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Exact Solutions for Vibration
of Multi-Span Rectangular
Mindlin Plates
This paper presents the first-known exact solutions for the vibration of multi-span
angular Mindlin plates with two opposite edges simply supported. The Levy type so
method and the state-space technique are employed to develop an analytical appro
deal with the vibration of rectangular Mindlin plates of multiple spans. Exact vibrat
frequencies are obtained for two-span square Mindlin plates with varying span ratios
two-, three- and four-equal-span rectangular Mindlin plates. The influence of the
ratios, the number of spans and plate boundary conditions on the vibration behavi
square and rectangular Mindlin plates is examined. The presented exact vibration re
may serve as benchmark solutions for such plates.@DOI: 10.1115/1.1501083#
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1 Introduction
Multi-span rectangular plates are important structural com

nents that are widely used in various engineering applications,i.e.,
aeroplane surfaces, slabs in house construction, bridge deck
glass window panels. The problem of free vibration of multi-sp
rectangular plates or plates with internal line supports has
tracted the attention of many researchers. Veletsos and New
@1# pioneered the research in this area by studying the vibra
behavior of a two-span rectangular plate. Since then, many
searchers have carried out investigations on the topic using
ous analytical and numerical@2–14# methods. Among these re
searchers, Azimi et al.@7# obtained exact solutions for simpl
supported multi-span plates by using the receptance method.
recently, Xiang et al.@15# proposed an analytical approach for th
vibration analysis of multi-span rectangular plates with two op
site edges simply supported. By utilizing the Levy soluti
method and the state-space technique, their approach is ab
find exact solutions for the vibration of multi-span rectangu
plates involving free and clamped edges@15#.

All the aforementioned studies are for plates based on the c
sical thin plate theory~the Kirchhoff plate theory!. The investiga-
tions on the vibration of multi-span thick rectangular plates
relatively scarce@16#. It is well-known that the classical thin plat
theory overestimates the vibration frequencies when a plate
comes thick or a plate vibrates at higher frequencies. This o
estimation is due to the fact that the thin plate theory neglects
effects of transverse shear deformation and rotary inertia i
plate. To overcome this problem, one may employ the first or
shear-deformable plate theory~the Mindlin plate theory@17#! or
the higher order plate theory~the Reddy plate theory@18#! for
analysis of thick plates. Using thepb-2 Ritz method, Liew et al.
@19# studied the vibration of rectangular Mindlin plates with i
ternal line supports being either parallel to the edges or in dia
nal directions. They extended their studies later to the vibration
rectangular Mindlin plates with intermediate stiffeners@20# and
skew Mindlin plates with internal line supports@21#. Kong and
Cheung@22# investigated the vibration of shear-deformable pla
with internal line supports by the finite layer approach.

It is apparent that there are no exact solutions for the vibra
of multi-span thick rectangular plates in the open literature. T
purpose of this work is to fill the current gap in this area
introducing an analytical method for dealing with multi-span re
angular Mindlin plates and providing exact vibration solutions
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these plates. We shall consider a multi-span rectangular Min
plate with two opposite edges simply supported while the ot
two edges may take an arbitrary combination of boundary con
tions. The Levy solution method and the state-space techn
@15,23–27# are employed to establish the proposed analytical
proach for the vibration analysis of the Mindlin plate. This a
proach is used to generate exact vibration solutions. These s
tions are indeed valuable and are tabulated as they serv
important benchmark values for checking the convergence, va
ity and accuracy of potential numerical methods for the analy
of multi-span thick plates.

2 Mathematical Modelling
Consider an isotropic rectangular Mindlin plate of lengthaL,

width L and thicknessh as shown in Fig. 1. The plate is simpl
supported on the two edges parallel to thex axis. There are (n
21) internal line supports in thex direction that divide the plate
into n spans~see Fig. 1!. The internal line supports enforce zer
transverse displacement along the line supports in the plate.
origin of the coordinates~x, y! is set at the middle point of the
plate bottom edge. The problem at hand is to determine the vi
tion frequencies of the multi-span rectangular Mindlin plate.

