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Lagrange Wavelets for Signal Processing
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Abstract—This paper deals with the design of interpolating scheme for interpolation and approximation, multigrid genera-
wavelets based on a variety of Lagrange functions, combined with tion and surface fitting techniques. The most attractive feature
novel signal processing techniques for digital imaging. Haltband ot the approach is that the discrete samplings are identical to

Lagrange wavelets, B-spline Lagrange wavelets and Gaussian let multi Ut Ivsis. Without ditioni
Lagrange [Lagrange distributed approximating functional (DAF)] ~ Wavelet multiresolution analysis. Without any pre-conditioning

wavelets are presented as specific examples of the generalized®! POSt-processing that was required previously for an accurate
Lagrange wavelets. Our approach combines the perceptually wavelet analysis, the interpolating wavelet coefficients can be
dependent visual group normalization (VGN) technique and a jmplemented using a parallel computational scheme.
softer logic maskln_g_(SLM) method. These are utilized to rescale Lagrange interpolation polynomials are commonly used for
the wavelet coefficients, remove perceptual redundancy and _. | imati d thi B fully desiani
obtain good visual performance for digital image processing. Slgn_a approxlma 1on an smoo. Ing. By carefully .e5|gn|ng
o T _ the interpolating Lagrange functionals, one can obtain smooth
_ Index Terms—Dbistributed approximating functionals, general- - jarpolating scaling functions with arbitrary finite order
ized Lagrange wavelets, softer logic masking, visual group normal- - . . .
ization. of regularity. In this paper, we present three different kinds
of biorthogonal interpolating Lagrange wavelets (Halfband
Lagrange wavelets, B-spline Lagrange wavelets and Gaussian
. INTRODUCTION Lagrange (LDAF) wavelets) as specific examples of general-

HE theory of interpolating wavelets has attracted mudged Lagrange waveletsHalfband Lagrange waveletsan be

T attention recently [1], [9], [11]-[13], [20]-[22], [29], [30], regarded as an extension of Dubuc mterpolat.mg functionals
[33]-[37], [45], [46]. It possesses the attractive characteristiél: [12], auto-correlation shell wavelet analysis [29], and
that the wavelet coefficients are obtained from the direp@lfband filters [1].B-spline Lagrange Wavelegse generated
linear combinations of discrete samples rather than from tR¥ & B-spline-windowed Lagrange functional which increases
traditional inner product integrals. Mathematically, variou!® Smoothness and localization properties of the simple La-
interpolating wavelets can be formulated in an orthogonal gFange scaling function and related wavelétgrange DAFs
biorthogonal setting. Harten has described a kind of piecewi@nerated using Gaussian windowed Lagrange polynomials,
biorthogonal wavelet construction [13]. Swelden independenfiveé been successfully used for numerically solving various
has developed essentially this method into the “lifting scheméR€ar and nonlinear partial differential equations [45]. Typical
[37], which can be regarded as a special case of the Nevfig@mples include DAF-simulations of 3D reactive quantum
filters [21]. Unlike the previous method for constructingécattering and .2.D Navier—Stokes fluid flow with .nonperiodic
biorthogonal wavelets, which relies on explicit solution oPoundary conditions. In terms of wavelet analysis, DAFs can
coupled algebraic equations [5]-[7], the lifting scheme enablBs regarded as particular scaling functlon§ (wavelet-DAFs); the
one to construct custom-designed biorthogonal wavelet tra@§sociated DAF-wavelets are generated in a number of ways
forms assuming only a single low-pass filter, without iteratiok341—-{36]. Both DAFs and DAF-wavelets are smooth and decay
Generally speaking, the lifting-interpolating wavelet theory {&pidly in both the time and frequency representations. One
closely related to the finite element technique for the numefbjective of the present work is to construct new biorthogonal

ical solution of partial differential equations, the subdivisio®AF-wavelets and the associated DAF-filters.
As an example application to illustrate Lagrange wavelets,

we consider image processing. This application typically re-
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the true strength of the various signal components. In order tolnterpolating wavelets are particularly efficient for signal
achieve the best noise-removing efficiency, the visual responrspresentation since their multiresolution analysis is simply
is best accounted for by gerceptual normalizatioprocedure realized by discrete sampling. This makes it easy to generate
based on the characteristics of theman vision systefidVS). a subband decomposition without requiring tedious iterations.
The concept of visual loss-less quantization [44] is employed ktoreover, adaptive boundary treatments and nonuniform
construct the visual loss-less matrix, which re-adjusts the magmplings can be easily implemented using interpolating
nitude-normalized coefficients. methods. Compared with commonly used wavelet transforms,

Perceptual signal processing has the potential of overcomihg interpolating wavelet transform possesses the following
the limits of the traditional Shannon Rate-distortion (R-Dgharacteristics.

theory for perception-dependent information, such as images1) The wavelet transform coefficients are generated by a

and acoustic signals. Previously, Ramchandran, Vetterli, Xiong,  linear combination of signal samplings, instead of the
Herley, Asai, and Orchard have utilized a rate-distortion com-  commonly used convolution wavelet transform, such as

promise for image compression [15], [26], [27], and [47]. Our

recently derived visual group normalization (VGN) technique W= / i w(x) f(a) de 4)
[35], [36] can be used with a rate-distortion compromise to R

generate a so-calledisual rate-distortion(VR-D) theory to wherey; i(z) = 27/2(2x — k).

improve image processing further. 2) A parallel-computing algorithm can be easily con-

As an adjusted denoising technique, softer logic masking structed. The calculation and compression of coefficients
(SLM) [32] is designed to improve the filtering performance of are not coupled. For the halfband filter with lendththe
Donoho’s soft thresholding method [10]. The SLM technique calculation of the wavelet coefficients does not exceed
efficiently preserves important information (particularly at an L + 2 multiply/adds for each coefficient.
edge transition) in a manner suited to human visual perception.3) For aDth order differentiable function, the wavelet coef-
In this paper, the above mentioned approaches are combined ficients decay rapidly.
with generalized Lagrange wavelets to achieve excellent blind4) In a minimax sense, threshold masking and guantization

image restoration performance. are nearly optimal for a wide variety of regularization
algorithms.
[I. INTERPOLATING WAVELETS Theoretically, interpolating wavelets are closely related to the

following wavelet types.

