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Abstract—This paper deals with the design of interpolating
wavelets based on a variety of Lagrange functions, combined with
novel signal processing techniques for digital imaging. Halfband
Lagrange wavelets, B-spline Lagrange wavelets and Gaussian
Lagrange [Lagrange distributed approximating functional (DAF)]
wavelets are presented as specific examples of the generalized
Lagrange wavelets. Our approach combines the perceptually
dependent visual group normalization (VGN) technique and a
softer logic masking (SLM) method. These are utilized to rescale
the wavelet coefficients, remove perceptual redundancy and
obtain good visual performance for digital image processing.

Index Terms—Distributed approximating functionals, general-
ized Lagrange wavelets, softer logic masking, visual group normal-
ization.

I. INTRODUCTION

T HE theory of interpolating wavelets has attracted much
attention recently [1], [9], [11]–[13], [20]–[22], [29], [30],

[33]–[37], [45], [46]. It possesses the attractive characteristic
that the wavelet coefficients are obtained from the direct
linear combinations of discrete samples rather than from the
traditional inner product integrals. Mathematically, various
interpolating wavelets can be formulated in an orthogonal or
biorthogonal setting. Harten has described a kind of piecewise
biorthogonal wavelet construction [13]. Swelden independently
has developed essentially this method into the “lifting scheme”
[37], which can be regarded as a special case of the Neville
filters [21]. Unlike the previous method for constructing
biorthogonal wavelets, which relies on explicit solution of
coupled algebraic equations [5]–[7], the lifting scheme enables
one to construct custom-designed biorthogonal wavelet trans-
forms assuming only a single low-pass filter, without iteration.
Generally speaking, the lifting-interpolating wavelet theory is
closely related to the finite element technique for the numer-
ical solution of partial differential equations, the subdivision
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scheme for interpolation and approximation, multigrid genera-
tion and surface fitting techniques. The most attractive feature
of the approach is that the discrete samplings are identical to
wavelet multiresolution analysis. Without any pre-conditioning
or post-processing that was required previously for an accurate
wavelet analysis, the interpolating wavelet coefficients can be
implemented using a parallel computational scheme.

Lagrange interpolation polynomials are commonly used for
signal approximation and smoothing. By carefully designing
the interpolating Lagrange functionals, one can obtain smooth
interpolating scaling functions with arbitrary finite order
of regularity. In this paper, we present three different kinds
of biorthogonal interpolating Lagrange wavelets (Halfband
Lagrange wavelets, B-spline Lagrange wavelets and Gaussian
Lagrange (LDAF) wavelets) as specific examples of general-
ized Lagrange wavelets. Halfband Lagrange waveletscan be
regarded as an extension of Dubuc interpolating functionals
[9], [12], auto-correlation shell1 wavelet analysis [29], and
halfband filters [1].B-spline Lagrange Waveletsare generated
by a B-spline-windowed Lagrange functional which increases
the smoothness and localization properties of the simple La-
grange scaling function and related wavelets.Lagrange DAFs,
generated using Gaussian windowed Lagrange polynomials,
have been successfully used for numerically solving various
linear and nonlinear partial differential equations [45]. Typical
examples include DAF-simulations of 3D reactive quantum
scattering and 2D Navier–Stokes fluid flow with nonperiodic
boundary conditions. In terms of wavelet analysis, DAFs can
be regarded as particular scaling functions (wavelet-DAFs); the
associated DAF-wavelets are generated in a number of ways
[34]–[36]. Both DAFs and DAF-wavelets are smooth and decay
rapidly in both the time and frequency representations. One
objective of the present work is to construct new biorthogonal
DAF-wavelets and the associated DAF-filters.

As an example application to illustrate Lagrange wavelets,
we consider image processing. This application typically re-
quires dealing with very large data sets, complicated space-fre-
quency distributions and complex, perceptual dependent char-
acteristics. Denoising and restoration play an important role in
image processing. Noise distortion not only affects the visual
quality of images, but also degrades the efficiency of data com-
pression and coding. To exploit the time-frequency characteris-
tics of wavelets, an earliergroup normalization(GN) technique
[31], [32] has been introduced to re-scale the wavelet coeffi-
cients. The group normalization procedure corrects the defect
that the wavelet coefficient magnitudes do not correctly reflect

1The term “shell” in this paper refers to a generalized function'(�), whose
translation classf'(� � k)g constructs a kind of functional approximation for
a functionf 2 L (R).
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the true strength of the various signal components. In order to
achieve the best noise-removing efficiency, the visual response
is best accounted for by aperceptual normalizationprocedure
based on the characteristics of thehuman vision system(HVS).
The concept of visual loss-less quantization [44] is employed to
construct the visual loss-less matrix, which re-adjusts the mag-
nitude-normalized coefficients.

Perceptual signal processing has the potential of overcoming
the limits of the traditional Shannon Rate-distortion (R-D)
theory for perception-dependent information, such as images
and acoustic signals. Previously, Ramchandran, Vetterli, Xiong,
Herley, Asai, and Orchard have utilized a rate-distortion com-
promise for image compression [15], [26], [27], and [47]. Our
recently derived visual group normalization (VGN) technique
[35], [36] can be used with a rate-distortion compromise to
generate a so-calledvisual rate-distortion(VR-D) theory to
improve image processing further.