We take a typical span in the plate to derive the Levy ty
solution. The governing differential equations based on the Mi
lin plate theory@14# for the i -th span in harmonic vibration can b
derived as:
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where the superscripti (51,2, . . . ,n) denotes thei -th span in the
plate,E is Young’s modulus,G5E/@2(11y)# is the shear modu-
lus, y is Poisson’s ratio,k2 is the shear correction factor,D
5Eh3/@12(12y2)# is the flexural rigidity of the plate,r is the
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mass density of the plate,v is the vibration frequency of the plate
w is the transverse displacement, andux anduy are rotations in the
y andx directions.

The essential and natural boundary conditions for the two p
allel edges~at y50 andy5L! in the i -th span are

wi50, (4a)

M y
i 50, (4b)

ux
i 50 (4c)

whereM y
i is the bending moment and is defined by

M y
i 5DS ]uy

i
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The general Levy-type solution approach is employed to so
the governing differential equations for thei -th span@15,26,27#.
The displacement fields can be expressed as

H wi~x,y!

ux
i ~x,y!

uy
i ~x,y!

J 5F fw
i ~x!sin

mpy

L
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mpy

L
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wherefw
i (x), fx

i (x) andfy
i (x) are unknown functions to be de

termined. Equation~6! satisfies the simply supported bounda
conditions on edgesy50 andy5L as defined in Eqs.~4a–4c!.

Substituting Eq.~6! into Eqs.~1–3!, the following differential
equation system can be derived:

~ci !85H ici (7)

whereci5@fw
i (fw

i )8 fx
i (fx

i )8 fy
i (fy

i )8#T, the prime8 repre-
sents the derivative with respect tox andH i is a 636 matrix with
the following non-zero elements:
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Fig. 1 Geometry and coordinate system for a Levy plate with
„nÀ1… internal line supports
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A general solution of Eq.~7! can be obtained as

ci5eHxci (18)

whereci is a constant column vector that can be determined by
plate boundary conditions of the two edges parallel to they axis
and/or interface conditions between adjacent spans andeHx is the
general matrix solution of Eq.~7!. The detailed procedure in de
termining Eq.~18! has been given in@26# and @27#.

Each of the two edges parallel to they axis may have the
following edge conditions

Mx
i 50, (19a)

Mxy
i 50, (19b)

Qx
i 50, if the edge is free (19c)

wi50, (20a)

Mx
i 50, (20b)

uy
i 50, if the edge is simply supported (20c)

wi50, (21a)

ux
i 50, (21b)

uy
i 50, if the edge is clamped (21c)

where i takes the value 1 orn, Mx
i , Mxy

i and Qx
i are bending

moment, twist moment and transverse shear force in the p
respectively, and defined by
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To ensure the continuity and the internal line support con
tions, the essential and natural boundary conditions for the in
face between thei -th and the (i 11)-th spans are defined as:

wi50, (25a)

w~ i 11!50, (25b)

ux
i 5ux

~ i 11! , (25c)

uy
i 5uy

~ i 11! , (25d)

Mx
i 5Mx

~ i 11! , (25e)
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Table 1 Comparison studies of frequency parameters for simply supported rectangular Mindlin plates with
two-equal spans „h ÕLÄ0.2…
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In view of Eq.~18!, a homogeneous system of equations can
derived by implementing the boundary conditions of the pl
along the two edges parallel to they axis @Eqs.~19!–~21!# and the
interface conditions between spans@Eq. ~25!# when assembling
the spans to the whole plate

K 5
c1

c2

]

c~ i 21!

ci

c~ i 11!