1) Band- lelted Shannon Wavelet$he = band-limited
nction, ¢(x) = sin(nz)/mx € C* in Paley—Wiener space,
constructs mterpolating functions. Every band-limited
function f € L?(R) can be reconstructed by the equation

The basic characteristics of interpolating wavelets of ofder
require that the primary scaling functions satisfy the foIIowm?
conditions [11].

1) Interpolation:

1, k=0

P(k) = {07 Kzo FEZ ) o)=Y f(k)siilrzrx(x_—k)k) )
k

2) Self-Induced Two-Scale Relatiog: can be represented
as a linear combination of the dilates and translates of |tse here the related wavelet function (the Sinclet) is defined as
while the weight is the value af at a subdivision integer of S e Fig. 1)
order 2 sinm(2z — 1) —sinw(z — 1/2)

=2 k2002 = k) @

2) Interpolating Cardinal Spline:The cardinal polynomial
spline of degred, ¢ (), whereD is an odd integer, has been
This is only approximately satisfied for some of the interpcshown to be an interpolating wavelet (see Fig. 2). It is smooth
lating wavelets discussed in the later sections; however, the afith orderR = D — 1, and its derivatives through ordér — 1

proximation can be made arbitrarily accurate. decay exponentially [39]. Thus
3) Polynomial Span:For an integef) > 0, the collection of _
formal sums, symbolized bY.Cy.4(z — k), contains all poly- ¢p(z) = Z ap(k)Bp(e — k) @)

nomials of degree. g

4) Regularity: For realV > 0, ¢ is Holder continuous of Wheregp(z) is the B-spline of ordeD defined as

orderV. D41 i D
5) Localization: ¢ and all its derivatives through ord¢v | Bp(z) = Z (_1')1 <D + 1) <a: + D+l_ ;)
decay rapidly = D J 2
D+1
60| <A+l wer, (e 75 a), ©
s> 0, O0<r<|V] () Here,U is the step function

here|V | represents the maximum integer which does not ex- Ulz) — 9
ceedV. [ ] (z) = 1, z>0 ©)
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Fig. 1. = band-limited interpolating wavelets. (8)ncfunction and (b)Sincletwavelet.
1 -
4) Auto-Correlation Shell of Orthonormal WaveletH: ¢
.| is an orthonormal scaling function, its auto-correlatifi) =
[ ¢ (t) ¢ (x — t)dt is an interpolating wavelet (Fig. 3) [29].
o8k Its smoothness, localization and two-scale relations derive from
¢ . The auto-correlation of Haar, Lamarie—Battle, Meyer, and
04 ] Daubechies wavelets lead, respectively, to the interpolating
Schauder, interpolating splin€;> interpolating, and Deslau-
02l riers—Dubuc wavelets.
5) Lagrange Half-Band Filters:Ansari et al. [1] have
0 used Lagrange symmetric halfband FIR filters to design the
orthonomal wavelets that express the relation between the
02 Lagrange interpolators and Daubechies wavelets. Their filter
- -4 -2 0 2 4 6 corresponds to the Deslauriers—Dubuc wavelet of ofdes
Fi i ) o 2M — 1 = 7, M = 4. The transfer function of the halfband
ig. 2. Interpolating cardinal splinédX = 5). L L.
symmetric filterh is given by
and{ap(k)} is the sequence that satisfies the infinite summa- H(z) = % + 2T (%) (12)

tion condition
whereT is a trigonometric polynomial. Except féf0) = 1/2,
> ap(k)Bp(n— k) = é(n). (10)  at every even integer lattide(2n) = 0, n # 0, n € Z. The
k transfer function of the symmetric FIR filtér(n) = h(—n),
3) Deslauriers—Dubuc FunctionalLet D be an odd integer, has the form
andD > 0. There exist functionsl’,, such that ifFp has al- M
ready been defined at all binary rationals with denominator H(z) = % + Z h(2n — 1)(2272" + 221, (13)
it can be extended by polynomial interpolation to all binary ra- f—
tionals with denominatca2’**, i.e., all points halfway between

the previously defined points [9], [12]. Specifically, to define . T.he concept Of“ an |r)terpolat|ng v'\,/avelet decomposmqn IS
the function a—/~1(2k + 1) when it is already defined at all similar to that of “algorithm a trous,” the connec_tlon havmg
{k277}, fit a polynomial;, ;. to the data(k' /29, Fp (k' /29)) been fou_nd by Shensa [30_]. Moreover, the m'Ferpolatlng
for & € {279k — (D —1)/2], ..., 29[k + (D +1)/2]}. This wavelets invoke the construction of wavelet sampling theory.
Based on that, Xiaet al. developed several compactly sup-

ported interpolating wavelets [47]. The self-induced scaling

P k+1/2\ _ kE+1/2 11 conditions and interpolation condition are the most important
b =Tk ) (11) characteristics of interpolating wavelets. According to the

. o ) . i ) following equation:
This subdivision scheme defines a function that is uniformly

continuous at the rationals and has a unique continuous exten- flz) =%, f(n)p(z —n) (14)
sion. The functiont; is a compactly supported interval poly-

nomial and is regular; it is the auto-correlation function of théhe signal approximation is exact on the discrete integer sam-
Daubechies wavelet [8] of ordé? + 1. This function is at least pling points, which does not hold in general for commonly used
as smooth as the corresponding Daubechies wavelets. noninterpolating wavelets.

polynomial is unique

2

2
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Fig. 3. Interpolating wavelets by auto-correlation shéll £ 3). (a) Daubechies wavelet and (b) Dubuc wavelet.
lll. L AGRANGE WAVELETS .
...i L - e g | L Bl - - 1-3 . -
A. Halfband Lagrange Wavelets . 1 ) '