As an adjusted denoising technique, softer logic masking
(SLM) [32] is designed to improve the filtering performance of
Donoho’s soft thresholding method [10]. The SLM technique
efficiently preserves important information (particularly at an
edge transition) in a manner suited to human visual perception.
In this paper, the above mentioned approaches are combined
with generalized Lagrange wavelets to achieve excellent blind
image restoration performance.

II. I NTERPOLATING WAVELETS

The basic characteristics of interpolating wavelets of order
require that the primary scaling functions satisfy the following
conditions [11].

1) Interpolation:

,
(1)

2) Self-Induced Two-Scale Relation: can be represented
as a linear combination of the dilates and translates of itself,
while the weight is the value of at a subdivision integer of
order 2

(2)

This is only approximately satisfied for some of the interpo-
lating wavelets discussed in the later sections; however, the ap-
proximation can be made arbitrarily accurate.

3) Polynomial Span:For an integer , the collection of
formal sums, symbolized by , contains all poly-
nomials of degree .

4) Regularity: For real , is Hölder continuous of
order .

5) Localization: and all its derivatives through order
decay rapidly

(3)

here represents the maximum integer which does not ex-
ceed .

Interpolating wavelets are particularly efficient for signal
representation since their multiresolution analysis is simply
realized by discrete sampling. This makes it easy to generate
a subband decomposition without requiring tedious iterations.
Moreover, adaptive boundary treatments and nonuniform
samplings can be easily implemented using interpolating
methods. Compared with commonly used wavelet transforms,
the interpolating wavelet transform possesses the following
characteristics.

1) The wavelet transform coefficients are generated by a
linear combination of signal samplings, instead of the
commonly used convolution wavelet transform, such as

(4)

where .
2) A parallel-computing algorithm can be easily con-

structed. The calculation and compression of coefficients
are not coupled. For the halfband filter with length, the
calculation of the wavelet coefficients does not exceed

multiply/adds for each coefficient.
3) For a th order differentiable function, the wavelet coef-

ficients decay rapidly.
4) In a minimax sense, threshold masking and quantization

are nearly optimal for a wide variety of regularization
algorithms.

Theoretically, interpolating wavelets are closely related to the
following wavelet types.

1) Band-Limited Shannon Wavelets:The band-limited
function, in Paley–Wiener space,
constructs interpolating functions. Every band-limited
function can be reconstructed by the equation

(5)

where the related wavelet function (the Sinclet) is defined as
(see Fig. 1)

(6)

2) Interpolating Cardinal Spline:The cardinal polynomial
spline of degree , , where is an odd integer, has been
shown to be an interpolating wavelet (see Fig. 2). It is smooth
with order , and its derivatives through order
decay exponentially [39]. Thus

(7)

where is the B-spline of order defined as

(8)

Here, is the step function

(9)
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(a) (b)

Fig. 1. � band-limited interpolating wavelets. (a)Sincfunction and (b)Sincletwavelet.

Fig. 2. Interpolating cardinal spline (D = 5).

and is the sequence that satisfies the infinite summa-
tion condition

(10)

3) Deslauriers–Dubuc Functional:Let be an odd integer,
and . There exist functions, , such that if has al-
ready been defined at all binary rationals with denominator,
it can be extended by polynomial interpolation to all binary ra-
tionals with denominator , i.e., all points halfway between
the previously defined points [9], [12]. Specifically, to define
the function at when it is already defined at all

, fit a polynomial to the data
for . This
polynomial is unique

(11)

This subdivision scheme defines a function that is uniformly
continuous at the rationals and has a unique continuous exten-
sion. The function is a compactly supported interval poly-
nomial and is regular; it is the auto-correlation function of the
Daubechies wavelet [8] of order . This function is at least
as smooth as the corresponding Daubechies wavelets.

4) Auto-Correlation Shell of Orthonormal Wavelets:If
is an orthonormal scaling function, its auto-correlation

is an interpolating wavelet (Fig. 3) [29].
Its smoothness, localization and two-scale relations derive from

. The auto-correlation of Haar, Lamarie–Battle, Meyer, and
Daubechies wavelets lead, respectively, to the interpolating
Schauder, interpolating spline, interpolating, and Deslau-
riers–Dubuc wavelets.

5) Lagrange Half-Band Filters:Ansari et al. [1] have
used Lagrange symmetric halfband FIR filters to design the
orthonomal wavelets that express the relation between the
Lagrange interpolators and Daubechies wavelets. Their filter
corresponds to the Deslauriers–Dubuc wavelet of order

, . The transfer function of the halfband
symmetric filter is given by

(12)

where is a trigonometric polynomial. Except for ,
at every even integer lattice , . The
transfer function of the symmetric FIR filter ,
has the form

(13)

The concept of an interpolating wavelet decomposition is
similar to that of “algorithm a trous,” the connection having
been found by Shensa [30]. Moreover, the interpolating
wavelets invoke the construction of wavelet sampling theory.
Based on that, Xiaet al. developed several compactly sup-
ported interpolating wavelets [47]. The self-induced scaling
conditions and interpolation condition are the most important
characteristics of interpolating wavelets. According to the
following equation:

(14)

the signal approximation is exact on the discrete integer sam-
pling points, which does not hold in general for commonly used
noninterpolating wavelets.
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(a) (b)

Fig. 3. Interpolating wavelets by auto-correlation shell (D = 3). (a) Daubechies wavelet and (b) Dubuc wavelet.