]

cn

6 5$0% (26)

The vibration frequencyv is determined when the determina
of K in Eq. ~26! is equal to zero. As the vibration frequencyv is
imbedded in matrixH, it cannot be obtained directly from Eq
~26!. A numerical iteration procedure has been developed to c
out the calculation@26,27#.

Fig. 2 A Levy plate with an internal line support
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3 Results and Discussions
In this section, the proposed analytical approach is employe

study the vibration of multi-span rectangular Mindlin plates w
various edge support conditions. Although the method can be
plied to obtain Levy solutions for rectangular plates of arbitra
number of spans along thex direction, we limit our study to two
span square plates with varying span ratios and two-, three-
four-equal-span rectangular plates in the present study. The n
ral frequency of a plate is expressed in terms of a non-dimensi
frequency parameterl5(vL2/p2)Arh/D. For brevity we shall
use the lettersF for a free edge,S for a simply supported edge an
C for a clamped edge and a two-letter designation to represen
edge conditions for a Levy plate. For instance, anFS plate will
have edgeAB free and edgeCD simply supported~see Fig. 1!,
respectively. The Poisson ratioy50.3 and the shear correctio
factor k255/6 are used in this study.

3.1 Comparison Studies. To confirm the correctness of th
proposed analytical approach, Table 1 presents the vibration
sults for a simply supported two-span rectangular Mindlin pl
generated by the present analytical approach and by thepb-2 Ritz
method@16#. We observe that the Ritz results@16# are in close
agreement with the present exact solutions in general. Howev
few Ritz results in Table 1 are not yet quite converged to the ex
solutions.

3.2 Square Mindlin Plates of Two-Unequal Spans. The
layout of a two-span Levy plate is shown in Fig. 2. The location
the internal line support is determined by the location parametb
~see Fig. 2!.

Tables 2–4 present the exact frequency parameters of the
ten modes for two-span square Mindlin plates with symme
Levy-type supporting edges~i.e., SS, FF andCC plates!. The lo-
cation parameter of the internal line supportb varies from 0.1, 0.3
to 0.5 and the plate thickness ratioh/L is set to be 0.01, 0.05 and
0.1. Tables 5–7 show the exact frequency parameters of the
ten modes for two-span square Mindlin plates with asymme
Levy-type supports~i.e., SF, CF andCSplates!. In this case, the
location parameter of the internal line supportb changes from 0.3,
0.5 to 0.7. All results in Tables 2 to 7 are presented with 5 s
nificant digits. As expected, we observe that the frequency par
eters for all six plates decrease with increasing plate thickn
ratio h/L due to the increased influence of transverse shear de
mation and rotary inertia.
Table 2 Vibration frequency parameters lÄ„vL 2Õp2
…Arh ÕD for an SS square plate with an internal line support
OCTOBER 2002, Vol. 124 Õ 547



Table 3 Vibration frequency parameters lÄ„vL 2Õp2
…Arh ÕD for an FF square plate with an internal line support

Table 4 Vibration frequency parameters lÄ„vL 2Õp2
…Arh ÕD for a CC square plate with an internal line support

Table 5 Vibration frequency parameters lÄ„vL 2Õp2
…Arh ÕD for an SF square plate with an internal line support

Table 6 Vibration frequency parameters lÄ„vL 2Õp2
…Arh ÕD for a CF square plate with an internal line support

Table 7 Vibration frequency parameters lÄ„vL 2Õp2
…Arh ÕD for a CS square plate with an internal line support
548 Õ Vol. 124, OCTOBER 2002 Transactions of the ASME



