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This paper presents a novel method for solving the Poisson-Boltzmann �PB� equation based on a
rigorous treatment of geometric singularities of the dielectric interface and a Green’s function
formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting
surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based
on an advanced mathematical technique, the matched interface and boundary �MIB� method, we
have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the
solvent-molecule interface where geometric singularities may occur. The resulting PB solver,
denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of
proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II
cannot maintain its accuracy because the grid points that carry the interface information overlap
with those that carry distributed singular charges. In the present Green’s function formalism, the
charge singularities are transformed into interface flux jump conditions, which are treated on an
equal footing as the geometric singularities in our MIB framework. The resulting method, denoted
as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2 Å
for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster
than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by
using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It
provides reliable benchmark numerical solutions for the PB equation. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2768064�

I. INTRODUCTION

Electrostatic interactions are omnipresent in
biomolecules.1,2 About 45% of aminoacids in globulare pro-
teins are either ionized under physiological conditions or
with polar groups in their side chains.3 A high electron
charge density of one charge per 1.7 Å is found in double-
strained DNA chains. Electrostatics plays a paramount role
in the structure, function, stability, and dynamics of macro-
molecules, such as signal transduction and other metabolic
processes. The interaction of each pair of �partially� charged
particles is governed by the Coulomb potential, which has a
nonvanishing impact over a wide range of distance. There-
fore, accurate and efficient evaluation of electrostatics has
been one of the most challenging issues in computational
molecular biology. Although a variety of methods, including
Ewald summations, Euler summations, periodic images, and
reaction field theory, have been developed in the past few
decades, explicit electrostatic calculations of biomolecules in
the solvent remain extremely expensive. Alternative implicit
solvent models4,5 have become very popular6–12 since the
pioneering work by Warwicker and Watson in the early
1980s,13 and Honig and Nicholls in the 1990s.8 The implicit
solvent theory retains a microscopic treatment of biomol-
ecules, while adopts a macroscopic mean-field description of
the solvent. In such an approach, the Poisson-Boltzmann

equation �PBE�, or Poisson equation �PE� if no salt is
present, is solved for electrostatic potentials. Consequently,
electrostatic free energy of solvation,14–16 pK� values,17–19

and electrostatic forces for molecular dynamics20,21 can be
calculated.

Although the PBE can be analytically solved for a few
simple cases, it relies on numerical approaches to obtain use-
ful solutions for realistic biological systems. A vast variety of
computational approaches, such as finite difference
methods,7,8,10,13,20,22–24 finite element methods,6,25–27 and
boundary integral methods,11,12,28–33 have been developed in
the past few decades. Among these approaches, Cartesian
grid based finite difference methods are commonly used in
many popular software packages, such as DELPHI,34,35

UHBD,36
MEAD,35. APBS,27,37,38 and CHARMM.39 It was argued

by Baker that finite difference based PB solvers, particularly
in conjunction with multigrid linear algebraic solvers, can
offer the best combination of speed, accuracy, and efficiency,
making them the most popular approaches in structural
biology.4

Implicit solvent models require a solvent-molecule inter-
face to separate the solvent domain from the biomolecular
domain. The molecular surface40,41 is commonly used in the
PBE for this purpose. The dielectric constants of the solvent
domain and molecular domain are usually chosen as 80 and
1 �or 2�, respectively, leading to discontinuous coefficients in
the PBE. Moreover, molecular surfaces admit geometric
singularities,40,42–44 such as cusps and self-intersecting sur-
faces. Explicit interface treatment of geometric singularities
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has not been considered in the literature. Consequently, no
Poisson-Boltzmann �PB� solver of second order conver-
gence, i.e., the numerical error reduces by a factor of 4 when
the grid spacing is halved, has ever been reported in the
context of molecular surfaces of macromolecules. Indeed,
irregular interfaces and geometric singularities cause numeri-
cal instability and slow down the convergence of existing PB
solvers. Therefore, enhancing the stability and accelerating
the convergence of PB solvers are pressing issues in devel-
oping the next generation PB solvers.

The rigorous treatment of discontinuous coefficients and
singular sources in elliptic equations is a challenging task in
applied mathematics and scientific computing. Since Pes-
kin’s pioneer work on immersed boundary method,45 a num-
ber of other elegant methods have been constructed. Among
these approaches, the ghost fluid method proposed by Fed-
kiw et al.46 and Liu et al.47 is relatively simple and easy to
use for complex geometry. Finite element formulations are
more suitable for weak solutions.48–51 An upwinding embed-
ded boundary method was proposed by Cai and Deng52 for
electromagnetic waves in dielectric media. Gibou and
Fedkiw53 proposed a fourth order extrapolation scheme for
solving Laplace and heat equations on irregular domains. An
integral equation approach was developed for complex
geometries.54 LeVeque and Li55 proposed a remarkable sec-
ond order sharp interface scheme, the immersed interface
method. Their method has been applied to many practical
problems, including the two-dimensional �2D� PBE.56 Re-
cently, we have proposed a matched interface and boundary
�MIB� method for interface problems.57–59 The MIB is of
arbitrarily high order in principle. Fourth and sixth order
MIB schemes have been demonstrated for curved
interfaces.58,59 This technique was used to developed our first
generation MIB based PB solver, denoted as MIBPB-I, for
arbitrary biomolecular interfaces.60 Nevertheless, none of the
aforementioned interface techniques is able to maintain its
designed order of convergence and accuracy in the presence
of geometric singularities. Indeed, technically, constructing
higher-order convergence schemes for elliptic equations with
geometric singularities is extremely challenging, despite
great desire for doing so in practical applications. To our
knowledge, the best result in the literature is of 0.8th order
convergence reported by Hou and Liu,61 achieved with a
finite element formulation in 2D. More recently, we have
extended the MIB method for solving elliptic equations with
geometric singularities in 2D.62 Most recently, we have con-
structed a second order MIB scheme for solving the PBE
with geometric singularities of molecular surfaces.63 Exten-
sive numerical experiments indicate that our MIB based PB
solver, denoted as MIBPB-II, outperforms traditional PB
solvers in terms of accuracy and efficiency.63

A remaining issue in our MIB based PB solver is the
efficient treatment of charge singularities. Technically, in
most finite difference based PB solvers, Dirac delta functions
in the PBE, or singular charges in a biomolecule, are redis-
tributed to their neighboring grid points. This treatment
works well in commonly used PB solvers where the major
error is produced due to the neglect of interface continuity
conditions. However, it affects the numerical accuracy of our

MIBPB-II solver because of the possible interference of geo-
metric interface and charge singularities. Stated differently, a
set of auxiliary grid points that carry interface jump condi-
tions may also carry singular charges, which leads to an ac-
curacy reduction. This typically happens when the mesh size
approaches half of the van der Waals radius. Consequently, at
a given level of accuracy, our MIBPB-II delivers highly ac-
curate electrostatic potentials when the grid spacing is
smaller than 0.6 Å, but it behaves like a normal PB solver
when a coarser mesh is used.

The objective of the present work is to overcome this
obstacle by introducing Green’s function technique into our
MIB formulation. The separation of the PB solution into
regular and singular parts was suggested by Zhou et al.64 The
feedback of the singular part to the regular part was not
included in their formulation. Chern et al. have formulated
the problem in a more rigorous manner.65 However, they
have only considered 2D problems with smooth interfaces.
In the present work, we consider a Green’s function formu-
lation for the molecular surfaces of proteins with possible
geometric singularities. The Green’s function approach effec-
tively transfers the contribution of charge singularities into a
set of interface jump conditions which are determined by
solving the corresponding Laplace equation with given sin-
gular sources. The charge-induced interface jump conditions
are perfectly compatible with our MIB techniques for com-
plex interfaces.63,66 Therefore, we are able to treat geometric
and charge singularities on an equal footing. The resulting
PB solver, denoted as MIBPB-III, is capable of eliminating
the interference of the geometric and charge singularities in
solving the PBE and is of second order convergence. The
present MIBPB-III is able to deliver high numerical accuracy
at a grid spacing as large as the van der Waals radius �about
1.2 Å� for macromolecules. Consequently, it is about three
times faster than APBS,27,37,38 a recent multigrid PB solver.

The rest of the paper is organized as follows. Section II
is devoted to the theoretical formulation and computational
algorithm. The Green’s function formulation of charge sin-
gularities is developed in the framework of our MIB method.
A second order MIB scheme is constructed to solve the
charge-induced boundary value problem with molecular sur-
face singularities. The resulting MIBPB-III is extensively
validated in Sec. III. The benchmark tests, such as the Kirk-
wood sphere,67 the molecular surfaces of few-body systems,
and 24 proteins, are used to examine the accuracy and test
the speed of convergence of the proposed MIBPB-III. Com-
parisons are given to our previous MIBPB-II and two other
established PB solvers. This article ends with a brief conclu-
sion summarizing the main points.

II. THEORY AND ALGORITHM

A. The Poisson-Boltzmann equation

Consider an open domain ��R3. Let �12 and �23 be
two disjoint interfaces which divide � into three disjoint
open subdomains, �=�−��0��+, see Fig. 1�a�. Here �−

is the biomolecular domain, �0 is a thin ion-exclusion layer,
and �+ is the solvent domain. By assuming the Boltzmann
distribution for the equilibrium ionic electrostatic potential
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energy ec��r� in the dielectric continuum treatment for the
ions in the solvent domain, the PBE takes the form68

− � · ���r� � ��r�� + �2�r�� kBT

ec
�sinh� ec��r�

kBT
�

= 4��
i=1

Nm

qi��r − ri� , �1�

where ��r� is the electrostatic potential and qi is the �frac-
tional� charge at position ri. Here, constants ec, kB, T, and Nm

are, respectively, the electronic charge, Boltzmann constant,
the absolute temperature, and number of charges in the bio-
molecule. The dielectric coefficient ��r� and the ionic
strength ��r�, as functions of the space, are defined as

��r� = ��− r � �−

�+ r � �0 � �+	 �2�

and

��r� = �0 r � �− � �0

�̄ r � �+.
	 �3�

Equation �1� is subject to the following far-field boundary
condition:

��	� = 0. �4�

However, in practical computations, the Direchlet boundary
condition

��r� = �
i=1

Nm qi

�+
r − ri

e−�̄
r−ri
 �5�

is used for the linearized PBE. Due to the discontinuous
nature of coefficients � and �, Eq. �1� should be solved with
following additional interface jump conditions across �12,

����12
= 0, �6�

���n��12
= 0 �7�

and across �23

����23
= 0, �8�

��n��23
= 0, �9�

where n is the outer normal direction of the interface. Math-
ematically, these jump conditions are required to ensure the
uniqueness of the solution. Physically, these conditions are
required by the continuity of the electrostatic potential and
its flux across the interface.