III. L AGRANGE WAVELETS

A. Halfband Lagrange Wavelets

The halfband filter is defined as one whose even samples of
the impulse response are constrained such that
and for A special case of sym-
metric halfband filters can be obtained by choosing the filter co-
efficients according to the Lagrange interpolation formula. The
filter coefficients are then given by

(15)

These filters have the property of maximal flatness. They pos-
sess a balance between the degree of flatness at zero frequency
and flatness at the Nyquist frequency (half sampling).

These half-band filters can be utilized to generate the inter-
polating wavelet decomposition, which is regarded as a class of
auto-correlated shells of orthogonal wavelets. The interpolating
wavelet transform can also be generated by the following La-
grange polynomials [29]

(16)

In such a case, the predicted interpolation is expressed as

(17)

where is a projection and are the low-pass coefficients at
the th layer. This projection relation is equivalent to the sub-
band filter response of

(18)

The aforementioned interpolating wavelets can be regarded as
an extension of the fundamental Deslauriers–Dubuc interactive
subdivision scheme (factorized as , while the order of
Lagrange polynomial is ) [Fig. 5(a)].

It is easy to verify that an increase of the Lagrange polyno-
mial order will introduce higher regularity in the interpolating

Fig. 4. Lifting scheme.

functionals [Fig. 7(a)]. When , the interpolating func-
tional becomes the-band-limited Sinc function and its defini-
tion domain is the real line. The subband filters generated by
Lagrange interpolating functionals satisfy

1) Interpolation: .
2) Symmetry: .
3) Vanishing moments: .

The biorthogonal condition is characterized by [6] as

(19)

Donoho outlines a basic subband extension for perfect recon-
struction. He defines the wavelet function as

(20)

Thus the biorthogonal subband filters are expressed as

(21)

which satisfies the (19). However, the Donoho interpolating
wavelets have some drawbacks, because the low-pass co-
efficients are generated by a sampling operation only. As
the decomposition layer increases, the correlation between
low-pass coefficients becomes weaker. The interpolating (pre-
diction) error (high-pass coefficients) strongly increases, which
destroys the compact representation of the signal. Additionally,
it does not lead to a Riesz basis for space.

Swelden has provided, by far, the most efficient and robust
scheme [37] for constructing biorthogonal wavelet filters. His
approach generates high-order interpolating Lagrange wavelets



1492 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 10, OCTOBER 2001

(a) (b)

(c) (d)

Fig. 5. Lagrange wavelets with orderD = 3. (a) Scaling, (b) wavelet, (c) dual scaling, and (d) dual wavelet.

(a) (b)

Fig. 6. Frequency response of equivalent filters (D = 3, J = 3). (a) Decomposition and (b) reconstruction.

with increased regularity. In this case, the interpolating subband
filters are

(22)

The newly developed filters , , , and also construct the
biorthogonal dual pair for perfect reconstruction if we choose

(23)

Our lifting design is shown as Fig. 4, is the interpolating
prediction process, and the updating filter, makes the down-
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(a) (b)

(c) (d)

Fig. 7. Lagrange wavelets withD = 9. (a) Scaling, (b) wavelet, (c) dual scaling, and (d) dual wavelet.

(a) (b)

Fig. 8. Frequency response of equivalent filters (D = 9, J = 3). (a) Decomposition and (b) reconstruction.

sampling low-pass coefficients smoother. A simple example is
to choose the impulse response ofas

(24)

and the impulse response of as

(25)

In this case, the filter values of are 2 times larger than ,
and the phase difference is 2 [i.e., ].

We emphasize that we use and as the analysis filter-
banks, and , as the reconstruction filterbanks. This may
decrease reconstructed undulations of the coefficient error [be-
cause the coefficient error is like a small prime wavelet (with
higher regularity), which is closely related to, ]. Examples
of biorthogonal lifting wavelets (with different regularity) gen-
erated by this scheme, and the associated equivalent subband
filter responses are shown in Figs. 5–8.
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(a) (b)

(c) (d)

(e)

Fig. 9. Nonregularized Lagrange wavelets (M = 5). (a) Lagrange polynomial, (b) scaling, (c) wavelet, (d) dual scaling, and (e) dual wavelet.