The halfband filter is defined as one whose even samples A X, - L .
the impulse response are constrained such i@t = 1/2 "= ML LEHE. Wis
andh(2n) = 0 for n = £1,+£2, ... A special case of sym- ! |
metric halfband filters can be obtained by choosing the filter cc Mo o la i i e .
efficients according to the Lagrange interpolation formula. Thi L : Wi amn .

filter coefficients are then given by _ .
ot Fig. 4. Lifting scheme.
_1\yn+M-1 _
(=1) H1 (M +1/2—m) functionals [Fig. 7(a)]. Whel® — +oc, the interpolating func-
h(2n —1) = v ' . (15) tional becomes the-band-limited Sinc function and its defini-
. (M = m)l(M +n — 1?'(2” -1 tion domain is the real line. The subband filters generated by
These filters have the property of maximal flatness. They pasagrange interpolating functionals satisfy
sess a balance between the degree of flatness at zero frequen(‘135 Interpolationz:(w) + h(w +7) = 1

and flatness at the Nyquist frequency (half sampling). 2) Symmetrvh(w) — hl(—

These half-band filters can be utilized to generate the inter- 3g Vgnishingy.m(own)"nentsf( ;,)(})(x) dr = &
polating wavelet decomposition, which is regarded as a clas fe biorthogonal conditionRis characterizeg by [6] as
auto-correlated shells of orthogonal wavelets. The interpolating

wavelet transform can also be generated by the following La- h(w)h(w) + g(w)g(w) = 1
grange polynomials [29] — . (19)
" hw)h(w + ) + g(w)g(w + ) = 0.
Pan_1(z) = H @ —(2m - 1) . (16) Donoho outlines a basic subband extension for perfect recon-
e ML mn (2P 1) = (2m— 1) struction. He defines the wavelet function as
In such a case, the predicted interpolation is expressed as P(x) = ¢(2¢ — 1). (20)

Thus the biorthogonal subband filters are expressed as
hw)=1,  glwy=e™  gw)=c“h(w+mr)
1=2k+1 a7) (21)

wherel’ is a projection and; are the low-pass coefficients atwhich satisfies the (19). However, the Donoho interpolating
the jth layer. This projection relation is equivalent to the subwavelets have some drawbacks, because the low-pass co-
band filter response of efficients are generated by a sampling operation only. As
h(2n — 1) = Pan_1(0). (18) the decomposjt!on layer increases, the co_rrelation _between
low-pass coefficients becomes weaker. The interpolating (pre-
The aforementioned interpolating wavelets can be regardeddésion) error (high-pass coefficients) strongly increases, which
an extension of the fundamental Deslauriers—Dubuc interactiyestroys the compact representation of the signal. Additionally,
subdivision scheme (factorized & = 2, while the order of it does not lead to a Riesz basis fbt( ) space.
Lagrange polynomial i®) = 2M — 1 = 3) [Fig. 5(a)]. Swelden has provided, by far, the most efficient and robust
It is easy to verify that an increase of the Lagrange polyneeheme [37] for constructing biorthogonal wavelet filters. His
mial order will introduce higher regularity in the interpolatingapproach generates high-order interpolating Lagrange wavelets

US;(i) = > Pr1(0)[S;(i+ 2n — 1) + S;(i — 2n + 1)],
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Fig. 5. Lagrange wavelets with ord&r = 3. (a) Scaling, (b) wavelet, (c) dual scaling, and (d) dual wavelet.
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Fig. 6. Frequency response of equivalent filtefls £ 3, J = 3). (a) Decomposition and (b) reconstruction.

with increased regularity. In this case, the interpolating subbaffitie newly developed filtets, , g1, 21, andg; also construct the

filters are biorthogonal dual pair for perfect reconstruction if we choose
hi(w) = h(w) {p(%) = 2h(2k) 23
hi(w) =1+ §(w)P(2w) 22) p(2k+1)=0.
gi(w) = e = h(w)P(2w) Our lifting design is shown as Fig. 4 is the interpolating
g1(w) = g(w). prediction process, antl, the updating filter, makes the down-
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Fig. 7. Lagrange wavelets with = 9. (a) Scaling, (b) wavelet, (c) dual scaling, and (d) dual wavelet.
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Fig. 8. Frequency response of equivalent filteis £ 9, J = 3). (a) Decomposition and (b) reconstruction.

sampling low-pass coefficients smoother. A simple examplelis this case, the filter values df, are 2 times larger thaf;,
to choose the impulse responsel®fas and the phase difference is 2 [i.e1(k) = (1/2)Po(k + 1)].

We emphasize that we usg andg; as the analysis filter-
banks, andhy, g; as the reconstruction filterbanks. This may
decrease reconstructed undulations of the coefficient error [be-
cause the coefficient error is like a small prime wavelet (with
and the impulse response Bf as higher regularity), which is closely relatedAg, ¢;]. Examples

of biorthogonal lifting wavelets (with different regularity) gen-
erated by this scheme, and the associated equivalent subband
pi1(k) = h(2k+1). (25) filter responses are shown in Figs. 5-8.

polk) = 2n(2k — 1) (24)
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Fig. 9. Nonregularized Lagrange waveleld (= 5). (a) Lagrange polynomial, (b) scaling, (c) wavelet, (d) dual scaling, and (e) dual wavelet.

B. Spline Lagrange Wavelets and it is easy to verify that this Lagrange shell also satisfies the

Lagrange polynomials are natural interpolating expressions.

interpolating condition on discrete integer points, since

By utilizing different expressions for the Lagrange polyno- Pai(k) = 1, k=0 @7)
mials, we construct extensions of interpolating wavelets. We MY =0, otherwise.
define a class of symmetric Lagrange interpolating funcnonﬁlowever, simply defining the filter response as
shells as
1 k
M ) hk)y==P <§> , k=—-M M (28)

i=—M,iz0 " leads to nonstable interpolating wavelets, as shown in Fig. 9.
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Fig. 10. B-Spline Lagrange DAF wavelet® (= 4, 7 = 2). (a) Scaling, (b) wavelet, (c) dual scaling, and (d) dual wavelet.

@
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Fig. 11. Frequency response of equivalent filtdbs£ 4, = 2). (a) Decomposition and (b) reconstruction.

