0.7 2.7372 4.1510 5.7939 6.7020 9.6786 10.490 11.083 12.258 16.519 16.704
0.3 1.4513 4.0970 4.5435 7.1458 8.1058 9.8480 10.911 11.961 12.138 13.041
010 | 05 1.8341 4.4564 5.1450 7.4497 7.5883 8.4083 9.9432 11.034 13.288 13.472
0.7 2.6251 3.8364 5.3805 6.0288 8.5772 9.3278 9.6585 10.629 13.903 14.139

Table 6 Vibration frequency parameters

A=(wL? =?)\JphiID for a CF square plate with an internal line support

h/L b Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
0.3 1.5363 4.4554 5.1510 8.3541 9.3817 12.344 13.402 15.627 16.293 20.355
0.01 0.5 1.9811 4.9168 7.2938 9.8321 9.8642 10.134 12.754 14,741 16.725 17.728
0.7 3.1117 5.1104 6.2351 7.5397 11.227 12.108 12.151 14.784 18.151 18.799
0.3 1.5116 4.3514 4.9743 7.9734 8.9956 11.641 12.585 14.528 15.228 18.314
0.05 0.5 1.9411 4.7782 6.9994 9.2334 9.3904 9.5773 11.818 13.697 15.582 16.212
0.7 3.0339 4.9150 6.0097 7.1704 10.642 11.359 11.370 13.683 16.797 17.280
0.3 1.4578 4.0985 4.5769 7.1595 8.1061 10.141 10.915 12.372 13.042 14.317
0.10 | 0.5 1.8566 4.4603 6.3020 7.9088 8.3530 8.4089 10.037 11.602 13.288 13.495
0.7 2.8680 4.4463 5.5194 6.3685 9.3958 9.6938 9.8422 11.480 14.160 14.443

Table 7 Vibration frequency parameters

A=(wL%=?)phID for a CS square plate with an internal line support

h/L b Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
03 3.5944 6.3860 10.014 11.256 12.860 17.697 18.157 18.869 21.573 23.614
001 | 05 5.5739 8.4207 . 8.7081 10.956 13.292 15.230 18.234 20.179 21.068 21.670
0.7 4.5939 7.1024 11.408 11.761 14.156 15.642 18.163 18.533 18.856 22.603
0.3 3.5119 6.1887 9.5403 10.720 12.133 16.423 16.872 17.252 - 19.453 20.693
005 ] 05 54171 8.0994 8.1958 10.219 12.560 14.037 16.828 18.611 19.261 19.622
0.7 4.4487 6.8211 10.780 11.128 13.233 14.343 16.513 17.143 17.336 20.286
03 3.2973 5.6959 8.4551 9.4984 10.551 13.862 13.954 14.271 15.354 16.095
0.10 | 05 5.0135 7.0519 7.3241 8.6832 10.954 11.741 14.061 15.544 15.861 15.986
0.7 4.0783 6.1534 9.3656 9.7448 11.283 11.809 13.452 14.388 14.408 16.270
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Fig. 3 Frequency parameters A=(wL?/m7?)(phl/D)¥? versus line support location
with one internal line support
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To further observe the influence of the line support location drig. 3) and from 0.01 to 0.99 for th8F, CF andCSplates with 99

the vibration of plates, the variation of frequency parameter
the first four modes against the line support locatias plotted in
Figs. 3 and 4 for square Mindlin plates with thickness réit

(LX) (phID)"?

Frequency Parameter A

Fig. 4 Frequency parameters A=(wL? @?)(ph/ D)¥? versus line support location
with one internal line support

sample points on each curysee Fig. 4, respectively. It is seen
that the internal line support strengthens the plates against vibra-
tion. However, the optimal location of the internal line support in
=0.1. The line support locatiob varies from 0.01 to 0.5 for the increasing the frequency parameter varies from plate to plate and
SS FF and CC plates with 50 sample points on each cufgee from mode to mode. For the three symmetric Levy square plates

(h/L
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Table 8 Vibration frequency parameters A= (wL?/ @?) phID for rectangular Mindlin plates with two equal spans
(a=2, h/L=0.10)

Cases Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
SS Plate 1.9317 2.2663 4.6084 4.6084 4.7671 5.2781 7.0716 7.4914 8.6162 8.6162
FF Plate 1.1523 1.2406 2.6500 3.0780 3.8792 39134 5.3950 5.6358 5.6448 6.3488
CC Plate 2.2684 2.6992 4.7726 4.9693 5.2839 5.9928 7.5084 7.9664 8.7010 8.7906
SF Plate 1.1927 2.0689 2.8892 3.8954 4.6804 4.8667 5.5230 6.0679 7.2563 7.9474
CF Plate 1.1946 2.3943 2.9544 3.8956 4.8564 5.4232 5.5330 6.2076 7.6775 7.9474
CS Plate 2.0248 2.5548 4.6528 4.8153 4.9054 5.7650 7.1971 7.8210 8.6389 8.7618