B. Spline Lagrange Wavelets

Lagrange polynomials are natural interpolating expressions.
By utilizing different expressions for the Lagrange polyno-
mials, we construct extensions of interpolating wavelets. We
define a class of symmetric Lagrange interpolating functional
shells as

(26)

and it is easy to verify that this Lagrange shell also satisfies the
interpolating condition on discrete integer points, since

otherwise.
(27)

However, simply defining the filter response as

(28)

leads to nonstable interpolating wavelets, as shown in Fig. 9.
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(a) (b)

(c) (d)

Fig. 10. B-Spline Lagrange DAF wavelets (D = 4, � = 2). (a) Scaling, (b) wavelet, (c) dual scaling, and (d) dual wavelet.

(a) (b)

Fig. 11. Frequency response of equivalent filters (D = 4, � = 2). (a) Decomposition and (b) reconstruction.

Utilizing a smooth window, which vanishes at the zeros of
the Lagrange polynomial, leads to more regular interpolating

wavelets and equivalent subband filters (as in Figs. 10 and 11).
If we select a well-defined B-spline function as the weight
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window, then the scaling function (mother wavelet) becomes
an interpolating B-Spline Lagrange function (BSLF), given by

(29)

where is the B-spline order, and is the scaling factor to
control the window width. To ensure coincidence of the zeroes
of the B-spline and the Lagrange polynomial, we set

(30)

To preserve the interpolation condition, the B-spline envelope
factor should be an odd number. It is easy to show that when
the B-spline order is , can be any odd integer
( ). If is an even integer, thencan only be 2. When

, we cannot construct an ideal interpolating shell
according to the above definition. From the interpolation and
self-induced scaling of the interpolating wavelets, it is easy to
determine the subband filter response

(31)

C. Gaussian–Lagrange DAF Wavelets

The Gaussian Lagrange distributed approximating functional
(GLDAF) can also be used as a basic scaling function to con-
struct interpolating wavelets. These are

(32)

where the B-spline window function is replaced by a Gaussian,

(33)

which satisfies the minimum frame bound condition in quantum
physics. Here is a window-width parameter, and is
the Lagrange interpolation kernel. The DAF scaling function
has been successfully utilized as the basis for an efficient and
powerful grid method for quantum dynamical propagation [45].
Using the lifting scheme, a wavelet basis is generated. The
Gaussian window in our DAF-wavelets efficiently smoothes out
the Gibbs oscillations, which plague most conventional wavelet
bases. The following equation shows the close connection
between the B-spline and the Gaussian windows [39]:

(34)

for large . As in Fig. 12, if we choose the window width to be

(35)

the Gaussian Lagrange (Lagrange DAF) wavelets are similar
to the B-spline Lagrange wavelets. Usually, the Gaussian

Fig. 12. Mother wavelet comparison (D = 4, � = 2). Solid: B-spline
Lagrange and dotted: Gaussian Lagrange.

Lagrange DAF based wavelets are smoother and decay more
rapidly than B-spline Lagrange wavelets as shown in Fig. 12.
If we select more sophisticated window shapes, the Lagrange
wavelets can be generalized further. We shall call these exten-
sions Bell-windowed Lagrange wavelets. The above-mentioned
interpolating wavelet construction using the Lagrange polyno-
mials can be extended to produce arbitrary customer-designed
wavelets using any continuous smooth functionals. The details
will be presented in subsequent papers.

IV. V ISUAL GROUPNORMALIZATION

It is well known that the mathematical theory of wavelet
transforms and associated multiresolution analyses has appli-
cations in signal processing and engineering problems, where
appropriate subband filters are the central entities. The goal
of wavelet signal filtering is to preserve meaningful signal
components, while efficiently reducing noise components. To
this end, we shall previously developed magnitude normal-
ization techniques [31], [32] and develop a new perceptual
normalization to account for the human vision response.

From a signal processing point of view, wavelet coefficients
can be regarded as results of the signal passing through anequiv-
alent decomposition filter(EDF). The responses of the EDF

are the combination of several recurrent subband fil-
ters at different stages. As shown in Fig. 6, the EDF amplitudes
of different frequency subbands are different. Thus the magni-
tude of the decomposition coefficients in each of the subblocks
will not exactly reproduce the true strength of the signal com-
ponents. Stated differently, various EDFs are incompatible with
each other in the wavelet transform. To adjust the magnitude of
the response in each block, the decomposition coefficients are
rescaled with respect to a common magnitude standard. Thus
the EDF coefficients on layer and block should be
multiplied by a magnitude normalizing factor, , to obtain
an adjusted magnitude representation. This factor is chosen as
the reciprocal of the maximum magnitude of the frequency re-
sponse of the equivalent filter on node

(36)



SHI et al.: LAGRANGE WAVELETS FOR SIGNAL PROCESSING 1497

This idea was recently extended togroup normalization(GN)
of wavelet packets for signal processing [31], [32].