Utilizing a smooth window, which vanishes at the zeros afiavelets and equivalent subband filters (as in Figs. 10 and 11).
the Lagrange polynomial, leads to more regular interpolatinfjwe select a well-defined B-spline function as the weight
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window, then the scaling function (mother wavelet) becomes
an interpolating B-Spline Lagrange function (BSLF), given by
08
Bo(z/T)
Hz) =22 P
@,7(@) = 520 Pur(a) ol
M .
Oplx/T) H x—1
= - (29) 04t
$p(0) i=—M,i£0
where D is the B-spline order, and is the scaling factor to 02}
control the window width. To ensure coincidence of the zeroes
of the B-spline and the Lagrange polynomial, we set Of=—
2M = (D + 1)r. (30)

025 2 2 0 2 P 6

To preserve the interpolation condition, the B-spline envelope

factor M should be an odd number. It is easy to show that whétg- 12. Mother wavelet comparisol)( = 4, 7 = 2). Solid: B-spline

the B-spline order iD = 4k + 1, 7 can be any odd integer -29'a"9e and dotted: Gaussian Lagrange.

(2k + 1). If D is an even integer, thencan only be 2. When

D = 4k — 1, we cannot construct an ideal interpolating shellagrange DAF based wavelets are smoother and decay more
according to the above definition. From the interpolation arf@pidly than B-spline Lagrange wavelets as shown in Fig. 12.
self-induced scaling of the interpolating wavelets, it is easy tbwe select more sophisticated window shapes, the Lagrange

determine the subband filter response wavelets can be generalized further. We shall call these exten-
sions Bell-windowed Lagrange wavelets. The above-mentioned

h(k) = 1(7)1\4 <E> 7 k=—M, M. (31) interpolating wavelet construction using the Lagrange polyno-
2 2 mials can be extended to produce arbitrary customer-designed

wavelets using any continuous smooth functionals. The details

C. Gaussian-Lagrange DAF Wavelets will be presented in subsequent papers.
The Gaussian Lagrange distributed approximating functional
(GLDAF) can also be used as a basic scaling function to con- IV. VISUAL GROUP NORMALIZATION
struct interpolating wavelets. These are It is well known that the mathematical theory of wavelet

transforms and associated multiresolution analyses has appli-
1. 0(x) =Wola)Prr (2) cations in si i ineeri
" . . gnal processing and engineering pr_qblems, where
H T—1 (32) appropriate s_,ubbar!d fl_Iter§ are the central entlt_|es. Thg goal
—q of wavelet signal filtering is to preserve meaningful signal
components, while efficiently reducing noise components. To
where the B-spline window function is replaced by a Gaussiahjs end, we shall previously developed magnitude normal-
We(x) ization techniques [31], [32] and develop a new perceptual
normalization to account for the human vision response.

—22 /257
Wo(z)=e™"/ From a signal processing point of view, wavelet coefficients

which satisfies the minimum frame bound condition in quantuﬁ?n be regarded as res_ults of the signal passing througgav:
physics. Heres is a window-width parameter, ankhy («) is alent decomposition fllf[e(E_DF). The responses of the EDE
the Lagrange interpolation kernel. The DAF scaling functiofyCs:m(w) are the combination of several recurrent subband fil-
has been successfully utilized as the basis for an efficient afs 2t different stages. As shown in Fig. 6, the EDF amplitudes
powerful grid method for quantum dynamical propagation [45§! different frequency subbands are different. Thus the magni-
Using the lifting scheme, a wavelet basis is generated. TH: e of the decomposition coefficients in each of thg subblocks
Gaussian window in our DAF-wavelets efficiently smoothes oif!ll N0t exactly reproduce the true strength of the signal com-
the Gibbs oscillations, which plague most conventional wavelRpnents: Stated differently, various EDFs are incompatible with
bases. The following equation shows the close connecti§fc Other in the wavelet transform. To adjust the magnitude of
between the B-spline and the Gaussian windows [39]; the response in each block, the decompo§|t|on coefficients are
rescaled with respect to a common magnitude standard. Thus
6 — 622 the EDF coefficients”; ,,,(k) on layerj and blockm should be
Bp(x) = D+ 1) exp <D T 1) (34)  multiplied by a magnitude normalizing factoy, ,.,, to obtain
an adjusted magnitude representation. This factor is chosen as
for largeD. As in Fig. 12, if we choose the window width to bethe reciprocal of the maximum magnitude of the frequency re-
sponse of the equivalent filter on nogg m)

=W, (z)

i=—M, i#0

oc=7(D+1)/12 (35)
1

sup{|LC, m(w)[}
weN

the Gaussian Lagrange (Lagrange DAF) wavelets are similar Aj,m =
to the B-spline Lagrange wavelets. Usually, the Gaussian

Q=1[0,27. (36)
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This idea was recently extendeddmup normalization(GN) “basis function amplitude” in [44], because the digital image

of wavelet packets for signal processing [31], [32]. decomposition is completely done using filter banks.
An image can be regarded as the result of a real object pro-
cessed by a human visual system. The latter essentially has V. SOFTERLOGIC MASKING TECHNIQUE

many subband f||ter_s. 1_'he responses of these h_uman filters toI'hreshold masking techniques have been studied intensely in
various frequency distributions are not at all uniform. There-

) . . . wavelet signal processing [4], [10], [19], [25], [32], [35]. Such
fore, an appropriate alteration of the wavelet coefficients is nec-_ . : : o
) . : maskings can be regarded as a bias-estindgad-zone limiter
essary. Actually, the human visual system is adaptive and has . . .
. . : . ain [17] has shown that a nonlinear dead-zone limiter can im-
variable lenses and focuses for different visual environmenis, . :
. . . ; : ! . prove the SNR for weak signal detection
Using a just-noticeable distortion profile, we can efficiently re-
move the ylsual redundancy from decomposition coefﬂmeqts n(y) = sgn(y)(ly| — 6)§i, _1<p<1 (41)
and normalize them with respect to a standard of perceptual im-
portance. A practical, simple model for perception efficiencyheres is a threshold value. The positive function) . is de-
has been presented by Watsenal.[44] for data compression. fined as
This model is adapted here to construct the “perceptual loss-
less” response magnitude ,,, for normalizing according to the (z)4+ = max{z, 0}. (42)
visual response function
Donoho has shown that thie= 1 case of the above expression