Since the ion-exclusion layer is typically about 1 Å in
thickness, the thin layer domain �0 normally has very lim-
ited impact to the electrostatic potential. For simplicity, we
adopt a two-domain model as illustrated in Fig. 1�b�, where
the entire domain is divided by the boundary of the mol-
ecule, �, into two disjoint domains �− and �+. Correspond-
ingly, we consider the simplified ��r� and ��r� as

��r� = ��− r � �−

�+ r � �+	 �10�

and

��r� = �0 r � �−

�̄ r � �+.
	 �11�

The interface jump conditions across � are given as

���� = 0, �12�

���n�� = 0. �13�

B. Green’s function formulation of the
Poisson-Boltzmann equation

Numerically, second and higher-order numerical imple-
mentation of Dirac delta functions on Cartesian grid points is
feasible with appropriate interpolation schemes. However,
the overlap of grid points carrying redistributed charges and
those involved in the treatment of geometric interface singu-
larities leads to an accuracy reduction. This interference be-

FIG. 1. Domains of PBE. �a� three-domain model and �b� two-domain
model.
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comes inevitable when a coarse mesh is pursued in an inter-
face treatment. Therefore, a Green’s function approach of the
singular charges becomes attractive in our higher-order inter-
face schemes for the linearized PBE. Such an approach de-
composes the solution � into regular part �̃ and singular part
�̄.64 The latter consists of a fundamental solution of the Pois-
son equation with the singular charge, �*, and a harmonic
function �0,65

� = �̃ + �̄ , �14�

where �̄�r� is defined as

�̄�r� = ��*�r� + �0�r� r � �−

0 r � �+.
	 �15�

Here �*�r� is the Green’s function

�*�r� = �
i=1

Nm qi

�−
r − ri

�16�

solving the Poisson equation with singular charges, while
�0�r� is a harmonic function in �− satisfying the Laplace
equation

��2�0�r�=0 in �−

�0�r�=− �*�r� on � .
	 �17�

The boundary value problem given by Eq. �17� is to be
solved with designed order of convergence over the irregular
domain �− with possibly geometric singularities. As a solu-
tion to the PBE, the singular part, �̄�r�, is solved subject to
the following jump conditions:

��̄�� = 0 and ���n�� = − �− � ��* + �0� · 
n
�. �18�

We work on the linearized version of Eq. �1�; thus the equa-
tion for the correction potential �̃�r�=��r�− �̄�r� is homo-
geneous,

− � · ���r� � �̃�r�� + �2�r���̄�r� + �̃�r�� = 0, �19�

and can be rewritten as

− � · ���r� � �̃�r�� + �2�r��̃�r� = − �2�r��̄�r� . �20�

This equation is solved with jump conditions

��̃�� = 0 and ���n
˜ �� = − ���̄n��

= �− � ��* + �0� · 
n
�. �21�

The interface problem given by Eq. �20� with interface jump
conditions �21� and appropriate far-field boundary conditions
is to be solved with designed order of convergence. The MIB
method is generalized for this purpose.

C. The matched interface and boundary „MIB… method

To solve the elliptic interface problem given by Eq. �20�,
we use the MIB method. Let us consider an elliptic equation
of the form

− � · ���r� � ��r�� + �2�r���r� = f�r� . �22�

The interface � divides the whole domain into two separated
parts, �− and �+. The jump conditions across the interface
are given by

��� = �+�r� − �−�r� , �23�

���n� = �+�r� � �+�r� · n − �−�r� � �−�r� · n , �24�

where n= �nx ,ny ,nz� is the outer normal direction of the in-
terface �. Here ��� and ���n� are given or can be computed
from other quantities. Appropriate far-field boundary condi-
tions are also prescribed for Eq. �22� and the outer boundary
of �+ is chosen to be regular. In our MIB method, a standard
Cartesian grid is used along with the standard finite differ-
ence schemes. However, near the interface, the standard fi-
nite difference schemes lose their designed convergence. We
therefore implement the interface jump conditions to restore
the accuracy. To this end, we classify all the grid points into
two classes, the regular ones and the irregular ones. An ir-
regular grid point is defined as one where the standard finite
difference scheme involves grid points across the interface.
Obviously, for a given grid point near the interface, it may
and may not be an irregular point, depending on the order of
the finite difference scheme used. For a given finite differ-
ence scheme, all the irregular grid points on one side of the
interface constitute a fictitious domain, see Fig. 2. Fictitious
values, which are the linear combination of regular points
and jump conditions, at irregular points are computed as a
continuation of the solution from the other side of the inter-
face by using the jump conditions. The fictitious value is
used when a finite difference scheme reaches across the in-
terface. In the following, we discuss how to calculate ficti-
tious values.

Assume that the interface � intersects the grid in the x
direction at a point �io , j ,k�, which is located between �i , j ,k�
and �i+1, j ,k�. We therefore have two irregular grid points,
�i , j ,k� and �i+1, j ,k�, for the second order finite difference
scheme in the x direction near the interface. The fictitious
values at these two irregular points, f+�i , j ,k� and
f−�i+1, j ,k�, are to be determined. However, one of the jump
conditions, Eq. �24�, is defined in the normal direction of the
interface at point �io , j ,k�. It is convenient to introduce a
local coordinates �
 ,� ,�� such that 
 is along the normal
direction and � is in the x-y plane. The coordinate transfor-
mation can be given as

�


�

�
� = p · �x

y

z
� , �25�

where p is the transformation matrix

p = � sin  cos � sin  sin � cos 

− sin � cos � 0

− cos  cos � − cos  sin � sin 
� . �26�

Here � and  are the azimuth and zenith angles with respect
to the normal direction 
, respectively. By differentiating
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Eq. �23� along two tangential directions, � and �, we can
generate two additional jump conditions

���� = ��x
+p21 + �y

+p22 + �z
+p23� − ��x

−p21 + �y
−p22

+ �z
−p23� , �27�

���� = ��x
+p31 + �y

+p32 + �z
+p33� − ��x

−p31 + �y
−p32

+ �z
−p33� , �28�

where pij is the ijth component of the transformation matrix
p. Since Eq. �25� implies

��


��

��

� = p · ��x

�y

�z
� , �29�

Eqs. �24�, �27�, and �28� can be rewritten as follows:

����
�
����
����

� = C · �
�x

+

�x
−

�y
+

�y
−

�z
+

�z
−

� , �30�

where

C = �C1

C2

C3
�

= �p11�
+ − p11�

− p12�
+ − p12�

− p13�
+ − p13�

−

p21 − p21 p22 − p22 p23 − p23

p31 − p31 p32 − p32 p33 − p33
� ,

�31�

where Ci represents the ith row of matrix C. It is clear that
none of these three jump conditions is easy to implement
because there are six derivatives, �x

+, �x
−, �y

+, �y
−, �z

+, and �z
−,

to be calculated in appropriate subdomains near the interface.
For complex solvent-molecule interfaces of macromolecules,
it is often very difficult to evaluate some of these derivatives.
Therefore, in the MIB method, we avoid calculating two
most difficult derivatives by eliminating them with two rel-
evant jump conditions. Figure 2�b� illustrates a case where
the �y

− is difficult to compute and is to be eliminated. In
general, after the elimination of the lth and mth elements of
the array ��x

+ ,�x
− ,�y

+ ,�y
− ,�z

+ ,�z
−�, Eq. �30� becomes

a���
� + b���� + c���� = �aC1 + bC2 + cC3� · �
�x

+

�x
−

�y
+

�y
−

�z
+

�z
−

� ,

�32�

where

a = C2lC3m − C3lC2m,

b = C3lC1m − C1lC3m, �33�

c = C1lC2m − C2lC1m.

We therefore use Eqs. �23� and �32� to determine two ficti-
tious values near the interface along a specific mesh line at a
time. This procedure is systematically repeated to determine
fictitious values along other mesh lines and at other interface
locations. In this manner, we have effectively reduced a
three-dimensional �3D� interface problem into a one-
dimensional �1D�-like one.

Returning to the situation in Fig. 2�b�, after eliminating
�y

− ,�y
+ is evaluated by using interpolation schemes with so-

lution values from the neighboring points. In detail, �y
+ at

�io , j ,k� will be interpolated by using grid value at points

FIG. 2. �Color online� An illustration of the MIB method: �a� fictitious
domains constructed with irregular grid points in a second order MIB
scheme and �b� MIB scheme.
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�io , j−1,k�, �io , j ,k�, and �io , j+1,k�. Since these three points
are not normal grid points, we need to further interpolate the
values at �io , j−1,k� by using grid values at �i+1, j−1,k�,
�i+2, j−1,k�, and �i+3, j−1,k�, and the value at
�io , j+1,k� by using grid values at �i+1, j+1,k�, �i+2, j
+1,k�, and �i+3, j+1,k�. For the value at �io , j ,k�, the ficti-
tious value at �i , j ,k� and grid values at �i+1, j ,k� and
�i+2, j ,k� will be applied for the interpolation. For a given
local geometry, we will choose to compute one of two partial
derivatives, �z

+ and �z
−, such that the evaluation in the x-z

plane can be easily carried out. In fact, care is required to
select appropriate interpolation schemes so that the resulting
MIB matrix is optimally symmetric and diagonally dominant
for arbitrarily complex solvent-molecule interfaces with geo-
metric singularities. A detailed discussion of the matrix opti-
mization and 3D MIB methods for geometric singularities is
given in Ref. 66. A rigorous validation of MIB based PB
solver, MIBPB-II, for molecular surface singularities can be
found in Ref. 63.

D. Solution to the boundary value problem

To obtain �0, we need to solve the boundary value prob-
lem given by Eq. �17�. We use the standard seven-point finite
difference scheme on all the regular grid points. However,
for irregular grid points in �−, the standard seven-point finite
difference scheme requires fictitious value�s� outside the in-
terface. In this case, we could determine the fictitious values
by extrapolation involving the interface values. However, in-
stead of using the fictitious values outside the interface, we
use the interface values at the intersecting points of the mesh
and the interface. Since the resulting finite difference weights
of the seven-point scheme are not strictly symmetric, this
treatment slightly reduces the accuracy of the scheme at the
grid points close to the interface. However, we have tested
that this local accuracy reduction does not affect the overall
second order convergence of our scheme. Moreover, the re-
sulting matrix is nearly symmetric and diagonally dominant,
and can be efficiently solved by a preconditioned biconjugate
gradient solver.