An image can be regarded as the result of a real object pro-
cessed by a human visual system. The latter essentially has
many subband filters. The responses of these human filters to
various frequency distributions are not at all uniform. There-
fore, an appropriate alteration of the wavelet coefficients is nec-
essary. Actually, the human visual system is adaptive and has
variable lenses and focuses for different visual environments.
Using a just-noticeable distortion profile, we can efficiently re-
move the visual redundancy from decomposition coefficients
and normalize them with respect to a standard of perceptual im-
portance. A practical, simple model for perception efficiency
has been presented by Watson,et al. [44] for data compression.
This model is adapted here to construct the “perceptual loss-
less” response magnitude for normalizing according to the
visual response function

(37)

where defines the minimum detection threshold (the min-
imum possible value). The define a “perceptual loss-
less” quantization threshold. If the quantization factor is larger
than , the reconstructed aliasing will be noticed by human
eyes. An experimentally measured value ofis 0.495 for gray-
scale images [44]. The parameteris an experimental constant
chosen to ensure that the measured result match the mathemat-
ical model (33); it was taken to be 0.466 in [44].is the display
visual resolution (DVR), which was defined in pixels/degree as

(38)

The viewing distance (from eye to display) is given in cen-
timeters (cm) and the display resolutionis given in pixels/cm
(display or printer resolution). The term “direction” is intro-
duced to identify the four possible combinations of low-pass
and high-pass filtering (similar to the terminology LL, LH, HL,
and HH in other wavelet references). The factor is the di-
rectional response, which adjusts the minimum threshold by an
amount that is a function of “direction.” is the spatial fre-
quency factor, which is used to adjust the spatial frequency for
providing a reasonable fit to the experimental models. The spa-
tial frequency is defined as

(39)

where is the layer of discrete wavelet decomposition andis
the display visual resolution [44]. Then , together with the
magnitude normalizing factor , allows the creation of the
perceptual lossless quantization matrix as

(40)

This treatment provides a relatively simple, human-vision-based
threshold technique for the restoration of the most important
perceptual information in an image. We refer to the combination
of the above mentioned two normalizations as the visual group
normalization (VGN) of wavelet coefficients. Note here that we
use for magnitude normalization and not for the wavelet

“basis function amplitude” in [44], because the digital image
decomposition is completely done using filter banks.

V. SOFTERLOGIC MASKING TECHNIQUE

Threshold masking techniques have been studied intensely in
wavelet signal processing [4], [10], [19], [25], [32], [35]. Such
maskings can be regarded as a bias-estimateddead-zone limiter.
Jain [17] has shown that a nonlinear dead-zone limiter can im-
prove the SNR for weak signal detection

(41)

where is a threshold value. The positive function is de-
fined as

(42)

Donoho has shown that the case of the above expression
is a nearly optimal estimator for adaptive NMR data smoothing
and denoising [10].

The various threshold cutoffs of multiband expansion coef-
ficients in hard logic masking methods are very similar to the
cutoff of a FFT expansion. Thus, Gibbs oscillations like those
associated with FFTs will also occur in a wavelet transform
using a hard logic masking. Although hard logic masking
methods with appropriate threshold values do not seriously
change the magnitude of a signal after reconstruction, they
can cause considerable edge distortions in a signal due to the
interference of additional high frequency components induced
by the cutoff. The higher the threshold value, the larger the
Gibbs oscillation will be. Since image edges are especially
important in visual perception, hard logic masking can only be
used for weak-noise signal (or image) processing [such as elec-
trocardiogram (ECG) signal filtering], where relatively small
threshold values are required. In this paper, we propose asofter
logic masking(SLM) method. In our SLM approach, a smooth
transition band near each masking threshold is introduced so
that anydecomposition coefficients which are smaller than
the threshold value are reduced gradually to zero, rather
than being abruptlyset to zero. This treatment efficiently
suppresses the edge oscillations and preserves image edges,
and consequently improves the resolution of the reconstructed
image. The SLM method is implemented as

(43)

where denotes the decomposition coefficients to be re-
tained in the reconstruction, and the quantity is de-
fined as

(44)

The softer logic window mapping, , is a
nonlinear, monotonically increasing sigmoid functional. It is
interesting to note that Nowak has also designed an alternative
nonlinear technique independently to improve the Donoho
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(a) (b)

(c)

Fig. 13. Nonlinear masking windows. (a) Donoho window, (b) Nowak window, and (c) SLM window.

thresholding [25]. Nowak’s nonlinear shrinkage functional has
the form

(45)

where the nonlinear window function is defined as

(46)

and is the signal size. A comparison of the hard logic,
Nowak, and softer logic masking windows is depicted in
Fig. 13. Our masking window is an infinitely smooth function
in the region near threshold, with a maximum flat response
both in the dead-zone and pass band. The Nowak window is
smooth only to the right of the threshold, and has a less flat
pass-band. Donoho’s window is a nonsmooth signum function
(no derivatives exist at threshold).