Y} m = a10F(ea fodn/R)* (37) isanearly optimal estimator for adaptive NMR data smoothing
and denoising [10].
where ¢ defines the minimum detection threshold (the min- The various threshold cutoffs of multiband expansion coef-
imum possibl&’; ,, value). TheY ,,, define a “perceptual loss- ficients in hard logic masking methods are very similar to the
less” quantization threshold. If the quantization factor is largeutoff of a FFT expansion. Thus, Gibbs oscillations like those
thany; ,,, the reconstructed aliasing will be noticed by humaassociated with FFTs will also occur in a wavelet transform
eyes. An experimentally measured value:a$ 0.495 for gray- using a hard logic masking. Although hard logic masking
scale images [44]. The parameieis an experimental constantmethods with appropriate threshold values do not seriously
chosen to ensure that the measured result match the mathertadnge the magnitude of a signal after reconstruction, they
ical model (33); it was taken to be 0.466 in [44is the display can cause considerable edge distortions in a signal due to the
visual resolution (DVR), which was defined in pixels/degree asterference of additional high frequency components induced
by the cutoff. The higher the threshold value, the larger the
R~ rv/57.3. (38) Gibbs oscillation will be. Since image edges are especially
o ) ) o ) important in visual perception, hard logic masking can only be
The viewing distance (from eye to display) is given in cen-sed for weak-noise signal (or image) processing [such as elec-
timeters (cm) and the display resolutioiis given in pixels/cm  ocardiogram (ECG) signal filtering], where relatively small
(display or printer resolution). The term “direction” is intro-hreshold values are required. In this paper, we propesdter
duceq to identify the fou_r possible comb_inations of low-pagggic masking'SLM) method. In our SLM approach, a smooth
and high-pass filtering (similar to the terminology LL, LH, HL transition band near each masking threshold is introduced so
and HH in other wavelet references). The faafpris the di-  that anydecomposition coefficients which are smaller than
rectional response, which adjusts the minimum threshold by g2 threshold value are reduced gradually to zero, rather
amount that is a function of “direction.f, is the spatial fre- {nan being abruptlyset to zero. This treatment efficiently
quency factor, which is used to adjust the spatial frequency fgiippresses the edge oscillations and preserves image edges,
providing a reasonable fit to the experimental models. The Spgid consequently improves the resolution of the reconstructed
tial frequency is defined as image. The SLM method is implemented as
~ 2] N N
fr2R B9 Cyth) = s20(C1m(0)] X (|Cim ()] = 17 x 8 [N F)]
wherej is the layer of discrete wavelet decomposition dhid (43)
the display visual resolution [44]. Ther ,,,, together with the . - o
magnitude normalizing factox, ,,,, allows the creation of the WhereC; .., (k) denotes the decomposition coefficients to be re-

perceptual lossless quantization matrix as tained in the reconstruction, and the quanfy’; ,.,(k) is de-
fined as
Qjm = 2Y mAjm- (40) —— INCj . (F)|
NCj (k) = : (44)
This treatment provides a relatively simple, human-vision-based max {[NCjm(k)[}

. . i (g,m)CcT
threshold technique for the restoration of the most important

perceptual information in an image. We refer to the combinatidrhe softer logic window mapping$: [0, 1] — [0, 1], is a

of the above mentioned two normalizations as the visual gronpnlinear, monotonically increasing sigmoid functional. It is
normalization (VGN) of wavelet coefficients. Note here that wimteresting to note that Nowak has also designed an alternative
use )\, for magnitude normalization and not for the waveletonlinear technique independently to improve the Donoho
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Fig. 13. Nonlinear masking windows. (a) Donoho window, (b) Nowak window, and (c) SLM window.

thresholding [25]. Nowak'’s nonlinear shrinkage functional he’*°
the form
02F \\\
n(y) = yAy) (45) \\
where the nonlinear window functiohis defined as 015} \\\
“
AN
\\.
2 62 (I
yr+ e
N-1/+ 0.asf T
and N is the signal size. A comparison of the hard logic
Nowak, and softer logic masking windows is depicted i 0 - " p g ” ”

Fig. 13. Our masking window is an infinitely smooth function
in the region near threshold, with a maximum flat response Fig. 14. Threshold rate based on noise PSNR level.
both in the dead-zone and pass band. The Nowak window is
smooth only to the right of the threshold, and has a less flgfis purpose, we modify the aforementioned softer logic func-
pass-band. Donoho’s window is a nonsmooth signum functiggnal to
(no derivatives exist at threshold).

In two-dimensional (2-D) image processing, it is often impor- . (k) = Cjm(k)S NCj,m(k) — ¢ (47)

. . . . J,m J,m

tant to preserve the image gradient along sempéirection. For 1-¢
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Fig. 15. Comparison of the nonlinear filtering. (a) Original and (b) enlargement around threshold area. (Dashed line: Donoho filter; dottechkfdtedo
and solid line: SLM filter.)