E. The evaluation of jump conditions

To solve Eq. �20� with the MIB method, we need to
evaluate the jump conditions in Eq. �21�. In other words,
after solving the boundary value problem �17�, we need to
calculate the derivatives of �0 and �* in the normal direction
at each intersecting point of the mesh lines and the interface.
According to Eq. �30�, these normal derivatives can be ob-
tained from the partial derivatives of �0 and �* in the x, y,
and z directions by means of the transformation matrix. We
encounter the difficulties that both �0 and �* are available
only inside the interface �. In fact, the Green’s function �* is
analytically available and its gradients can be computed to
arbitrarily high accuracy at each intersecting point. There-
fore, the accuracy is often limited by approximating the de-
rivatives of �0. We seek to extend domain �− by extrapola-
tions so that central difference schemes can be applied, since
central difference schemes are more accurate than the asym-
metric ones for a given length of stencils. Moreover, in many

cases with geometric singularities and restricted geometric
environment, a domain extension becomes inevitable. De-
rivatives are computed on the enlarged domain. Various tech-
niques developed in our MIB are utilized to calculate these
derivatives. This procedure is discussed as follows.

1. The extension of �0 in the fictitious domain

Having solved the boundary value problem �17�, �0 is
available in �−. To evaluate partial derivatives of �0 at each
intersecting point of the mesh lines and the interface, we
extend domain �− by extrapolation. Figure 3�a� gives three
cases of a grid point close to the interface and the schemes
used to extend the domain. In Case I, there are at least three
grid points inside the interface in the direction of extension.
We just use three �0 on grid points �2,3,4� and the value on
the interface point B to extrapolate the function value on grid
point 5, and then use �0 on points �2,3 ,4 ,B� and the ex-
trapolated function on grid point 5 to extrapolate the function
value on grid point 6. In Case II, there are only two grid

FIG. 3. �Color online� �a� �0 extension schemes and �b� illustration.
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points in between the interfaces in the direction of extension.
We use �0 on points �A ,3 ,4 ,B� to extrapolate �0 on grid
point 5, and then use �0 on points �A ,3 ,4 ,B� plus the ex-
trapolated �0 on grid point 5 to extrapolate �0 on grid point
6. In Case III, there is only one grid point in between the
interfaces in the direction of extension. We will use �0 on
points �A ,4 ,B� to extrapolate �0 on grid point 5. Due to the
fact we only have three points here and they are nonuni-
formly distributed, we will only extend �0 to one grid point
to maintain the accuracy of the extension.

There is a choice to be made when �0 on two extended
grid points can be obtained from extensions of different di-
rections. It is found that the accuracy of the extension is
optimized if the following order of priorities is maintained:
Case I for the first point, Case II for the first point, Case III
for the first point, Case I for the second point, and Case II for
the second point. We have examined the accuracy of this
order by using many test calculations with different geomet-
ric variations of the interfaces. In a smooth geometry with a
sufficiently dense grid, Case I will be dominant and Case III
rarely occurs. Although our extensions involve schemes of
different convergence orders, these approaches are optimal
or nearly optimal for geometric singularities, which are ex-
tremely challenging. The overall scheme is of numerically
second order even for complex molecular surfaces of twenty
four proteins.

After the extension, we obtain a fictitious domain out-
side the interface as illustrated in Fig. 3�b�. The computa-
tions of partial derivatives �x

0, �y
0, and �z

0 are carried out.

2. The calculation of partial derivatives

To calculate the derivative of �0 in the normal direction,
we need to compute three partial derivatives, �x

0, �y
0, and �z

0,
at each intersecting point of the mesh lines and the interface.
Since central schemes or nearly central schemes are pre-
ferred, these derivatives are calculated by using �0 in the
domain �0, on the interface �, and in the extended fictitious
domain. Figure 4 gives an x-y cross section illustration of the
schemes for computing �x

0�io , j ,k� and �y
0�io , j ,k� at the in-

tersecting point of the jth mesh line and the interface and
near the grid point �i , j ,k�. In Fig. 4�a�, the area circled by
the solid curve � is the domain �−, and the area between the
solid curve and the dashed curve is the extended domain. If
we restrict ourselves to grid points inside the domain
�−, we can compute �x

0 by �0�i−2, j ,k�, �0�i−1, j ,k�, and
�0�i , j ,k� but it will be impossible for us to calculate
�y

0�io , j ,k� directly. We therefore have to consider �0 in the
extended domain and on the interface. In this scheme, �x

0 can
be evaluated by using �0�i−1, j ,k�, �0�i , j ,k�, and
�0�i+1, j ,k�. Similarly, �y

0�io , j ,k� can be calculated by us-
ing �0�io , j−1,k�, �0�io , j ,k�, and �0�io , j+1,k� as denoted
by squares. However, �0�io , j−1,k� and �0�io , j+1,k� are
not available and they are to be computed by interpolations
with ��0�i−2, j−1,k�, �0�i−1, j−1,k�, �0�i , j−1,k�� and
��0�i−1, j+1,k�, �0�i , j+1,k�, �0�i+1, j+1,k��, respec-
tively.

Very rarely but possibly, we may encounter more chal-
lenging situations as illustrated in Fig. 4�b�. This typically

occurs with geometric singularities. In this case, �y
0�io , j ,k�

cannot be computed directly, nor can it be computed with
�0�io , j−1,k�, �0�io , j ,k�, and �0�io , j+1,k� because
�0�io , j−1,k� cannot be computed even with the extended
fictitious domain. To overcome this difficulty, we propose an
alternative scheme. We first compute �y

0�i , j ,k� by using
�0�i , j−1,k�, �0�i , j ,k�, and �0�i , j+1,k�. We then calculate
�y

0�i+1, j ,k� by using �0�i+1, j−1,k�, �0�i+1, j ,k�,
and �0�i+1, j+1,k�. Finally, we use �0�i+2, j ,k�,
�0�i+2, j+1,k�, and �0�i+2, j+2,k� to compute
�y

0�i+2, j ,k�. Eventually, �y
0�io , j ,k� can be obtained by in-

terpolations with �y
0�i , j ,k�, �y

0�i+1, j ,k�, and �y
0�i+2, j ,k�.

F. The computation of electrostatic free energy
of solvation

The calculation of the electrostatic free energy of solva-
tion plays a critical role in the study of biomolecule in sol-
vent. Such calculation is also one of the most important ap-
plications of the PBE. In the Green’s function formulation,
the evaluation of the electrostatic free energy of solvation is
slightly different from that in the direct solution of the PBE

�Gsol = 1
2�

i=1

Nm

q�ri���diele�ri� − �homo�ri�� , �34�

where q�ri� is the partial charges at ri��−, and �diele and
�homo are electrostatic potentials in the dielectric and homo-
geneous environments, respectively. In MIBPB-II and many
other finite difference based methods, the singular charges
are redistributed to the neighboring grid points and the sum-
mation is computed over all of these redistributed charges.
Electrostatic potential in homogeneous environment �homo is
obtained by the fast Fourier transform �FFT�.

FIG. 4. �Color online� Schemes to find partial derivatives: �a� regular cases
and �b� a special case.
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In the Green’s function formulation, the electronic po-
tential in the homogeneous environment �homo can be iden-
tified with the Green’s function which solves the Poisson
equation with the singular charge source term, �*. Since �*

is also a part of the full solution as shown in Eq. �14�, it does
not contribute to the electrostatic free energy of solvation.
The latter, therefore, can be directly computed from the sum
of �̃ and �0,

�Gsol = 1
2�

i=1

Nm

q�ri���̃�ri� + �0�ri�� . �35�

Note that �0 is defined in a smaller domain �− and its evalu-
ation is relatively cheap.

III. RESULTS AND DISCUSSIONS

In this section, we examine the accuracy, validate the
convergence, and test the speed of the proposed MIBPB-III
solver. For a comparison, we also applied some other estab-
lished methods, such as PBEQ,24 a representative finite dif-
ference PB solver from CHARMM,39 and APBS,27,37,38 a re-
cently developed multigrid finite element and finite
difference PB solver. The finite difference function of the
APBS is utilized in our calculations. The comparison is also
given to our second generation MIB based PB solver, the
MIBPB-II, which provides a rigorous treatment of geometric
singularities. The specific MIBPB-II solver used in this com-
parison is a new code. Extensive experiments are carried out
over Kirkwood’s dielectric sphere,67 molecular surfaces of 1,
2, and 18 atoms, and a set of 24 proteins used in previous
tests.60,69 Molecular surfaces are generated by using the
MSMS �version 2.5.7� �Ref. 44� at density 10 and with a probe
radius of 1.4 Å unless specified. In all test cases, the dielec-
tric constants are taken as �+=80 and �−=1. The latter is the
same as the dielectric constant in the vacuum, �0. For all
protein structures hydrogen atoms were added to obtain full
all-atom models. Partial charges at atomic sites and atomic
van der Waals radii were taken from the CHARMM22 force
field.70

To compare the computational performance, we use
three error measurements, the surface maximum absolute er-
ror E1, the surface maximum relative error E2, and the sur-
face root mean square error E3:

E1 = max�
��x,y,z� − �̂�x,y,z�
 ,

E2 = 100max���x,y,z� − �̂�x,y,z�

�̂�x,y,z�
 ,

E3 =� 1

Nirr
�
i=1

Nirr


�i − �̂i
2,

where � and �̂ are numerical and exact solutions, respec-
tively. The maximum value and summation are taken over all
the irregular grid points near the interface �, whose number
is given by Nirr.

A. Validation

1. Kirkwood dielectric sphere

To validate the proposed MIBPB-III, we first consider
Kirkwood’s dielectric sphere of radius 2.0 Å. In our tests, the
number of charges and their locations are allowed to vary
over a wide range. A detailed derivation of the model is
given in the Appendix.

Case 1: A dielectric sphere with a centered charge. We
start our test with a single unit charge at the center of a
sphere. For this case, �* will be a function of the radius r;
therefore it will have the constant value �*=1/b�− on the
interface, where b is the radius of the spherical biomolecule.
This constant value of �* on the interface will lead to a
constant �0=−1/b�− over the domain �−. Since �0 is a con-
stant, the interface jump condition �21� of Eq. �20� will de-
pend only on the normal derivative of �*, which is analyti-
cally given. Table I lists the results of the potential near
interface and the electrostatic free energies of solvation of
MIBPB-III and two other established PB solvers, PBEQ and
APBS. Results of our previous MIBPB-II are also given to
show the consistency and improvement of the present
MIBPB-III scheme. In this table, �G is the free energy of
solvation with exact value of −81.98 kcal/mol. All the sol-
vation energies are reported in kcal/mol. Meanwhile, all elec-
trostatic potentials are reported in kcal/mol/ec unless speci-
fied.

At the mesh size of h=0.5 Å, both MIBPB-II and
MIBPB-III are able to provide very accurate electrostatic
free energy of solvation. In fact, their errors at h=0.5 Å are
smaller than those of APBS and PBEQ at the mesh size as
small as h=0.05 Å. These results indicate the impact and
importance of rigorous mathematical treatment of interface
flux continuity conditions.