In two-dimensional (2-D) image processing, it is often impor-
tant to preserve the image gradient along some-direction. For

Fig. 14. Threshold rate based on noise PSNR level.

this purpose, we modify the aforementioned softer logic func-
tional to

(47)
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Fig. 15. Comparison of the nonlinear filtering. (a) Original and (b) enlargement around threshold area. (Dashed line: Donoho filter; dotted line: Nowak filter;
and solid line: SLM filter.)

where is a normalized adaptive threshold. The adjusted
stretching factor is introduced to preserve the signal
magnitude that is less contaminated by the noise. Johnstone
and Silverman [19] provided a useful level-dependent method
to estimate threshold

(48)

where a robust estimation of the noise variance,, at each level
can be obtained from the data as

(49)

Here, we use to replace the wavelet coefficients
in [19], because our thresholding solution is based on normal-
ized coefficients. “MAD” denotes the median absolute devia-
tion from zero and the factor 0.6745 is chosen by calibration
with the Gaussian distribution [19]. Choosing a thresholdto
be proportional to is done for the following reasons.
If are normally distributed random variables with
mean zero and variance , then

(50)

regardless of whether or not the variables are independent.
The noise model we assume for our illustrative example is

white Gaussian. However, because we use the biorthogonal
wavelet transform, the noise in the wavelet coefficients is not
independent and identical distribution (iid) anymore (they
are correlated now). The “conservative” properties of above
equations come at the price of high threshold levels: in terms
of PSNR loss in space, better performance is obtained with
smaller thresholds [19]. A data-based threshold choice can then
be obtained simply by minimizing the estimate with respect to
threshold over the range .

In our earlier studies, we used a simplified variance approxi-
mation , which assumed that the median is around

0.5 since the have been normalized over [0, 1]. A
more precise estimate can be obtained using the true median co-
efficient value that is image-independent. The variation of ini-
tial image PSNR vs. optimal uniform experimental threshold is
shown in Fig. 14. Note that such a threshold curve is an average
result of different images. When initial image PSNR is smaller
(image is more contemned by noise), the uniform threshold will
goes higher. Otherwise, the threshold will become lower. Ac-
tually, the best PSNR solution may depend on various image
features (such as the texture, different spatial/orientation cor-
relation, and spatial-frequency responses). It implies that the
threshold is not only level (frequency) and orientation depen-
dent, but also content (texture) dependent. Johnstone and Sil-
verman’s level dependent thresholding need to be extended to a
block (spatial-frequency) and content dependent one to obtain
the best PSNR results. Meanwhile, the best PSNR thresholds for
different images (that share the same noise-corrupted level) are
different. We will compare our simplified perceptual processing
(VGN) and the level/block dependent, best PSNR thresholding
in the section dealing with specific images.

The resulting nonlinear shrinkage filters are compared
in Fig. 15. As shown in the enlarged local area around the
threshold, our softer logic masking shrinkage (the solid line
in the middle) reflects the feature of smoothness around both
ends. Recently, we have become aware that the SLM developed
in our previous work to extract a target from formidable
background noise [32] is quite similar to a method developed
later, independently, by Chipmanet al. [4].

VI. EXPERIMENTAL RESULTS

Generally, the possible sources of image noise include pho-
toelectric exchange, photo spots, errors in image communica-
tion, etc. The noise influences the visual perception to generate
speckles, blips, ripples, bumps, ringings and aliasing. The noise
distortion not only affects the visual quality of the images, but
also degrades the efficiency of data compression and coding.
Traditional image processing techniques can be classified as
two kinds: linear or nonlinear. The principle methods of linear
processing are local averaging, low-pass filtering, band-limit
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Fig. 16. Two-dimensional Gaussian Lagrange (LDAF) wavelets. (a) Scaling, (b) vertical, (c) horizontal, and (d) diagonal wavelets.

Fig. 17. Gaussian Lagrange (LDAF) wavelets. (a) Scaling, (b) wavelet, (c) dual scaling, and (d) dual wavelet.

filtering or multiframe averaging. Local averaging and low-pass
filtering only preserve the low band frequency components of

the image. The original pixel strength is substituted by an av-
erage of it with its neighboring pixels (within a square window).
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Fig. 18. B97 wavelets. (a) Scaling, (b) wavelet, (c) dual scaling, and (d) dual wavelet.

Fig. 19. Frequency response of equivalent filters. (a) Non-normalized response of Gaussian Lagrange (LDAF) wavelets, (b) non-normalized responseof B97
wavelets, (c) normalized response of Gaussian Lagrange (LDAF) wavelets, and (d) normalized response of B97 wavelets.
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Fig. 20. VGN processing of Lena. (a) Noisy Lena (PSNR= 24.47 dB). (b) B97 VGN restoration (PSNR= 30.98 dB). (c) Halfband Lagrange wavelet VGN
restoration. (PSNR= 30.87 dB). (d) B-spline Lagrange wavelet VGN restoration (PSNR= 31.38 dB). (e) Gaussian Lagrange (LDAF) wavelet VGN restoration
(PSNR= 31.43 dB).

The mean error may be improved but the averaging process
tends to blur the edges and finer details in the image. Band-lim-
ited filters are utilized to remove the regularly appearing dot ma-

trix, texture and skew lines. They are useless for noise whose
correlation is weak. Multiframe averaging requires that the im-
ages be still, and the noise distribution stationary. These con-
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Fig. 21. VGN processing of Barbara. (a) Noisy Barbara (PSNR= 24.50 dB). (b) B97 VGN restoration (PSNR= 28.38 dB). (c) Halfband Lagrange wavelet
VGN restoration. (PSNR= 28.13 dB). (d) B-spline Lagrange wavelet VGN restoration (PSNR= 28.97 dB). (d) Gaussian Lagrange (LDAF) VGN restoration
(PSNR= 29.03 dB).

ditions are violated for motion picture images or for a space
(time)-varying noisy background.