Table 9 Vibration frequency parameters A= (wL?/ %) \Jphi D for rectangular Mindlin plates with three equal spans
(a=3, h/L=0.10)

Cases Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 { Mode 10
SS Plate 1.9317 2.0924 2.4619 4.6084 4.6084 4.6843 4.8588 4.9527 5.6123 7.0716
FF Plate 1.1873 1.2001 2.1960 2.8303 2.9891 3.8944 4.7561 5.0668 5.5031 5.9557
CC Plate 2.0931 2.4642 2.6983 4.6860 4.8648 49548 4.9670 5.6181 5.9906 7.2867
SF Plate 1.1936 1.9867 2.3440 2.9195 3.8955 4.6358 4.7212 4.8174 5.3669 5.5276
CF Plate 1.1936 2.1362 2.5680 2.9313 3.8955 4.7131 4.9230 5.0052 5.5280 5.7410
CS Plate 1.9739 2.2670 2.6296 4.6283 4,7049 4.7689 4.9374 5.2800 5.8834 7.1289

Table 10 Vibration frequency parameters A= (ewL?/ %?)JphID for rectangular Mindlin plates with four equal spans
(a=4, h/L=0.10)

Cases Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 | Mode 10
SS Plate 1.9317 2.0246 2.2663 2.5527 4.6084 4.6084 4.7671 4.8144 4.9000 5.2781
FF Plate 1.1927 1.1945 2.0689 2.3925 2.8892 2.9538 3.8954 3.8956 4.6804 4.8505
CC Plate 2.0248 2.2674 2.5548 2.6978 4.6528 4.7698 4.8153 4.9054 4.9659 5.2810
SF Plate 1.1936 1.9608 2.1692 | 2.4853 2.9244 3.8955 4.6226 4.6706 4.7267 4.8799
CF Plate 1.1936 2.0440 23232 2.6309 2.9266 3.8955 4.6642 4.8050 4.8390 4.9432
CS Plate 1.9556 2.1321 24142 2.6582 4.6196 4.6637 4.7039 4.8383 4.9490 5.0305

(i.e, SS FF andCC plates, the best location of the internal line lytical model based on the Levy solution method and the state-

support in increasing the fundamental frequency is at the plajpace technique is developed for the vibration analysis of multi-

center p=0.5), whereas for the three asymmetric Levy squaihan rectangular Mindlin plates.

plates(i.e, SF, CF andCSplates, the best location of the internal  Tabulated in this paper are the first 10 exact frequency param-

line support for fundamental frequency shifts from the plate centgfers for two-unequal-span square Mindlin plates and two-, three-

to \%‘g (SJ'SSee‘r’%h tﬁa"t"?ﬁgfé %?gek::noantcr)?rlrt]; on the curves for 4&0d four-equal-span rectangular Mindlin plates. The influence of
P I?ﬁe internal line support on the frequency parameters of a square

second, third and fourth modes in ti85 CC SE CF and CS P~ . . . . .
X . L Mindlin plate is examined. It is observed that the optimal location
plates and for the fourth mode in thé plate (see Figs. 3 and)d of the internal line support in strengthening the plate against vi-

These kind points represent the locations where mode sh : .
switching occurs when the line support location paramietear- Htion varies from plate to plate and from mode to mode. How-

; . . ever, for fundamental frequency, the best location of the internal
les across these kink points. line support is at the plate center for symmetric Levy square
plates. For equal-span rectangular plates, the frequency param-
3.3 Rectangular Mindlin Plates of Two-, Three- and Four- eters decrease with increasing number of spans. The frequency
Equal Spans. Tables 810 present the exact frequency pararmarameters also decrease as the plate thickness ratio increases due
eters of the first ten modes for rectangular Mindlin plates witty the influence of transverse shear deformation and rotary inertia.
two-, three- and four-equal spans. The plate aspectadtiGet to  We believe that the present exact vibration solutions may serve as
be 2, 3 and 4 for the two-, three- and four-equal-span platassnchmark values for Mindlin plates with internal line supports

respectively. Again we observe that the frequency parameters g@id are also useful to engineers who are designing multi-span
crease as the plate thickness ratit. increases. The frequencythick plates.

parameters also decrease as the number of spans increases for all
considered cases, except for the first mode ofSBglates. Acknowledgment
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