At the mesh size of h=1.0 Å, MIBPB-II loses its accu-
racy in the electrostatic free energy of solvation because it

TABLE I. Comparison of electrostatic free energies and surface potential errors for a unit charge in a dielectric sphere �Case 1�.

h

PBEQ APBS MIBPB-II MIBPB-III

�G E1 E2 �G E1 E2 �G E1 E2 �G E1 E2

1.00 −83.57 25.23 91.07 −83.44 25.31 90.87 −83.68 7.31 52.37 −81.95 1.62E−1 4.890
0.50 −85.78 17.06 84.26 −85.85 17.05 84.26 −81.97 2.56 6.68 −81.98 2.49E−2 0.966
0.20 −82.84 7.50 74.44 −82.58 7.51 74.43 −81.98 3.01E−1 1.57 −81.98 5.05E−3 0.161
0.10 −82.49 3.83 63.20 −82.27 3.84 63.20 −81.98 3.89E−2 0.37 −81.98 1.39E−3 0.050
0.05 −82.20 1.89 46.95 −82.03 1.94 46.18 −81.98 9.96E−3 0.086 −81.98 3.02E−4 0.013
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does not have a Green’s function treatment of charge singu-
larity. In this case, the grid points that carry the information
of interface jump conditions are mixed with those that carry
the distributed singular charges. Consequently, MIBPB-II
has a similar level of errors as PBEQ and APBS, which do
not have an explicit mathematical treatment of interface flux
jump conditions. In contrast, the advantage of MIBPB-III is
very obvious in this situation. Because of its Green’s func-
tion treatment of singular charge and its rigorous treatment
of interface flux jump conditions, the MIBPB-III is able to
deliver high accuracy in the prediction of the electrostatic
free energy of solvation at h=1.0 Å.

Surface electrostatic potentials are very important for
protein-protein and protein-ligand interaction, and thus the
electrostatic steering effects of signal transduction. It was not
widely recognized that traditional PB solvers produce very
large relative errors in the prediction of surface electrostatic
potentials, as much as 70% at the mesh size of h=0.2 Å for
a unit charge in a dielectric sphere. The earlier MIBPB-I and
MIBPB-II are able to deliver highly accurate surface electro-
static potentials for this system, with less than 2% errors at
h=0.5 Å. However at a coarse mesh size of h=1.0 Å,

MIBPB-I and MIBPB-II cannot maintain their accuracy for
the aforementioned reason. Our MIBPB-III is designed to
overcome this difficulty. Indeed, MIBPB-III is able to pro-
vide extremely accurate surface electrostatic potentials at h
=1.0 Å, as shown in Table I.

Case 2: A dielectric sphere with an off-centered charge.
In Case 2, we allow the unit charge to locate at a distance a
from the center of the sphere. We set mesh size h to 1.0, 0.5,
0.2, and 0.1 Å. Table II gives the numerical errors of surface
potentials calculated by PBEQ, MIBPB-II, and MIBPB-III.
The unit of the surface potentials is kcal/mol/ec. From the
table we can see that both MIBPB-II and MIBPB-III can
approximately achieve second order accuracy. While
MIBPB-III is more consistent in its convergence when the
charge approaches the boundary of the sphere. When both a
and h are relatively small, MIBPB-III is at least one order of
magnitude more accurate than MIBPB-II. When a=1.5 and
h�0.5 Å, MIBPB-II is abnormal because the system is un-
der resolved. MIBPB-III is still more accurate. In other
cases, we see a pattern that MIBPB-III outperforms MIBPB-
II, and MIBPB-II outperforms PBEQ.

Table III provides a detailed analysis of MIBPB-III er-

TABLE II. Numerical errors of surface electrostatic potentials for an off-centered charge in a dielectric sphere
�Case 2�.

a h

PBEQ MIBPB-II MIBPB-III

E1 Order E1 Order E1 Order

0.2 1.0 2.96E+01 1.09E+01 1.93E−01
0.5 2.16E+01 0.46 7.33E+00 0.58 3.55E−02 2.44
0.2 9.97E+00 0.84 4.50E−01 3.05 7.17E−03 1.75
0.1 5.15E+00 0.95 6.00E−02 2.91 2.01E−03 1.84

0.4 1.0 3.35E+01 1.31E+01 2.23E−01
0.5 2.76E+01 0.28 6.13E+00 1.09 4.38E−02 2.35
0.2 1.33E+01 0.80 7.10E−01 2.35 9.23E−03 1.70
0.1 6.99E+00 0.93 1.00E−01 2.83 2.76E−03 1.74

0.6 1.0 3.59E+01 1.27E+01 2.19E−01
0.5 3.39E+01 0.08 7.17E+00 0.83 4.48E−02 2.29
0.2 1.79E+01 0.70 1.17E+00 1.98 1.02E−02 1.61
0.1 9.46E+00 0.92 1.60E−01 2.87 3.52E−03 1.54

0.8 1.0 3.62E+01 1.10E+01 2.44E−01
0.5 4.05E+01 −0.16 1.00E+01 0.14 1.29E−01 0.92
0.2 2.43E+01 0.56 2.01E+00 1.75 1.91E−02 2.08
0.1 1.33E+01 0.87 3.20E−01 2.65 3.79E−03 2.33

1.0 1.0 3.39E+01 2.51E+01 7.94E−01
0.5 4.61E+01 −0.44 1.85E+01 0.44 4.82E−01 0.72
0.2 3.29E+01 0.37 3.55E+00 1.80 8.07E−02 1.95
0.1 1.96E+01 0.75 5.80E−01 2.61 1.48E−02 2.44

1.2 1.0 2.91E+01 9.87E+00 1.93E+00
0.5 4.81E+01 −0.72 3.12E+01 −1.66 1.38E+00 0.48
0.2 4.36E+01 0.11 5.82E+00 1.83 2.88E−01 1.72
0.1 2.88E+01 0.60 1.34E+00 2.12 5.78E−02 2.32

1.5 1.0 1.86E+01 3.76E+00 6.41E+00
0.5 4.90E+01 −1.40 4.31E+01 −3.52 4.91E+00 0.38
0.2 5.65E+01 −0.16 2.47E+01 0.61 1.95E+00 1.01
0.1 5.02E+01 0.17 6.38E+00 1.95 5.35E−01 1.87
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rors in Table II. The absolute errors are a factor of 332.0716
smaller in Table III because a different unit for electrostatic
potential �ec /Å� is used. In this analysis, errors are computed

for different components, such as the flux, �0, �̃, and �. This
analysis is important to our understanding of the advantage
and disadvantage of MIBPB-III in more complicated cases
later. Note that L	 errors, which are measured over the whole
domain, are reported for �0 and �̃ because they are well
behaved functions. First, for a from a=0.2 Å to a=0.6 Å,
where the distance between the charge and the interface is
greater than 1.4 Å, it is seen that the flux, �0, �̃, and �, can
all approximately achieve second order accuracy. For this
distance range, most charges are located away from the mo-
lecular surface. Second, for a from a=0.8 Å to a=1.2 Å,
second order accuracy cannot be achieved for all these com-
ponents and �. However, if we examine the errors of �0, �̃,
and �, it is seen that the errors at h=1.0 Å are very small and
very close to those at h=0.5 Å, which results in the low
order convergence from h=1.0 Å to h=0.5 Å. This may be
an advantage when we use the scheme on a coarse mesh like
h=1.0 Å. Third, when a is as large as 1.5 Å, where the dis-
tance between the charge and the interface is about 0.5 Å,

the order of convergence of the flux, �0 and �̃, is very low.
However, even under this situation, the solution, �, is still of
about second order accuracy. In short, although the accuracy
of the overall solution is limited by its components, it shows
a reasonable trend of second order convergence.

Case 3: A dielectric sphere with two off-centered
charges. Our third case is a dielectric sphere with two off-
centered charges located on the x axis and the z axis of a
distance a from the origin. Table IV gives the errors in the
electrostatic potential. The distribution of errors observed in
this case is very similar to that in Case 2. This study indi-
cates that the number of charges does not have much influ-
ence on the accuracy of these numerical schemes. However,
the distribution of the charge�s� does have a major impact on
the numerical accuracy. The problem becomes more difficult
when a is getting larger. In general, the proposed MIBPB-III
significantly outperforms two other methods.

Case 4: A dielectric sphere with six off-centered charges.
Finally, we consider a sphere with six off-centered charges
which are distributed in two patterns. In the first pattern,
denoted as Case 4�a�, six charges are located at �0.4,0.0,0.0�,
�0.0,0.8,0.0�, �0.0,0.0,1.2�, �0.0,0.0,−0.4�, �−0.8,0.0,0.0�,

TABLE III. Component analysis of surface electrostatic potentials for an off-centered charge in a dielectric sphere �Case 2�.

a h

Flux error �0 error �̃ error � error

E1 Order L	 Order L	 Order E1 Order

0.2 1.0 1.68E−04 3.05E−06 5.81E−04 5.81E−04
0.5 4.60E−05 1.87 7.13E−07 2.10 1.06E−04 2.45 1.07E−04 2.44
0.2 1.07E−05 1.59 6.61E−08 2.60 2.16E−05 1.74 2.16E−05 1.75
0.1 3.22E−06 1.73 9.21E−09 2.84 6.04E−06 1.84 6.04E−06 1.84

0.4 1.0 1.87E−03 4.32E−05 6.77E−04 6.72E−04
0.5 5.55E−04 1.75 1.45E−05 1.57 1.35E−04 2.33 1.32E−04 2.35
0.2 9.87E−05 1.88 1.45E−06 2.51 2.79E−05 1.72 2.78E−05 1.70
0.1 2.97E−05 1.73 2.12E−07 2.77 8.33E−06 1.74 8.32E−06 1.74

0.6 1.0 9.00E−03 2.51E−04 6.91E−04 6.60E−04
0.5 2.92E−03 1.62 9.59E−05 1.39 1.50E−04 2.20 1.35E−04 2.29
0.2 5.34E−04 1.85 1.05E−05 2.41 3.13E−05 1.71 3.08E−05 1.61
0.1 1.21E−04 2.14 1.56E−06 2.75 1.06E−05 1.56 1.06E−05 1.54

0.8 1.0 3.12E−02 8.96E−04 5.71E−04 7.34E−04
0.5 1.12E−02 1.48 4.04E−04 1.15 2.22E−04 1.36 3.88E−04 0.92
0.2 2.10E−03 1.83 5.02E−05 2.28 3.78E−05 1.93 5.75E−05 2.08
0.1 5.64E−04 1.90 7.82E−06 2.68 1.16E−05 1.70 1.14E−05 2.33

1.0 1.0 9.38E−02 2.43E−03 5.35E−04 2.39E−03
0.5 3.73E−02 1.33 1.34E−03 0.86 5.40E−04 −0.01 1.45E−03 0.72
0.2 7.02E−03 1.82 1.99E−04 2.08 1.09E−04 1.75 2.43E−04 1.95
0.1 2.92E−03 1.27 3.32E−05 2.58 2.25E−05 2.28 4.47E−05 2.44