Traditionaly, image quality is characterized by a mean
square error (MSE), which possesses the advantage of a simple
mathematical structure. For a discrete signal and its

approximation , , the MSE is defined to
be

(51)
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Fig. 22. Comparison of different masking methods on enlarged local area of Lena [all use the VGN technique, same Gaussian Lagrange (LDAF) wavelets as
Figs. 20 and 21, PSNR is calculated using whole image but not local area]. (a) Donoho nonlinearity (PSNR= 30.84 dB). (b) Nowak nonlinearity (PSNR=
31.29 dB). (c) Our nonlinearity (PSNR= 31.43 dB).

However, the MSE based evaluation standard, (such as
, can not exactly evaluate

the image quality unless one neglects the effects of human
perception. The minimum MSE rule causes strong undulations
of the image level and destroys the smooth transition informa-
tion around the pixels. Modified regularization methods may
degrade the image resolution.

Generally, unsatisfactory traditional image processing is typ-
ically defined on the entire space (time) domain, which does
not localize the space (time)-frequency details of the signal.
Recent theoretical research shows that non-Gaussian and non-
stationary characteristics are important components in human
visual response [18], [38]. Human visual perception is more
sensitive to image edges, which consist of sharp-changes of
the neighboring luminance, because it is essentially adaptive
and has variable lenses and focuses for different visual envi-
ronments. To protect edge information as well as remove noise,
modern image processing techniques are predominantly based
on nonlinear methods. Before the smoothing process, the image
edges, as well as perceptually sensitive texture must be detected.

TABLE I
PERFORMANCECOMPARISON BY PSNR (IN DECIBELS)

The commonly used nonlinear filtering approaches include me-
dian filtering, and weighted averaging, etc. Median filtering uses
the median value within the window instead of the original value
of the pixel. This method causes less degradation for slanted
functions or square functions, but suppresses those signal im-
pulses which are shorter than half of the window length. This
will degrade the image quality.The most serious shortcom-
ings of the weighted averaging methodare that the weighting-
window is not adaptive, and large-scale, complicated calcula-
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Fig. 23. Denoising performance comparison. [Solid line: Gaussian–Lagrange
(LDAF) wavelet. Dotted line: B-spline Lagrange wavelet. Dashed: Half-band
Lagrange wavelet. Dashed-dotted line: B97 wavelet.] (a) Denoising results for
Lena. (b) Denoising results for Barbara.

tions are required to generate pixel values. As the window is
made wider, more details are removed.

The efficient HVS-based image processing techniques pos-
sess the advantages of

1) long range decorrelation for convenience of compression
and filtering;

2) high perceptual sensitivity and robustness;
3) filtering according to human visual response.
4) it can be carried out with real-time processing.

It therefore can enhance the most important visual information,
suchasedges,whilesuppressing the flat regionsandbackground.

The space (time)-scale logarithmic response characteristic of
the wavelet transform is similar to the HVS response. Visual per-
ception is sensitive to narrow band low-pass components, and is
insensitive to wide band high frequency components. Moreover,
from research in neurophysiology and psychophysical studies,
the direction-selective cortex filtering is very much like a 2-D
waveletdecomposition.Thehigh-passcoefficientsof thewavelet
transformcanberegardedasavisibledifferencepredictor (VDP).

TABLE II
DE-NOISING PSNR COMPARISON FORLENA (PSNR= 24.6184 dB)

TABLE III
DE-NOISING PSNR COMPARISON FORBARBARA (PSNR= 24.6394 dB)

Utilizing the modified wavelet analysis-VGN wavelet trans-
form presented in this paper, we correct the problem that the raw
magnitudes of the transform coefficients do not exactly yield the
perceptual strength of digital images. The nonlinear SLM fil-
tering provides edge-preservation for images, which removes the
haziness encountered with commonly used filtering techniques.

To test our approaches, benchmark 512512 Y-component
images are employed. The first test is for the so-called “Lena”
image, which possesses clear sharp edges, strong contrast and
brightness. The second picture tested is “Barbara.” The variety
of texture components and consequently high frequency edges in
the Barbara image create considerable difficulties for commonly
used filtering techniques. We focus on 2-D Gaussian Lagrange
(Lagrange DAF) wavelets for image processing. The selected pa-
rameters are , and . The SLM nonlinearity used
in this paper is the same as (48). The four 2-D Gaussian Lagrange
(Lagrange DAF) wavelets are shown in Fig. 16.

The popular B97 wavelets [7], [43] are used in comparison
with the generalized Lagrange wavelet technique. As shown in
Fig. 17, both Gaussian Lagrange (LDAF) wavelets and their dual
partners display excellent smoothness and rapid decay compared
with theB97wavelets(Fig.18).TheGaussianwindowefficiently
smoothes out the fractal-like oscillations, which plague many
wavelets. The EDF responses of both the DAF and B97 wavelets
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Fig.24. Visualperformancecomparison. (a)Softer logicmaskingusingblock-dependent threshold (bestPSNR). (b)Softer logicmaskingusingVGN(lowerPSNR).

are shown in Fig. 19. It is obvious that the DAFs possess smaller
sidelobes,and therefore lead to less frequency leakagedistortion.