where ¢ is a normalized adaptive threshold. The adjuste@l5 since theVC; ,,,(k) have been normalized over [0, 1]. A
stretching factorl — () is introduced to preserve the signamore precise estimate can be obtained using the true median co-
magnitude that is less contaminated by the noise. Johnstefiécient value that is image-independent. The variation of ini-
and Silverman [19] provided a useful level-dependent methtidl image PSNR vs. optimal uniform experimental threshold is

to estimate threshold shown in Fig. 14. Note that such a threshold curve is an average
result of different images. When initial image PSNR is smaller
5' —6,y/2logn (48) (image is more contemned by noise), the uniform threshold will
g T Y

goes higher. Otherwise, the threshold will become lower. Ac-
tually, the best PSNR solution may depend on various image
features (such as the texture, different spatial/orientation cor-
relation, and spatial-frequency responses). It implies that the
threshold is not only level (frequency) and orientation depen-
67 =MAD {W}/Oﬁma (49) dent, but also content (texture) dependent. Johnstone and Sil-
verman'’s level dependent thresholding need to be extended to a
block (spatial-frequency) and content dependent one to obtain
Here, we useVC; (k) to replace the wavelet coefficientss,  the best PSNR results. Meanwhile, the best PSNR thresholds for
in [19], because our thresholding solution is based on normalifferent images (that share the same noise-corrupted level) are
ized coefficients. “MAD” denotes the median absolute deviatifferent. We will compare our simplified perceptual processing
tion from zero and the factor 0.6745 is chosen by calibratigy GN) and the level/block dependent, best PSNR thresholding
with the Gaussian distribution [19]. Choosing a thresh@ltb  in the section dealing with specific images.
be proportional to,/2log n is done for the following reasons. The resulting nonlinear shrinkage filters are compared
If Z1, ..., Z, are normally distributed random variables withn Fig. 15. As shown in the enlarged local area around the
mean zero and varianet;?, then threshold, our softer logic masking shrinkage (the solid line
in the middle) reflects the feature of smoothness around both
ends. Recently, we have become aware that the SLM developed
lim P <max |Zi/oi| > \/210gn> =0 (50) in our previous work to extract a target from formidable
noee \isisn background noise [32] is quite similar to a method developed

later, independently, by Chipma al. [4].
regardless of whether or not the variables are independent.

The noise model we assume for our illustrative example is
white Gaussian. However, because we use the biorthogonal VI. EXPERIMENTAL RESULTS
wavelet transform, the noise in the wavelet coefficients is not
independent and identical distribution (iid) anymore (they Generally, the possible sources of image noise include pho-
are correlated now). The “conservative” properties of aboveelectric exchange, photo spots, errors in image communica-
equations come at the price of high threshold levels: in terrtign, etc. The noise influences the visual perception to generate
of PSNR loss in.2 space, better performance is obtained witepeckles, blips, ripples, bumps, ringings and aliasing. The noise
smaller thresholds [19]. A data-based threshold choice can thistortion not only affects the visual quality of the images, but
be obtained simply by minimizing the estimate with respect &lso degrades the efficiency of data compression and coding.
threshold over the rand®, o+/21logn]. Traditional image processing techniques can be classified as
In our earlier studies, we used a simplified variance approxiwo kinds: linear or nonlinear. The principle methods of linear
mations? = 1/1.35, which assumed that the median is aroungrocessing are local averaging, low-pass filtering, band-limit

where a robust estimation of the noise variam}eat each level
can be obtained from the data as
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(a)

()

Fig. 16. Two-dimensional Gaussian Lagrange (LDAF) wavelets. (a) Scaling, (b) vertical, (c) horizontal, and (d) diagonal wavelets.
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Fig. 17. Gaussian Lagrange (LDAF) wavelets. (a) Scaling, (b) wavelet, (c) dual scaling, and (d) dual wavelet.

filtering or multiframe averaging. Local averaging and low-pagbe image. The original pixel strength is substituted by an av-
filtering only preserve the low band frequency components efage of it with its neighboring pixels (within a square window).
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Fig. 20. VGN processing of Lena. (a) Noisy Lena (PSNR4.47 dB). (b) B97 VGN restoration (PSNR 30.98 dB). (c) Halfband Lagrange wavelet VGN
restoration. (PSNR= 30.87 dB). (d) B-spline Lagrange wavelet VGN restoration (PSNB1.38 dB). (e) Gaussian Lagrange (LDAF) wavelet VGN restoration

(PSNR= 31.43 dB).

The mean error may be improved but the averaging procesg, texture and skew lines. They are useless for noise whose
tends to blur the edges and finer details in the image. Band-ligprrelation is weak. Multiframe averaging requires that the im-
ited filters are utilized to remove the regularly appearing dot mages be still, and the noise distribution stationary. These con-
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(d) (]
Fig. 21. VGN processing of Barbara. (a) Noisy Barbara (PSANR4.50 dB). (b) B97 VGN restoration (PSNR 28.38 dB). (c) Halfband Lagrange wavelet

VGN restoration. (PSNR= 28.13 dB). (d) B-spline Lagrange wavelet VGN restoration (PSNR8.97 dB). (d) Gaussian Lagrange (LDAF) VGN restoration
(PSNR= 29.03 dB).

ditions are violated for motion picture images or for a spa@pproximation{s(n)}, n =0, ..., N, the MSE is defined to
(time)-varying noisy background. be

Traditionaly, image quality is characterized by a mean N_1
square errorNISE), which possesses the advantage of a simple MSE = % Z [3(n) — s(n)]2. (51)

mathematical structure. For a discrete sigf&ln)} and its
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le]

Fig. 22. Comparison of different masking methods on enlarged local area of Lena [all use the VGN technique, same Gaussian Lagrange (LDAF) wavelets as
Figs. 20 and 21, PSNR is calculated using whole image but not local area]. (a) Donoho nonlinearity £P3N& dB). (b) Nowak nonlinearity (PSNR
31.29 dB). (c) Our nonlinearity (PSNR 31.43 dB).

However, the MSE based evaluation standard, (such as TABLE |

PSNR = log[(255 x 255)/M SE]), can not exactly evaluate PERFORMANCE COMPARISON BY PSNR (N DECIBELS)

the image quality unless one neglects the effects of humisiymeaes IM,d,an 1397(N0n VGN) | B57(VeN) | GLDAF (VoNy

perception. The minimum MSE rule causes strong undulatlo : E;m 1756 T S B i

of the image level and destroys the smooth transition mform 7030 7323 3415 7619

tion around the pixels. Modified regularization methods me———24%__124% 12701 288 155

degrade the image resolution. Lema [ 1646 [ 2675 [ 7338 3674 30
Generally, unsatisfactory traditional image processing is ty 52% Zﬁ? i §§3§ §?i§

ically defined on the entire space (time) domain, which does
not localize the space (time)-frequency details of the signal.