1.2 1.0 2.65E−01 5.65E−03 1.54E−03 5.81E−03
0.5 1.17E−01 1.18 3.79E−03 0.58 1.35E−03 0.19 4.17E−03 0.48
0.2 2.15E−02 1.85 7.36E−04 1.79 3.02E−04 1.63 8.66E−04 1.72
0.1 8.38E−03 1.36 1.36E−04 2.44 6.90E−05 2.13 1.74E−04 2.32

1.5 1.0 1.31E+00 1.93E−02 1.03E−03 1.93E−02
0.5 6.88E−01 0.93 1.38E−02 0.48 4.26E−03 −2.05 1.48E−02 0.38
0.2 1.05E−01 2.05 5.31E−03 1.04 1.57E−03 1.09 5.87E−03 1.01
0.1 1.34E−01 −0.35 1.36E−03 1.97 4.57E−04 1.78 1.61E−03 1.87
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and �0.0,−1.2,0.0�. While in the second pattern, denoted as
Case 4�b�, six charges are located at �0.2,0.2,0.2�,
�0.5,0.5,0.5�, �0.8,0.8,0.8�, �0.2,0.2,−0.2�, �0.5,−0.5,0.5�,
and �0.8,−0.8,−0.8�. Some of the charges in Case 4�b� are
closer to the interface. Table V gives the error analysis for
these two charge distributions. The proposed MIBPB-III
achieves second order accuracy. It is necessary to point out
that at a coarse mesh size h=1.0 Å, when the charges are
very close to the interface, i.e., within 1.0 Å, the computed

potential will not be as accurate as the case where charges
are located far from the interface. However, because the van
der Waals radii of the partially charged atoms are normally
larger than 1.2 Å, such small distance between the charge
and the surface will not occur in practical bimolecular simu-
lations.

Table V also provides the electrostatic free energies of
solvation. Case 4�a� shows a better convergence in the sol-
vation energies as the mesh is refined because its charges are
located away from the interface. In contrast, for Case 4�b�,
larger variations in the solvation energies are observed. How-
ever, these variations are smaller than 2% and are acceptable
for most simulations. In the following subsection, we test the
performance of the proposed method for the combination of
geometric and charge singularities.

2. An analytically solvable model

Kirkwood’s solution in a dielectric sphere serves as a
benchmark test for PB solvers. However, it is also important
to validate our method for its performance on complex di-
electric interfaces, particularly interfaces with geometric sin-
gularities. For this purpose, we consider molecular surfaces,

TABLE IV. Numerical errors of surface electrostatic potentials for two off-centered charges in a dielectric
sphere �Case 3�.

a h

PBEQ MIBPB-II MIBPB-III

E1 Order E1 Order E1 Order

0.2 1.0 5.91E+01 1.82E+01 3.72E−01
0.5 4.14E+01 0.51 1.02E+01 0.84 5.44E−02 2.77
0.2 1.81E+01 0.90 7.80E−01 2.81 1.17E−02 1.68
0.1 9.14E+00 0.99 1.00E−01 2.96 3.26E−03 1.84

0.4 1.0 6.67E+01 2.07E+01 4.32E−01
0.5 4.94E+01 0.43 1.16E+01 0.83 6.58E−02 2.71
0.2 2.16E+01 0.90 1.01E+00 2.66 1.50E−02 1.61
0.1 1.09E+01 0.99 1.10E−01 3.20 4.39E−03 1.77

0.6 1.0 7.17E+01 2.05E+01 4.22E−01
0.5 5.73E+01 0.32 1.27E+01 0.69 6.12E−02 2.78
0.2 2.60E+01 0.86 1.38E+00 2.42 1.65E−02 1.43
0.1 1.33E+01 0.97 1.80E−01 2.94 5.17E−03 1.67

0.8 1.0 7.24E+01 1.61E+01 4.88E−01
0.5 6.41E+01 0.18 1.04E+01 0.63 1.69E−01 1.53
0.2 3.16E+01 0.77 2.12E+00 1.74 2.13E−02 2.26
0.1 1.69E+01 0.90 3.00E−01 2.82 5.36E−03 1.99

1.0 1.0 6.74E+01 5.01E+01 1.59E+00
0.5 6.79E+01 −0.01 1.91E+01 1.39 5.96E−01 1.41
0.2 3.92E+01 0.60 3.58E+00 1.83 8.57E−02 2.12
0.1 2.23E+01 0.81 5.80E−01 2.63 1.46E−02 2.55

1.2 1.0 5.81E+01 2.04E+01 3.86E+00
0.5 6.70E+01 −0.21 3.17E+01 −0.63 1.61E+00 1.26
0.2 4.87E+01 0.35 5.80E+00 1.85 3.00E−01 1.83
0.1 3.10E+01 0.65 1.34E+00 2.11 5.94E−02 2.34

1.5 1.0 3.72E+01 7.52E+00 1.28E+01
0.5 5.00E+01 −0.43 4.28E+01 −2.51 5.40E+00 1.25
0.2 5.95E+01 −0.19 2.48E+01 0.60 1.98E+00 1.09
0.1 5.15E+01 0.21 6.37E+00 1.96 5.39E−01 1.88

TABLE V. Numerical errors of surface electrostatic potentials for six
charges in a dielectric sphere �Case 4�.

Example h E1 Order �G

�a� 1.0 3.25 −3011.12
0.5 1.72 0.918 −2995.41
0.2 3.09E−1 1.87 −2990.20
0.1 5.91E−2 2.39 −2989.52

�b� 1.0 20.2 −3177.64
0.5 4.68 2.11 −3159.33
0.2 5.84E−1 2.27 −3122.70
0.1 9.46E−2 2.63 −3123.94
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which are often nonsmooth. One of the difficulties in testing
numerical methods is the lack of exact solution for the PBE
with complex geometry. Here, we construct an analytical so-
lution for systems with arbitrary singular charges and arbi-
trary dielectric interfaces. Consider the Poisson equation

� · ��r� � ��r� + k�r� = 4��
i=1

Nm

qi��r − ri� �36�

with discontinuous ��r� across the interface �, which divides
the whole domain into two separated parts, the molecular
subdomain �− and the solvent subdomain �+. We set �−=1
and �+=80. In the singular source term, qi is the ith partial
charge located at ri. Here, k=3 cos x cos y cos z. The prob-
lem in Eq. �36� is analytically solvable and its exact solution
is

�−�x,y,z� = �
i=1

Nm qi

�0
��x − xi�2 + �y − yi�2 + �z − zi�2

+ cos x cos y cos z , �37�

�+�x,y,z� = 0. �38�

This is a valuable analytical test case and can be applied to
PB solvers to check their accuracy and convergence order.
Obviously, it can be modified in many different ways. In
particular, it can be trivially modified for the linearized PBE,
namely, adding a term, �2�, to both sides of Eq. �36� without
changing the solution.

In Green’s function formulation, the solution can be de-
composed into three components, i.e., �=�*+�0+ �̃. Here,
we can identify the solution to the Poisson equation with the
charge forcing term

�* = �
i=1

Nm qi

�0
��x − xi�2 + �y − yi�2 + �z − zi�2

.

As such, we have �0+ �̃=cos x cos y cos z in �−. Here, �0 is
the solution of the boundary value problem, Eq. �17�, and �̃
is the solution of Eq. �20�. However, due to the additional
enforcing term of Eq. �37�, the jump conditions of the PBE
are not given by Eq. �21� but are the following:

��̃� = �+ − �− = − cos x cos y cos z − �*, �39�

���̃
� = �+ � �+ · n + �− � �− �− + �* + �0� · n , �40�

���̃�� = �+ � �+ · m + �− � �− �− + �* + �0� · m , �41�

���̃�� = �+ � �+ · l + �− � �− �− + �* + �0� · l , �42�

where n= �p11, p12, p13�T, m= �p21, p22, p23�T, and l
= �p31, p32, p33�T are the rows from the interface transform
matrix p given by Eq. �26�. This benchmark test can be used
to validate detailed components of the numerical solution of
the proposed MIBPB-III, including its treatment of singular
charges and its treatment of interface singularities. In the
following two subsections, we apply this test to our methods
with different interfaces, including the molecular surfaces of

polyatomic systems and the molecular surfaces of proteins.

3. Molecular surfaces of polyatomic systems

We first consider systems with 1, 2, and 18 atoms. For
the monoatomic system, a unit charge is located at the
atomic center. The coordinates for the diatomic system are
�−2,0 ,0� and �2,0,0�, with a unit charge at the center
of each atom. Atomic radii are set to 2.0 for these two sys-
tems. The molecular surface of the diatomic system
is constructed analytically. The atomic coordinates �x ,y ,z�
and van der Waals radius �r� for the 18-atom
system are given as �x ,y ,z ,r�= �−2.0270 0.9540
−0.6510 1.7�, �−1.6690 0.2340 0.6650 1.7�, �−0.4530
−0.6870 0.4410 1.7�, �0.7510 0.1480−0.0400 1.7�,
�0.3930 0.8680 −1.3560 1.7�, �−0.8230 1.7880
−1.1320 1.7�, �−2.2840 0.2080 −1.4180 1.2�,
�−2.8880 1.6170 −0.4830 1.2�, �−2.5270
−0.3680 0.9970 1.2�, �−1.4260 0.9800 1.4350 1.2�,
�−0.1960 −1.1890 1.3850 1.2�, �−0.7010 −1.4410
−0.3200 1.2�, �1.0070 0.8940 0.7270 1.2�, �1.6120
−0.5150 −0.2080 1.2�, �0.1490 0.1210 −2.1260 1.2�,
�1.2510 1.4700 −1.6880 1.2�, �−1.0810 2.2910
−2.0760 1.2�, and �−0.5750 2.5430 −0.3710 1.2�. The par-
tial charges of these atoms are artificially assigned to the
atomic centers as 0.2 �−1�i, i=1,2 , . . . ,18. The molecular
surfaces of these systems are used in Eq. �36� to test the
proposed method. Note that the molecular surfaces of the
diatomic and 18-atom systems are very irregular. Both
MIBPB-II and MIBPB-III have built in rigorous interface
treatments for these irregular features on the interface.

Table VI shows both the numerical errors and conver-
gence orders of MIBPB-II and MIBPB-III. E2 cannot be
measured for these cases because the solution vanishes at
some grid points. Second order accuracy is obtained by both
methods. However, MIBPB-III demonstrates a more consis-
tent convergence pattern and shows a better overall accuracy.
Because of the large atomic radius of r=2.0 in the mono-
atomic and diatomic systems, we observe little interference
effect of singular charges and the interfaces. Therefore, two
methods have the same level of accuracy at h=1.0. However,
the difference in the performance of two methods at h=1.0 is
very dramatic in the 18-atom system where some van der
Waals radii are as small as h=1.2. This difference demon-
strates the advantage of the proposed MIBPB-III technique.