Fig. 3 Frequency parameters lÄ„vL 2Õp2
…„rh ÕD…

1Õ2 versus line support location b for SS, FF and CC square Mindlin plates
with one internal line support „h ÕLÄ0.1…
ibra-
in
and
tes
To further observe the influence of the line support location
the vibration of plates, the variation of frequency parametersl of
the first four modes against the line support locationb is plotted in
Figs. 3 and 4 for square Mindlin plates with thickness ratioh/L
50.1. The line support locationb varies from 0.01 to 0.5 for the
SS, FF and CC plates with 50 sample points on each curve~see
Journal of Vibration and Acoustics
onFig. 3! and from 0.01 to 0.99 for theSF, CF andCSplates with 99
sample points on each curve~see Fig. 4!, respectively. It is seen
that the internal line support strengthens the plates against v
tion. However, the optimal location of the internal line support
increasing the frequency parameter varies from plate to plate
from mode to mode. For the three symmetric Levy square pla
Fig. 4 Frequency parameters lÄ„vL 2Õp2
…„rh ÕD…

1Õ2 versus line support location b for SF, CF and CS square Mindlin plates
with one internal line support „h ÕLÄ0.1…
OCTOBER 2002, Vol. 124 Õ 549
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Table 8 Vibration frequency parameters lÄ„vL 2Õp2
…Arh ÕD for rectangular Mindlin plates with two equal spans

„aÄ2, h ÕLÄ0.10…

Table 9 Vibration frequency parameters lÄ„vL 2Õp2
…Arh ÕD for rectangular Mindlin plates with three equal spans

„aÄ3, h ÕLÄ0.10…

Table 10 Vibration frequency parameters lÄ„vL 2Õp2
…Arh ÕD for rectangular Mindlin plates with four equal spans

„aÄ4, h ÕLÄ0.10…
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~i.e., SS, FF andCC plates!, the best location of the internal lin
support in increasing the fundamental frequency is at the p
center (b50.5), whereas for the three asymmetric Levy squ
plates~i.e., SF, CF andCSplates!, the best location of the interna
line support for fundamental frequency shifts from the plate cen
to the side with a weaker edge constraint.

We observe that there are kink points on the curves for
second, third and fourth modes in theSS, CC SF, CF and CS
plates and for the fourth mode in theFF plate~see Figs. 3 and 4!.
These kind points represent the locations where mode sh
switching occurs when the line support location parameterb var-
ies across these kink points.

3.3 Rectangular Mindlin Plates of Two-, Three- and Four-
Equal Spans. Tables 8–10 present the exact frequency para
eters of the first ten modes for rectangular Mindlin plates w
two-, three- and four-equal spans. The plate aspect ratioa is set to
be 2, 3 and 4 for the two-, three- and four-equal-span pla
respectively. Again we observe that the frequency parameters
crease as the plate thickness ratioh/L increases. The frequenc
parameters also decrease as the number of spans increases
considered cases, except for the first mode of theSSplates.

4 Conclusions
This paper presents the first-known exact solutions for the

bration of multi-span rectangular Mindlin plates. A rectangu
plate is considered to have two parallel edges simply suppo
while the other two edges may have any combination of fr
simply supported or clamped conditions. The internal line s
ports that divided the plate into multiple spans are arranged to
perpendicular to the two simply supported parallel edges. An a
Õ Vol. 124, OCTOBER 2002
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lytical model based on the Levy solution method and the sta
space technique is developed for the vibration analysis of mu
span rectangular Mindlin plates.

Tabulated in this paper are the first 10 exact frequency par
eters for two-unequal-span square Mindlin plates and two-, th
and four-equal-span rectangular Mindlin plates. The influence
the internal line support on the frequency parameters of a sq
Mindlin plate is examined. It is observed that the optimal locati
of the internal line support in strengthening the plate against
bration varies from plate to plate and from mode to mode. Ho
ever, for fundamental frequency, the best location of the inter
line support is at the plate center for symmetric Levy squ
plates. For equal-span rectangular plates, the frequency pa
eters decrease with increasing number of spans. The frequ
parameters also decrease as the plate thickness ratio increase
to the influence of transverse shear deformation and rotary ine
We believe that the present exact vibration solutions may serv
benchmark values for Mindlin plates with internal line suppo
and are also useful to engineers who are designing multi-s
thick plates.
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