In Figs. 20(a) and 21(a), respectively, we show the result of
Gaussian white noise added to the original Lena and Barbara
images. The PSNR results of median filtering, B97-wavelet fil-
tering, B97-wavelet VGN filtering and GLDAF-wavelet VGN
processing are compared in Table I, while the perceptual quality
of the B97-wavelet VGN, half-band Lagrange wavelet VGN,
B-spline Lagrange wavelet VGN, and Gaussian Lagrange
(LDAF) wavelet VGN processed images (Lena and Barbara)
are shown in Figs. 20(b)–(e) and 21(b)–(e), respectively. It is
evident that our VGN wavelet technique yields better PSNR,
contrast and edge-preservation results, as well as provides
high quality visual performance. An additional performance
comparison of different nonlinear maskings (Donoho, Nowak,
and softer logic) is shown in Fig. 22.

Our image processing method can be regarded as a blind
restoration technique for any image. If we assume the noise-free
image is known, an image-dependent threshold choice using the
threshold approximation in reference [19] can then be obtained

simply by minimizing the estimate with respect to threshold
over the range according to

(52)

where
threshold estimate at decomposition layerand
spatial direction (HL, LH or HH);
noise-free image;
noise-corrupted image;
softer logic masking approximation of the image.

We emphasize here that the threshold is not only level dependent
as in [19],butalsospatial-direction-based(becauseof the2-Dde-
composition). InVGN processing, we require the LHand HLori-
entations (horizontal and vertical) to possess the same human vi-
sual perceptual sensitivity (the threshold should be same). How-
ever, for a PSNR-based restoration, one violates the balance be-
tween these two orientations to obtain the best PSNR results.

In Tables II and III, the PSNR performance comparison
of level-based denoising methods (all using the softer logic
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masking) show that Gaussian Lagrange (LDAF) wavelet pro-
vides the best PSNRresultsusingdifferentwidth factor and order
choices. The B-spline Lagrange wavelet also yields excellent
performance, with easier parameter selection (in the experiment,
we only used the factor ). For high polynomial order,
half-band Lagrange wavelet is also superior to the popular B97
wavelet. A plot comparing PSNR is given in Fig. 23.

The visual quality comparison of the level-dependent
threshold method [19] and VGN are shown in Fig. 24. Al-
though the VGN method possess the smaller PSNR (0.4 dB
less), the perceptual quality seems better.

VII. CONCLUSIONS

This paper discusses the design of interpolating wavelets
based on Lagrange interpolating functions and their application
in image processing. An attractive property of the resulting inter-
polating wavelets is that the wavelet multiresolution analysis is
realized by discrete sampling. Thus pre- and post-conditioning
are not needed for an accurate wavelet analysis. The wavelet
coefficients are obtained from linear combinations of sample
values rather than from integrals, which implies the possibility
of using parallel computation techniques. Theoretically, our
approach is closely related to the finite element technique for
the numerical solution of partial differential equations, the
subdivision scheme for interpolation approximations, multigrid
methods and surface fitting techniques. In this paper, we gen-
eralize the definition of interpolating Lagrange wavelets and
produce three different biorthogonal interpolating Lagrange
wavelets, namely Halfband Lagrange wavelets, B-spline
Lagrange wavelets and Gaussian–Lagrange (LDAF) wavelets.

Halfband Lagrange wavelets can be regarded as an extension
of the Dubuc interpolating functionals, auto-correlation shell
wavelet analysis and halfband filters. B-spline Lagrange
wavelets and Gaussian Lagrange (LDAF) wavelets are gen-
erated by B-spline windowing and Gaussian windowing of
a Lagrange functional, respectively, and lead to increased
smoothness and localization compared to the basic Lagrange
wavelets. Lagrange distributed approximating functionals
(LDAF) are taken to be scaling functions (wavelet-DAFs).
DAFs are smoothly decaying in both time and frequency
representations. The present work extends the DAF approach
to digital signal and image processing by constructing new
biorthogonal wavelets using a lifting scheme.

For image processing applications, we combine two impor-
tant techniques, the coefficient normalization method and per-
ceptual lossless quantization based onhuman vision systems
(HVS). The resulting combined technique is calledvisual group
normalization(VGN) processing [31]. The concept ofvisual
lossless quantization(VLQ) leads to a potential breakthrough
compared to the traditional Shannon rate-distortion theory in
perception-based information processing. A modified version
of Donoho’s soft thresholding for image restoration, termed the
softer logic masking(SLM) technique, is introduced for dealing
with extremely noisy backgrounds. This technique better pre-
serves the important visual edges and contrast transition por-
tions of an image and is readily adaptable to human vision.
Computational results show that our generalized Lagrange and

Lagrange-DAF wavelet based VGN processing is extremely ef-
ficient and robust for digital image blind restoration and yield
good performance.
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