4. Molecular surfaces of 24 proteins

It is well known that molecular surface definition admits
cusps and self-intersecting singularities.44 Therefore, it is im-
portant to verify that the proposed MIBPB-III is of second
order accuracy for the molecular surfaces of proteins. To this
end, we consider a set of 24 proteins used in our earlier
tests.60,63 The molecular surfaces of these proteins are used
in our tests. For a comparison, our earlier MIBPB-II is also
employed. MIBPB-II has built in the rigorous treatment of
interface singularities, but without the Green’s function treat-
ment for singular charges. Charges are distributed to the
neighboring grid points in MIBPB-II, as in many other finite
difference based methods.
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Table VII lists the numerical errors and convergence or-
ders of MIBPB-II and MIBPB-III for the molecular surfaces
of 24 proteins. The proteins are listed in the ascending se-
quence of the radius of gyration. Since numerical errors are
collected from the solution at irregular points around the
interface, their magnitudes indicate the reliability of PB solv-
ers for the prediction of electrostatic surface potentials. The
most important feature in the numerical errors is that
MIBPB-III is able to produce much smaller errors at the
coarse mesh size of h=1.0 Å, which is crucial for the pro-
posed method being used in large scale computations. At h
=1.0 Å, MIBPB-II is not accurate and reliable due to inter-

ference of charge singularities and interface jump conditions.
The accuracy of MIBPB-III at h=1.0 Å is similar to or even
better than that of MIBPB-II at h=0.50 Å. At fine mesh reso-
lutions, i.e., h=0.50 and 0.25 Å, MIBPB-III is about an or-
der of magnitude more accurate than MIBPB-II. Moreover,
MIBPB-III has a consistent order of convergence over two
mesh refinements. Whereas, MIBPB-II does not have second
order convergence at the last mesh refinement. This reduc-
tion in convergence order must be attributed to the presence
of the charge singularities because the MIBPB-II was con-
firmed to have the second order convergence for molecular
surface singularities of these 24 proteins.63

TABLE VI. Errors and convergence of MIBPB-II and MIBPB-III for solving Eq. �36� with molecular surfaces.

Systems MIBPB

E1 E3

1.0 0.5 0.25 0.125 1.0 0.5 0.25 0.125

1 atom II 2.60E−02 9.77E−03 1.87E−03 2.42E−04 8.43E−03 2.87E−03 3.89E−04 4.16E−05
Order 1.41 2.39 2.95 1.55 2.88 3.23

III 1.18E−02 2.00E−03 3.27E−04 5.04E−05 4.90E−03 7.05E−04 1.12E−04 1.61E−05
Order 2.56 2.61 2.70 2.80 2.65 2.80

2 atoms II 6.21E−02 1.63E−02 2.49E−03 2.54E−04 1.78E−02 3.63E−03 3.30E−04 4.18E−05
Order 1.93 2.71 3.29 2.29 3.46 2.98

III 3.18E−02 6.90E−03 1.14E−03 2.70E−04 8.13E−03 1.22E−03 1.62E−04 3.10E−05
Order 2.20 2.60 2.08 2.74 2.91 2.39

18 atoms II 2.28E−01 3.65E−02 3.44E−03 6.01E−04 1.95E−02 4.05E−03 4.64E−04 6.59E−05
Order 2.64 3.41 2.52 2.27 3.13 2.82

III 4.05E−02 9.32E−03 1.45E−03 2.16E−04 7.75E−03 1.12E−03 1.73E−04 2.98E−05
Order 2.12 2.68 2.75 2.79 2.69 2.54

TABLE VII. The E1 errors and convergences of MIBPB-II and MIBPB-III for solving Eq. �36� with the molecular surfaces of 24 proteins.

Protein

MIBPB-III MIBPB-II

1.0 0.5 Order 0.25 Order 1.0 0.5 Order 0.25 Order

1ajj 6.52E−02 1.85E−02 1.82 3.43E−03 2.43 8.03E−01 7.22E−02 3.48 3.18E−02 1.18
2pde 8.79E−02 2.47E−02 1.83 6.77E−03 1.87 6.83E−01 4.50E−02 3.92 3.74E−02 0.27
1vii 2.07E−01 2.36E−02 3.13 4.13E−03 2.51 3.71E−01 6.37E−02 2.54 2.52E−02 1.34
2erl 7.36E−02 2.17E−02 1.76 3.98E−03 2.45 1.29E+00 6.72E−02 4.26 2.26E−02 1.57
1cbn 7.52E−02 1.60E−02 2.23 5.64E−03 1.50 6.95E−01 7.72E−02 3.17 1.94E−02 1.99
1bor 9.47E−02 2.18E−02 2.12 3.92E−03 2.48 1.68E+00 7.23E−02 4.54 1.99E−02 1.86
1bbl 1.32E−01 2.26E−02 2.55 3.42E−03 2.72 1.07E+00 1.26E−01 3.09 3.53E−02 1.84
1fca 1.20E−01 1.70E−02 2.82 2.99E−03 2.51 1.33E+00 7.83E−02 4.09 1.73E−02 2.18
1uxc 7.58E−02 1.87E−02 2.02 3.51E−03 2.41 7.82E−01 9.01E−02 3.12 3.64E−02 1.31
1sh1 9.13E−02 1.88E−02 2.28 5.33E−03 1.82 1.71E+00 7.34E−02 4.54 2.70E−02 1.44
1mbg 1.35E−01 1.69E−02 3.00 3.97E−03 2.09 1.78E+00 7.92E−02 4.49 3.57E−02 1.15
1ptq 7.91E−02 1.95E−02 2.02 4.53E−03 2.11 4.42E+00 7.92E−02 5.80 3.86E−02 1.04
1vjw 7.23E−02 1.47E−02 2.30 3.26E−03 2.17 1.23E+00 5.92E−02 4.38 3.02E−02 0.97
1fxd 7.72E−02 2.07E−02 1.90 3.91E−03 2.40 2.14E+00 5.07E−02 5.40 1.63E−02 1.64
1r69 7.96E−02 1.84E−02 2.11 4.45E−03 2.05 1.40E+00 9.04E−02 3.95 3.24E−02 1.48
1hpt 8.08E−02 1.92E−02 2.07 3.80E−03 2.34 2.31E+00 9.94E−02 4.54 2.63E−02 1.92
1bpi 7.33E−02 2.11E−02 1.80 1.90E−03 3.47 5.54E+00 8.77E−02 5.98 3.35E−02 1.39
451c 1.09E−01 4.31E−02 1.34 8.03E−03 2.42 2.50E+00 9.27E−02 4.75 4.25E−02 1.13
1a2s 9.21E−02 2.94E−02 1.65 5.86E−03 2.33 7.48E−01 7.86E−02 3.25 1.57E−02 2.32
1frd 7.95E−02 2.26E−02 1.81 4.96E−03 2.19 1.88E+00 8.38E−02 4.49 2.96E−02 1.50
1svr 8.00E−02 2.49E−02 1.68 5.02E−03 2.31 1.34E+00 1.01E−01 3.73 4.36E−02 1.21
1neq 8.54E−02 2.89E−02 1.56 5.78E−03 2.32 1.90E+00 8.89E−02 4.42 3.83E−02 1.21
1a63 1.86E−01 2.16E−02 3.11 5.70E−03 1.92 2.07E+00 8.76E−02 4.56 2.51E−02 1.80
1a7m 1.17E−01 2.88E−02 2.02 4.57E−03 2.66 1.57E+00 8.72E−02 4.17 2.49E−02 1.81
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Figure 5 depicts the maximum absolute errors �E1� at
three mesh sizes. This figure brings the above comparison in
contrast with the errors of PBEQ. Obviously, MIBPB-III er-
rors are a few orders of magnitude smaller than those of
PBEQ, which are distributed between 100 and 101 for all
meshes. The PBEQ fails to deliver accurate solutions even if
the mesh is further refined because of the discontinuous na-
ture of the solution at molecular surface interfaces.

B. Applications

Having validated the proposed MIBPB-III, we consider
its application to the electrostatic free energies of solvation
and electrostatic surface potentials.

1. Electrostatic free energies of solvation of proteins

Table VIII lists the details of electrostatic free energies
of solvation of 24 proteins. For each method, results are re-
ported at three mesh sizes, h=1.0, 0.5, and 0.25 Å. Differ-
ences are computed with respect to the results obtained at the
finest mesh h=0.25 Å, and their magnitudes can be regarded
as an indication of convergence. MIBPB-III and MIBPB-II
have a similar level of accuracy and convergence at mesh
size h=0.5 Å. However, MIBPB-II obviously produces
larger differences at mesh size h=1.0 Å than MIBPB-III. In
Table VIII, the CPU time of two methods is compared at h
=0.5 Å. At a given mesh size, MIBPB-II is faster than
MIBPB-III due to the following two reasons. First, in solving
the PBE, due to the conversion of the singular charges to the
interface jump conditions, the matrix of MIBPB-III has a
relatively larger condition number and requires more CPU
time. Second, to calculate the electrostatic free energies,
MIBPB-II solves an additional Poisson equation by using the
FFT scheme, which is very fast. Whereas, MIBPB-III has to
solve an additional boundary value problem.

Figure 6 provides a comparison of the MIBPB-III,
PBEQ, and APBS. First, there is a good consistency in the
solvation energies from three methods, as shown in Fig. 6�a�.
However, this consistency is illustrated at the scale of

FIG. 5. �Color online� Comparison of absolute maximum errors �E1� of the
surface potentials of 24 proteins, which are ordered with ascending radii of
gyration: 1ajj, 2pde, 1vii, 2erl, 1cbn, 1bor, 1bbl, 1fca, 1uxc, 1sh1, 1mbg,
1ptq, 1vjw, 1fxd, 1r69, 1hpt, 1bpi, 451c, 1a2s, 1frd, 1svr, 1neq, 1a63, and
1a7m. Errors of MIBPB-III �green� and PBEQ �blue� at 24 proteins are,
respectively, linked with dash lines and solid lines. Errors of MIBPB-II �red�
are unlinked. Here, �, �, and �, are, respectively, for h=1.0, 0.5, and
0.25 Å.

TABLE VIII. Electrostatic free energies of solvation of 24 proteins.