Recent theoretical research shows that non-Gaussian and non-

stationary characteristics are important components in humBme commonly used nonlinear filtering approaches include me-
visual response [18], [38]. Human visual perception is momrtan filtering, and weighted averaging, etc. Median filtering uses
sensitive to image edges, which consist of sharp-changestttd median value within the window instead of the original value
the neighboring luminance, because it is essentially adaptiviethe pixel. This method causes less degradation for slanted
and has variable lenses and focuses for different visual enftinctions or square functions, but suppresses those signal im-
ronments. To protect edge information as well as remove noigelses which are shorter than half of the window length. This
modern image processing techniques are predominantly bag#itldegrade the image qualitf’he most serious shortcom-

on nonlinear methods. Before the smoothing process, the imaiggs of the weighted averaging methodare that the weighting-
edges, as well as perceptually sensitive texture must be detectégddow is not adaptive, and large-scale, complicated calcula-
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TABLE 1l
DE-NOISING PSNR ®MPARISON FORLENA (PSNR= 24.6184 dB)
31BE 4
Filter Length = 2m + 1 De-noising PSNR Comparison for Lena (PSNR = 24.6184 dB)
S Order m Half-band Lagrange B-spline Lagrange Gaussian Lagrange
arTr ) 1 31.1009 31.1009 31.1009
3 31.4958 31.3442 31.5760 (s = 1.25)
316k i 5 31.6231 31.7041 31.7220 (s = 1.70)
’ 7 31.6848 31.7289 31.7549 (s = 1.97)
9 31.7215 31.7869 31.7901 (s = 2.35)
3151 i 11 31.7445 31.7888 31.7926 (s = 2.55)
3 317501 378056 31.8073 (s = 2.93)
15 31.7693 31.8027 31.8042 (s = 3.04)
3144 _ 7 31.7763 31.8001 318112 (s = 3.39)
19 31.7816 31.8073 31.8084 (s = 3.45)
21 31.7859 31.8097 318112 (s = 3.73)
3131 J 23 31,7895 31.8086 31.8007 (s = 3.78)
25 31.7925 31.8089 31.8107 (s = 3.96)
27 31.7950 31.8077 31.8099 (s = 4.04)
312 q 29 31.7973 31.8039 31.8102 (s = 4.14)
31 31.7992 31.8049 31.8102 (s = 4.25)
311 Notice: B97 (low-pass filter length = 9) wavelet de-noising PSNR = 31.6750 dB
0 35 (Lena). We set factor h = 2 for B-spline Lagrange wavelets.
296
TABLE 1l
054 DE-NOISING PSNR (WMPARISON FORBARBARA (PSNR= 24.6394 dB)
Filter Length = 2m + 1 De-noising PSNR Comparison for Lena (PSNR = 24.6184 dB)
Order m Half-band Lagrange B-spline Lagrange Gaussian Lagrange
29.2¢ 1 1 28.3236 28.3236 28.3236
3 28.7502 28.7993 28.9197 (s = 1.32)
5 28.9379 29.1999 29.1878 (s = 1.88)
29+ E 7 29.0464 29.2964 29.2905 (s = 2.19)
9 29.1198 29.3663 29.3693 (s = 2.57)
11 29.1733 29.3931 20.3962 (s = 2.82)
. 13 29.2137 29.4173 29.4304 (s = 3.15)
288 1 I3 39,2460 204277 30.4353 (s = 3.34)
17 29.2726 29.4390 29.4545 (s = 3.66)
19 29.2947 29.4449 29.4568 (s = 3.84)
286 +F p 21 29.3131 29.4511 20.4702 (s = 4.10)
23 29.3285 29.4544 29.4673 (s = 4.23)
25 29.3417 29.4584 29.4742 (s = 4.48)
27 29.3531 29.4611 29.4724 (s = 4.70)
284r 1 29 39,3607 20.4640 20.4779 (5 = 4.85)
31 29.3711 29.4651 29.4758 (s = 4.94)
a 38

Notice: B97 wavelet (low-pass filter length = 9) de-noising PSNR = 28.8978 dB
(Barbara). We set factor h = 2 for B-spline Lagrange wavelets.

Fig. 23. Denoising performance comparison. [Solid line: Gaussian—Lagrange, ,.,._. - .
(LDAF) wavelet. Dotted line: B-spline Lagrange wavelet. Dashed: Half-band UtlllZIng the modified wavelet anaIyS|S'VGN wavelet trans-

Lagrange wavelet. Dashed-dotted line: B97 wavelet.] (a) Denoising results foérm presented in this paper, we correct the problem that the raw
Lena. (b) Denoising results for Barbara. magnitudes of the transform coefficients do not exactly yield the
perceptual strength of digital images. The nonlinear SLM fil-
tions are required to generate pixel values. As the window &N provides edge-preservation forimages, which removes the
made wider, more details are removed. haziness encountered with commonly used filtering techniques.
The efficient HVS-based image processing techniques pos-'C €St our approaches, benchmark 51812 Y-component
sess the advantages of images are employed. The first test is for the so-called “Lena
, . .image, which possesses clear sharp edges, strong contrast and
1) long range decorrelation for convenience of compressigfghmess. The second picture tested is “Barbara.” The variety
and filtering; o of texture components and consequently high frequency edgesiin
2) high perceptual sensitivity and robustness; the Barbara image create considerable difficulties for commonly
3) filtering according to human visual response. used filtering techniques. We focus on 2-D Gaussian Lagrange
4) itcan be carried out with real-time processing. (Lagrange DAF) wavelets forimage processing. The selected pa-
It therefore can enhance the most important visual informatiaameters ard/ = 5, ands = 1.73. The SLM nonlinearity used
suchasedges, while suppressing the flatregions and backgroumthis paper is the same as (48). The four 2-D Gaussian Lagrange
The space (time)-scale logarithmic response characteristidbfigrange DAF) wavelets are shown in Fig. 16.
the wavelet transform is similar to the HVS response. Visual per-The popular B97 wavelets [7], [43] are used in comparison
ception is sensitive to narrow band low-pass components, anavith the generalized Lagrange wavelet technique. As shown in
insensitive to wide band high frequency components. Moreoveig. 17, both Gaussian Lagrange (LDAF) wavelets and their dual
from research in neurophysiology and psychophysical studigsytners display excellent smoothness and rapid decay compared
the direction-selective cortex filtering is very much like a 2-Dviththe B97 wavelets (Fig. 18). The Gaussianwindow efficiently
waveletdecomposition. The high-pass coefficients of the wavesehoothes out the fractal-like oscillations, which plague many
transform canberegarded asavisible difference predictor (VDRjavelets. The EDF responses of both the DAF and B97 wavelets
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PSNR = 31.4331 dB (b) FS?‘E]{ = 29.0347 dB