Protein

MIBPB-III MIBPB-II CPU

0.25 0.5 Diff. 1.0 Diff. 0.25 0.5 Diff. 1.0 Diff. III II

1ajj −1137.2 −1139.9 −2.6 −1133.1 4.1 −1137.2 −1141.2 −4.0 −1160.8 −23.6 68 38
2pde −820.9 −819.1 1.8 −818.0 2.9 −820.9 −819.4 1.5 −826.7 −5.8 82 46
1vii −901.2 −900.4 0.8 −896.9 4.3 −901.0 −902.4 −1.4 −910.5 −9.5 67 43
2erl −948.8 −948.2 0.7 −962.4 −13.6 −948.5 −950.2 −1.6 −992.9 −44.4 62 38
1cbn −303.8 −303.5 0.3 −309.5 −5.7 −303.7 −305.5 −1.8 −335.5 −31.8 96 53
1bor −853.7 −858.7 −5.0 −851.7 2.0 −853.8 −860.7 −6.9 −871.8 −18.0 112 61
1bbl −986.8 −986.5 0.4 −996.7 −9.8 −987.0 −993.5 −6.5 −995.0 −8.0 83 48
1fca −1200.1 −1199.0 1.1 −1210.4 −10.3 −1200.1 −1201.3 −1.2 −1236.5 −36.4 83 41
1uxc −1138.7 −1137.2 1.5 −1153.1 −14.5 −1138.9 −1141.4 −2.5 −1164.3 −25.4 93 52
1sh1 −753.3 −752.2 1.0 −742.7 10.6 −753.2 −753.9 −0.7 −777.0 −23.8 82 45
1mbg −1346.1 −1347.5 −1.4 −1362.6 −16.5 −1346.1 −1350.1 −4.1 −1379.1 −33.0 106 56
1ptq −873.1 −872.0 1.0 −889 −16.0 −872.7 −871.9 0.8 −889.1 −16.4 96 54
1vjw −1237.9 −1237.0 0.9 −1247.9 −9.9 −1237.9 −1237.8 0.0 −1277.7 −39.9 109 61
1fxd −3300.0 −3299.2 0.8 −3316.1 −16.2 −3299.9 −3299.7 0.3 −3347.0 −47.0 103 60
1r69 −1089.5 −1086.2 3.3 −1119.3 −29.8 −1089.2 −1088.2 1.1 −1111.8 −22.6 115 55
1hpt −814.3 −810.7 3.6 −825.3 −11.1 −813.9 −812.0 1.9 −863.0 −49.1 115 57
1bpi −1301.9 −1298.1 3.9 −1316.8 −14.9 −1302.0 −1301.9 0.1 −1318.2 −16.2 125 74
451c −1024.6 −1023.1 1.5 −1023.6 1.0 −1024.6 −1024.9 −0.4 −1051.7 −27.2 156 75
1a2s −1913.5 −1911.8 1.7 −1923.8 −10.3 −1913.5 −1912.4 1.1 −1963.0 −49.5 189 117
1frd −2851.9 −2848.5 3.3 −2886.7 −34.8 −2851.1 −2852.6 −1.5 −2932.1 −81.0 210 101
1svr −1711.2 −1709.0 2.2 −1743.7 −32.5 −1711.2 −1713.5 −2.3 −1799.6 −88.3 228 132
1neq −1730.1 −1727.7 2.4 −1760.6 −30.5 −1729.9 −1730.9 −1.0 −1780.0 −50.1 227 127
1a63 −2373.5 −2370.6 2.9 −2413.3 −39.8 −2373.4 −2376.0 −2.6 −2458.0 −84.6 454 230
1a7m −2155.5 −2153.3 2.2 −2173.4 −18.0 −2155.3 −2156.4 −1.1 −2199.4 −44.1 594 316
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3500 kcal/mol. In fact, each method has a very different
convergence property as shown in Fig. 6�b�, where the dif-
ference of solvation energies obtained at two different mesh
sizes, h=0.5 and 0.25, is plotted for each method. MIBPB-III
demonstrates an excellent convergence as the mesh is re-
fined. Whereas, results of APBS and PBEQ show large varia-
tions over the mesh refinement. As such, it is reasonable to
regard the solvation energies of MIBPB-III at mesh size h
=0.25 Å as converged ones and use them to assess the accu-
racy of other schemes. In Fig. 6�c�, the differences of solva-
tion energies between those obtained by MIBPB-III at mesh
size h=0.25 Å and others are plotted. Indeed, as the mesh is
refined, the solvation energies of APBS and PBEQ converge
toward those of MIBPB-III obtained at h=0.25 Å. In fact,
the magnitudes of variations of MIBPB-III obtained at very
coarse mesh sizes of h=1.0 and 1.2 Å are in the same range
of those of APBS and PBEQ obtained at h=0.25 Å. Clearly,
APBS and PBEQ at the mesh size of h=0.5 Å produce larger
differences in solvation energies than does the MIBPB-III at
a very coarse mesh sizes of h=1.0 and 1.2 Å. This analysis
justifies the CPU comparison of MIBPB-III at the mesh size

of h=1.0 and 1.2 Å with APBS and PBEQ at mesh size of
h=0.25 for practical electrostatic calculations. As such, we
plot the CPU time used by APBS, which is well known for
its fast speed, and those used by MIBPB-III in Fig. 6�d�. The
CPU time is recorded on a Pentium IV personal computer
with 2.8 GHz CPU and 2 gbyte random access memory. It is
seen that at a similar level of accuracy, MIBPB-III is about
three times faster than APBS. However, it is necessary to
point out that at the same mesh size, APBS is much faster
than MIBPB-III. Table IX provides detailed data for the
above comparison and discussion.

2. Electrostatic potentials

We consider the surface electrostatic potential of a
heme-binding protein, Fe�II� cytochrome C551 from the or-
ganism Pseudomonas aeruginosa �PDB ID: 451c�. The heme
group is removed and left with a cavity. A common compu-
tational domain, �−17,31�� �−37,10�� �−9,36�, is used for
all calculations so that computed electrostatic potentials can
be compared on the same set of grids. The first row of Table
X lists the maximum and minimum of the electrostatic po-

FIG. 6. �Color online� Comparison of electrostatic free energies of solvation of 24 proteins listed in the order of gyration radii. �a� Solvation energies, �b�
differences of solvation energies between mesh sizes of h=0.25 and h=0.5 Å, �c� differences of solvation energies between MIBPB-III at h=0.25 Å and the
results in the legend, and �d� CPU time.

114106-15 Charge singularities in implicit solvent models J. Chem. Phys. 127, 114106 �2007�

Downloaded 18 Sep 2007 to 128.101.10.146. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



tential computed by using the MIBPB-III at mesh size h
=0.25 Å. These values provide an idea about the variability
of electrostatic potentials on the mesh. The convergence of
MIBPB-III is studied by the differences of the electrostatic
potentials computed at mesh sizes h=0.5 and 1.0 Å, with
respect to that computed at h=0.25. There are relatively
small deviations in the potentials computed by MIBPB-III.
In contrast, the differences of electrostatic potentials of
MIBPB-II show a significant deviation. The same feature is
also observed for PBEQ. One possible reason for these de-
viations is that the grids that carry the distributed charges
vary as the mesh is refined in these finite difference based
methods. The differences of the electrostatic potentials with
respect to that obtained by MIBPB-III at h=0.25 are listed in

the last four rows of Table X. Dramatical variations are ob-
served, indicating the mismatching of the charge distribu-
tions in these methods. Note that the charge distribution is
exact in MIBPB-III, and the Green’s function solution for
charges is also exact in MIBPB-III. This finding may have
substantial ramification for the reliability of the electrostatic
force computed by finite difference based PB solvers. A de-
tailed study of this issue is beyond the scope of this paper.

The electrostatic compatibility of the protein and heme
in the cavity region is important to their binding affinity.
Figure 7�a� illustrates surface electrostatic mapping of cyto-
chrome C551 computed by MIBPB-III at h=0.25 Å. The
cavity region is electronically positive except one site, which
provides a favorable environment for the heme. The conver-
gence studies of three methods are given in Figs. 7�b�–7�d�,
obtained by the difference of the potentials between mesh
size h=0.5 and h=0.25 Å for each method. It is seen that
MIBPB-III shows an excellent convergence at h=0.5 Å, as
there is little deviation in two potentials. MIBPB-II exhibits
a good convergence. Its deviations are evenly distributed on
the interface, indicating that its errors are not created from
geometric singularities. However, large deviations at the
scale of ±5 kcal/mol/ec are observed from the potentials
computed by PBEQ, which will have an impact in the elec-
trostatic steering effect of the heme binding process.

The differences of surface electrostatic potentials ob-
tained under various conditions and that of MIBPB-III at h
=0.25 Å are plotted in Fig. 8. It is seen that electrostatic
potential obtained by MIBPB-III at h=1.0 Å shows consid-

TABLE IX. Electrostatic free energies of solvation of 24 proteins.

h

Solvation energy �kcal/mol� CPU time �s�

MIBPB-III APBS PBEQ MIBPB-III APBS
0.25 0.5 1.0 1.2 0.25 0.5 0.25 0.5 1.0 1.2 0.25

1ajj −1137.2 −1139.9 −1133.1 −1152.7 −1143.5 −1167.3 −1145.7 −1170.7 12 8 40
2pde −820.9 −819.1 −818.0 −811.1 −824.6 −851.4 −832.2 −849.3 15 11 40
1vii −901.2 −900.4 −896.9 −914.8 −909.9 −937.5 −914.1 −936.8 14 9 34
2erl −948.8 −948.2 −962.4 −971.9 −954.1 −970.5 −959.1 −980.5 12 9 47
1cbn −303.8 −303.5 −309.5 −328.3 −309.0 −325.6 −310.8 −327.6 15 10 41
1bor −853.7 −858.7 −851.7 −853.9 −860.2 −899.7 −865.7 −890.7 19 14 52
1bbl −986.8 −986.5 −996.7 −1004.6 −998.3 −1045.2 −1000.5 −1028.4 15 13 39
1fca −1200.1 −1199.0 −1210.4 −1205.4 −1214.4 −1242.8 −1220.4 −1244.3 15 13 55
1uxc −1138.7 −1137.2 −1153.1 −1156.7 −1151.3 −1197.1 −1154.1 −1192.6 17 14 41
1sh1 −753.3 −752.2 −742.7 −767.1 −768.3 −804.3 −772.2 −803.2 16 12 47
1mbg −1346.1 −1347.5 −1362.6 −1359.7 −1358.2 −1392.1 −1362.5 −1398.3 20 14 53
1ptq −873.1 −872.0 −889.0 −880.6 −883.9 −919.7 −886.4 −915.0 18 13 42
1vjw −1237.9 −1237.0 −1247.9 −1238.5 −1254.3 −1290.0 −1256.9 −1291.5 17 12 54
1fxd −3300.0 −3299.2 −3316.1 −3294.5 −3317.4 −3356.5 −3323.5 −3348.7 19 14 52
1r69 −1089.5 −1086.2 −1119.3 −1100.0 −1099.8 −1142.5 −1103.3 −1142.7 22 15 55
1hpt −814.3 −810.7 −825.3 −816.2 −824.4 −870.3 −830.9 −867.0 20 14 56
1bpi −1301.9 −1298.1 −1316.8 −1312.4 −1318.4 −1370.0 −1318.9 −1356.6 26 21 66
451c −1024.6 −1023.1 −1023.6 −1050.4 −1039.0 −1082.0 −1045.0 −1084.2 29 22 76
1a2s −1913.5 −1911.8 −1923.8 −1924.1 −1926.8 −1954.9 −1933.0 −1968.5 37 25 104
1frd −2851.9 −2848.5 −2886.7 −2861.6 −2875.6 −2913.5 −2884.0 −2941.9 36 26 86
1svr −1711.2 −1709.0 −1743.7 −1731.4 −1731.0 −1771.6 −1740.0 −1784.9 40 30 90
1neq −1730.1 −1727.7 −1760.6 −1771.7 −1747.5 −1790.5 −1752.0 −1800.7 39 29 97
1a63 −2373.5 −2370.6 −2413.3 −2424.3 −2404.7 −2469.5 −2416.0 −2496.1 71 50 157
1a7m −2155.5 −2153.3 −2173.4 −2206.7 −2180.4 −2247.6 −2193.0 −2260.1 117 71 210

TABLE X. Electrostatic potential values and differences �kcal/mol/ec� for
cytochrome C551.

Methods Maximum value Minimum value

�MIBPB−III�h=0.25� 8230.13 −5515.96

�MIBPB−III�h=0.5�-�MIBPB−III�h=0.25� 34.54 −38.11
�MIBPB−III�h=1.0�-�MIBPB−III�h=0.25� 150.64 −45.68
�MIBPB−II�h=0.5�-�MIBPB−II�h=0.25� 980.89 −968.10
�PBEQ�h=0.5�-�PBEQ�h=0.25� 984.64 −967.67

�MIBPB−II�h=0.5�-�MIBPB−III�h=0.25� 2490.40 −4242.73
�MIBPB−II�h=0.25�-�MIBPB−III�h=0.25� 4526.79 −6428.70
�PBEQ�h=0.5�-�MIBPB−III�h=0.25� 2491.69 −4242.03
�PBEQ�h=0.25�-�MIBPB−III�h=0.25� 4525.75 −6428.72
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erable deviations inside the cavity. The deviations obtained
from MIBPB-II at h=0.5 Å are relatively small and evenly
distributed. While the deviations obtained from PBEQ are
quite large, particularly for the coarse mesh h=0.5 Å.

IV. CONCLUSION

This paper presents a novel Poisson-Boltzmann �PB�
solver based on a Green’s function formulation and the
matched interface and boundary �MIB� method. Our earlier
MIB based PB solver, MIBPB-II, has built in an advanced
mathematical treatment of dielectric interfaces so that the
subgrid information of the interface inside a mesh is ac-
counted and flux continuity conditions at the solvent-
molecule interface are rigorously enforced. Moreover, the
MIBPB-II maintains its second order accuracy for geometric
singularities, including cusps and self-intersecting surfaces in
the molecular surfaces,41 without resorting to surface
smoothing procedures. Consequently, the MIBPB-II is more
accurate at a coarse mesh than traditional PB solvers at a fine
mesh. Nevertheless, MIBPB-II suffers from an accuracy re-
duction if the mesh size is about half of the van der Waals
radius because of the interference of grid points that carry the
interface treatment and the grid points that carry the singular
charges. The present work effectively overcomes this diffi-
culty by developing a Green’s function formalism for charge
singularities. The essence is to split the solution into a linear
combination of three components in which the singular
charge source term is analytically resolved and leads to flux
jump conditions at the interface for the PB equation without

the singular charge term. The MIB method is then employed
to solve the resulting PB equation and treat flux jump con-
ditions from both the original interface and the singular
charge contributions on an equal footing. This new PB
solver, denoted as MIBPB-III, is extensively validated by
benchmark tests, including Kirkwood’s dielectric sphere,67

molecular surfaces of 1, 2, and 18 atoms, and molecular
surfaces of 24 proteins. Although molecular surfaces possess
geometric singularities, the designed second order accuracy,
i.e., numerical error reduces by a factor of 4 when the mesh
is halved, is confirmed in the aforementioned tests. It is
found that the MIBPB-III provides some of the most accu-
rate solutions to the PBE, to our knowledge. At a mesh as
coarse as 1.2 Å, MIBPB-III is able to deliver a similar level
of accuracy as other established PB solvers, including PBEQ
and APBS, at a fine mesh of 0.25 Å. As such, at the same
accuracy, the MIBPB-III is about three times faster than the
state of the art multigrid PB solver, the APBS. However, at
the same mesh, the MIBPB-III normally requires more CPU
time than PBEQ, APBS, and MIBPB-II. Since the Green’s
function solution to the singular charges is exact, the present
treatment provides correct peak values for the electrostatic
potential, which may be an advantage in the prediction of
electrostatic forces for molecular dynamics. This aspect is
under our investigation.

ACKNOWLEDGMENTS

This work was supported in part by NSF Grant Nos.
DMS-0616704 and IIS-0430987. The authors thank
Yongcheng Zhou for useful discussions.

FIG. 7. �Color� Analysis of surface
electrostatic potentials of cytochrome
C551. �a� �MIBPB-III�h=0.25�, and �b�
�MIBPB-III�h=0.5�−�MIBPB-III�h=0.25�, �c�
�MIBPB-II�h=0.5�−�MIBPB-II�h=0.25�, and
�d� �PBEQ�h=0.5�−�PBEQ�h=0.25�.
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APPENDIX: KIRKWOOD’S SOLUTION

Kirkwood’s dielectric sphere provides an excellent
benchmark for testing Poisson-Boltzmann �PB� solvers in
terms of accuracy, speed of convergence, and efficiency. In
his paper,67 Kirkwood provided very detailed physical analy-
sis and solutions to the PB equation of a spherical molecule
in solvent. Here is a brief summary of Kirkwood’s results
used in the present work.

The model is a spherical molecule with dielectric bound-
ary �radius a� and ionic boundary �radius b� in solvent. The
dielectric constant is �− inside dielectric boundary and �+ in
the exclusion layer and the solvent domain. The Laplace
equation in sphere coordinates is given by

1

r2

�

�r
�r2��

�r
� +

1

r2 sin �

�

��
�sin �

��

��
� +

1

r2 sin2 �

�2�

��2 = 0,

�A1�

where r is the radial coordinate, �� �0,�� is the polar angle
from the z axis, and �� �0,2�� is the azimuthal angle in the
x-y plane with respect to the x axis.

The solution of Eq. �A1� has the following expansions:

� = �
n=0

	

�
m=−n

n

�Kmnr−n−1 + Jmnrn�Pn
m�cos ��eim�, �A2�

here Pn
m are the associated Legendre function of the first

kind, and Kmn and Jmn are constants to be determined by
boundary or interface conditions.

• Inside the spherical molecule, where singular charges
exist, we have

− �2�− = 4��
i=1

Nm

qi��r − ri� . �A3�

The potential �−, as the solution to Eq. �A3�, can be
written as

�− = �* + �̂ , �A4�

where �* is the Green’s function

�* = �
i=1

Nm qi

�−
r − ri

, �A5�

where Nm is the number of charges in the spherical
molecule, and qi and ri are the charge and position of
the ith atom, respectively. The Green’s function can be
further expanded as

�* = �
n=0

	

�
m=−n

n
Emn

�−rn+1 Pn
m�cos ��eim�, �A6�

where

Emn =
�n − 
m
�!
�n + 
m
�!�i=1

Nm

qiri
nPn

m�cos �i�eim�i, �A7�

with �ri ,�i ,�i� being the polar coordinates of the posi-
tion of the ith charge. However, in practical calcula-

FIG. 8. �Color� Differences of surface
electrostatic potentials of cytochrome
C551. �a� �MIBPB-III�h=1.0�
−�MIBPB-III�h=0.25�, and �b�
�MIBPB-II�h=0.5�−�MIBPB-III�h=0.25�, �c�
�PBEQ�h=0.25�−�MIBPB-III�h=0.25�, and �d�
�PBEQ�h=0.5�−�MIBPB-III�h=0.25�.
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tions, this expansion converges slowly for small r.
Therefore, it is more convenient to directly evaluate Eq.
�A5�.

The nonsingular term, �̂, is given by

�̂ = �
n=0

	

�
m=−n

n

�Bmnrn�Pn
m�cos ��eim�. �A8�

• In the spherical shell, i.e., the ion-exclusion layer
bounded by the spherical surfaces of radii a and b, the
potential �e governed by the equation �2�e=0 is given
by

�e = �
n=0

	

�
m=−n

n

�Cmnr−n−1 + Gmnrn�Pn
m�cos ��eim�. �A9�

However, this part was not used in our model.

• Outside of the sphere of radius b, the potential �+ is
governed by

�2�+ − �2�+ = 0, �A10�

where � is the ionic strength defined previously, and �+

is given as

�+ = �
n=0

	

�
m=−n

n

�Amnr−n−1�e−�rKn��r�Pn
m�cos ��eim�,

�A11�

where

Kn�x� = �
s=0

n
2sn!�2n − s�!

s!�2n�!�n − s�!
xs. �A12�

• All the coefficients Amn, Cmn, Gmn, and Bnm are to be
determined by boundary conditions and interface con-
dition �−=�e, �−���− /�r�=�+���e /�r�, �e=�+,
��e /�r=��+ /�r, and �+�	�=0.

In fact, we used a two-domain model in this work—the
ion-exclusion layer was not considered. Assuming weak
ionic strength, the potential inside the molecule, �−, with
Emn defined as in Eq. �A7�, is given by

�− = �
n=0

	

�
m=−n

n � Emn

�−rn+1 + Bmnrn�Pn
m�cos ��eim�, �A13�

and the potential outside the molecule, �+, is given by

�+ = �
n=0

	

�
m=−n

n

�Cmnr−n−1 + Gmnrn�Pn
m�cos ��eim�. �A14�

All coefficients Bmn, Cmn, and Gmn can be obtained via
boundary and interface conditions �−=�+, �−���− /�r�
=�+���+ /�r�, and �+�	�=0.

Kirkwood’s solution provides an effective benchmark
for testing our scheme. As mentioned before, the accuracy of
the entire scheme for � depends on the accuracy of �0

solved from the boundary value problem, of the flux com-

puted by differentiating �0, and of �̃ solved from the inter-
face problem. In Kirkwood’s solution, �* in Eq. �A6� corre-
sponds to �* in Eq. �16�. While �̂ in Eq. �A8� corresponds to
the sum of �0 and �̃ in Eq. �14�. Finally, �+ in Eq. �A14�
corresponds to the �̃ in Eq. �20� for the potential outside of
the molecule. Meanwhile, since �0 satisfies Eq. �17�, it will
have the following analytical expansion with spherical har-
monics:

�0 = �
n=0

	

�
m=−n

n

�Dmnrn�Pn
m�cos ��eim�, �A15�

where Dnm=Enm /�−b2n+1. The existence of the analytic solu-
tion of �*, �0, and �̃ makes it possible for us to test the
accuracy of our scheme step by step in a sphere with mul-
tiple charges.
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