Fig.24. Visual performance comparison. (a) Softer logic masking using block-dependentthreshold (best PSNR). (b) Softer logic masking usimgr RSN R).

are shown in Fig. 19. Itis obvious that the DAFs possess smalgmply by minimizing the estimate with respect to threshold
sidelobes, andtherefore lead toless frequency leakage distortiover the rang€0, o+/21ogn| according to

In Figs. 20(a) and 21(a), respectively, we show the result of
Gaussian white noise added to the original Lena and Barbara ¢ ¢ = max {PSNR( (CJ ds nmw) ) I)} (52)
images. The PSNR results of median filtering, B97-wavelet fil- Bd
tering, B97-wavelet VGN filtering and GLDAF-wavelet VGNwhere

processing are compared in Table I, while the perceptual qualityéjyd threshold estimate at decomposition layeand
of the B97-wavelet VGN, half-band Lagrange wavelet VGN, spatial directiond (HL, LH or HH);

B-spline Lagrange wavelet VGN, and Gaussian Lagrangel noise-free image;

(LDAF) wavelet VGN processed images (Lena and Barbara)l,,..,..  noise-corrupted image;

are shown in Figs. 20(b)-(e) and 21(b)—(e), respectively. It is [ softer logic masking approximation of the image.

evident that our VGN wavelet technique yields better PSNRVe emphasize here that the threshold is not only level dependent
contrast and edge-preservation results, as well as providgdn[19], butalso spatial-direction-based (because ofthe 2-D de-
high quality visual performance. An additional performanceomposition). In VGN processing, we require the LH and HL ori-
comparison of different nonlinear maskings (Donoho, Nowakntations (horizontal and vertical) to possess the same human vi-
and softer logic) is shown in Fig. 22. sual perceptual sensitivity (the threshold should be same). How-
Our image processing method can be regarded as a blewer, for a PSNR-based restoration, one violates the balance be-
restoration technique for any image. If we assume the noise-fteeen these two orientations to obtain the best PSNR results.
image is known, an image-dependent threshold choice using thén Tables Il and Ill, the PSNR performance comparison
threshold approximation in reference [19] can then be obtainefllevel-based denoising methods (all using the softer logic
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masking) show that Gaussian Lagrange (LDAF) wavelet prbagrange-DAF wavelet based VGN processing is extremely ef-
videsthe best PSNR results using different width factor and ordient and robust for digital image blind restoration and yield
choices. The B-spline Lagrange wavelet also yields excellegdod performance.

performance, with easier parameter selection (in the experiment,
we only used the facton 2). For high polynomial order,
half-band Lagrange wavelet is also superior to the popular B97
wavelet. A plot comparing PSNR is givenin Fig. 23. [1]
The visual quality comparison of the level-dependent

threshold method [19] and VGN are shown in Fig. 24. Al- [2]
though the VGN method possess the smaller PSNR (0.4 dB
less), the perceptual quality seems better. [3]

VII. CONCLUSIONS (4l
This paper discusses the design of interpolating Wavelets[S]
based on Lagrange interpolating functions and their applicatione]
inimage processing. An attractive property of the resulting inter-
polating wavelets is that the wavelet multiresolution analysis is[7
realized by discrete sampling. Thus pre- and post-conditioning
are not needed for an accurate wavelet analysis. The wavelet
coefficients are obtained from linear combinations of sample
values rather than from integrals, which implies the possibility [9]
of using parallel computation techniques. Theoretically, our
approach is closely related to the finite element technique fo[rm]
the numerical solution of partial differential equations, the[11]
subdivision scheme for interpolation approximations, multigrid
methods and surface fitting techniques. In this paper, we gen-
eralize the definition of interpolating Lagrange wavelets and13]
produce three different biorthogonal interpolating Lagrange
2 114]
wavelets, namely Halfband Lagrange wavelets, B—sphné
Lagrange wavelets and Gaussian—-Lagrange (LDAF) wavelets.
Halfband Lagrange wavelets can be regarded as an extensitfl
of the Dubuc interpolating functionals, auto-correlation shell
wavelet analysis and halfband filters. B-spline Lagrange
wavelets and Gaussian Lagrange (LDAF) wavelets are gert®l
erated by B-spline windowing and Gaussian windowing of
a Lagrange functional, respectively, and lead to increaser7]
smoothness and localization compared to the basic Lagrange
wavelets. Lagrange distributed approximating functionals ;g
(LDAF) are taken to be scaling functions (wavelet-DAFs).
DAFs are smoothly decaying in both time and frequency
representations. The present work extends the DAF approaghg]
to digital signal and image processing by constructing new
biorthogonal wavelets using a lifting scheme. [20]
For image processing applications, we combine two impor-
tant techniques, the coefficient normalization method and pei21]
ceptual lossless quantization basedtman vision systems
(HVS). The resulting combined technique is caNéslial group
normalization(VGN) processing [31]. The concept ofsual
lossless quantizatioiVLQ) leads to a potential breakthrough
compared to the traditional Shannon rate-distortion theory ir[123]
perception-based information processing. A modified version
of Donoho’s soft thresholding for image restoration, termed thé24]
softer logic maskingSLM) technique, is introduced for dealing [25]
with extremely noisy backgrounds. This technique better pre-
serves the important visual edges and contrast transition por2-6]
tions of an image and is readily adaptable to human vision:
Computational results show that our generalized Lagrange and

(22]
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